
Formal Methods for Extensions to CAS

Martin N. Dunstan?, Tom Kelsey, Ursula Martin, and Steve Linton

Division of Computer Science,
University of St Andrews,

North Haugh, St Andrews, UK
{mnd,tom,um,sal}@dcs.st-and.ac.uk

Abstract. We demonstrate the use of formal methods tools to provide a
semantics for the type hierarchy of the AXIOM computer algebra system,
and a methodology for Aldor program analysis and verification. We give
a case study of abstract specifications of AXIOM primitives, and provide
an interface between these abstractions and Aldor code.

1 Introduction

In this paper we report on the status of our work at St Andrews on the appli-
cation of formal methods and machine assisted theorem proving techniques to
improve the robustness and reliability of computer algebra systems (CAS). We
present a case study which demonstrates the use of formal methods for extend-
ing existing CAS code. This paper is an extension of the work described in [9].
We have adopted the Larch [16] system of formal methods languages and tools,
and applied them to the AXIOM [19] computer algebra system. NAG Ltd, who
develop AXIOM and partially fund this project, are optimistic that our formal
methods approach will aid system users.

We have constructed a formal model of the AXIOM algebraic category hier-
archy, and developed a methodology for formally verifying type assertions con-
tained in the AXIOM library. We have also created a Larch behavioural interface
specification language (BISL) called Larch/Aldor and a prototype verification
condition generator for the AXIOM compiled language, Aldor (see Section 2.4).
This work enables interface specifications (also known as annotations) to be
added to Aldor programs. These can be used for

– clear, concise, unambiguous and machine checkable documentation.
– lightweight verification (described in more detail in Section 3): helps users

to identify mistakes in programs which compilers are unable to detect.
– compiler optimisations: specifications could be used to select between differ-

ent function implementations, as described in [29].
– method selection: users could interrogate libraries for functions which per-

form a particular task under specific conditions, as described in [31].

? Funded by NAG Ltd

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1758–1777, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Formal Methods for Extensions to CAS 1759

Although we have chosen to follow the Larch methodology which is based
on a two-tiered specification system, we do not preclude the use of other formal
methods such as VDM [20], or Z [27]. Other proof tools, especially those with
higher order functionality such as PVS [25] or HOL [14], could be used. Nor
do we rule out the application to other CAS such as Maple [4] and Mathemat-
ica [32]; in fact the weaker type systems of these and other CAS may benefit
more from our approach than AXIOM has. Our approach is to use an automated
theorem prover as a tool for debugging formal specifications used in the design
and implementation of libraries for CAS. Our goal is to increase the robustness
of CAS.

In the rest of this introduction we motivate our work and discuss the uses
of verification conditions (VC’s) generated from annotations. In Section 2 we
introduce Larch and its algebraic specification language LSL. Then in Section 2.2
we explain how proofs of LSL specifications can be used to investigate claims
made in the documentation of AXIOM categories and domains. This is followed
by Sections 2.3 and 2.4 which describe Larch BISL’s, with particular reference
to Larch/Aldor. In Section 3 we describe the application of our technique of
specification lightweight verification and condition generation to CAS in general,
and to AXIOM in particular. Section 4 is a case study concerning AXIOM
complex numbers, which illustrates how incorrect behaviour within AXIOM can
be corrected both by abstract specification and the use of annotations. The final
section is an outline of our conclusions and related work.

1.1 Motivation

Computer algebra systems are environments for symbolic calculation, which pro-
vide packages for the manipulation of expressions involving symbols. These sym-
bols may, at some point, be assigned concrete numeric values. General purpose
computer algebra systems, such as AXIOM [19], Maple [4], or Mathematica [32],
as well as more specialised tools such as GAP [12] for computational discrete
mathematics or the AXIOM/PoSSo library for high-performance polynomial sys-
tem solving, are used by many different communities of users including educators,
engineers, and researchers in both science and mathematics. The specialised sys-
tems in particular are extremely powerful. The PoSSo library has been used to
compute a single Gröbner basis, used to obtain a solution of a non-linear sys-
tem, which (compressed) occupies more than 5GB of disk space, while GAP is
routinely used to compute with groups of permutations on millions of points.

After pioneering work in the 1960s CAS have become mainstream commer-
cial products: everyday tools not only for researchers but also for engineers and
scientists. For example Aerospatiale use a Maple-based system for motion plan-
ning in satellite control. The systems have become more complicated, providing
languages, graphics, programming environments and diverse sophisticated algo-
rithms for integration, factorisation and so on, to meet the needs of a variety of
users, many not expert in mathematics. All the usual software engineering issues
arise, such as modularity, re-use, interworking and HCI. NAG’s AXIOM [19] is
a sophisticated, strongly typed CAS: user and system libraries are written in



1760 Martin N. Dunstan et al.

the Aldor language which supports a hierarchy of built-in parameterised types
and algorithms for mathematical objects such as rings, fields and polynomials.
Aldor is interpreted in the AXIOM kernel which provides basic routines such as
simplification and evaluation: code developed in Aldor may also be compiled to
C for export to other products. Because such systems are large and complicated
(and the algorithms are often developed by domain experts with considerable
specialist knowledge) a body of library material has accrued, much of which is
widely used even if not necessarily well documented or even entirely understood.
For example, it may be known to experts that a certain routine is correct if the
input is a continuous function, but because continuity is undecidable this may
never be checked at run-time, and it may not even be noted in any obvious way
in the documentation, so that an inexpert user may easily make mistakes.

AXIOM/Aldor users can be grouped into three types:

– command line users, who have access to a comprehensive graphical hypertext
system of examples and documentation

– system developers, who may be expected to know about any pitfalls involving
the libraries

– library developers (writing Aldor programs), who need more support than
the description of routines in isolation, and who may be unaware of the
subtle dependencies and conditions contained in the AXIOM type system.

Our project aims to improve the provision of support for this third group of users.
It also encourages the reuse of software by providing unambiguous documenta-
tion for functions. We do not address the accuracy of the results of procedures;
computer algebra algorithms have been developed by experts and are generally
sound when applied correctly. However there can be hidden dependencies and
implicit side conditions present which can lead to erroneous or misinterpreted
results. Examples include inconsistent choice of branch cuts in integration al-
gorithms [7], invalid assumptions for the types of arguments of a function or
poorly documented side-conditions. Moreover CAS often contain several proce-
dures which perform the same task, but which are optimised for a particular
input domain. It is often not easy to select the best procedure without either a
detailed knowledge of the system or a lengthy perusal of the documentation.

1.2 Using Verification Conditions

Part of our work is concerned with the generation of verification conditions
(VC’s) from Aldor programs which have been annotated with Larch/Aldor spec-
ifications. VC’s are logical statements that describe the conditions under which
a program satisfies its specification; they may be created during attempts of
correctness proofs (see Section 3.1). However, once VC’s have been generated
one might ask what can we do with them? Ideally we would attempt to prove
or disprove them but in practice this may be infeasible. For example, the GAP4
CAS [12] contains a small module which would generate an apparently simple
verification condition. However, the proof of this VC relies on the “Odd Order



Formal Methods for Extensions to CAS 1761

Theorem” whose proof occupied an entire 255 page issue of the Pacific Journal of
Mathematics [11]. Other examples might include statements about continuity of
mathematical functions or computational geometry. Generating verification con-
ditions by hand is tedious even for tiny programs and so a mechanical program
would normally be used. Once the verification conditions have been generated
there are several options:

– trivial VC’s might be automatically discharged by the generator
– theorem provers or proof assistants might be utilised
– hand-proofs might be attempted
– the user may appeal to their specialist knowledge or authoritative sources
– VC’s may be ignored unless they are obviously unsatisfiable
– VC’s can be noted in the documentation as extra requirements

We believe that our suggestion that the user may wish to ignore VC’s unless
they are clearly invalid is justified because obvious mistakes can sometimes be de-
tected more quickly by inspection than by attempting to formally prove/disprove
them. For example the VC

(tanx) is-continuous-on (0, π)

is clearly false and this can be easily seen from the graph of tanx over the
specified interval (0, π). However, attempting to show that this is false within a
theorem prover is very difficult, requiring a model of the real numbers which is
a topic of active research [17, 18].

Proof attempts which fail to show whether a VC is valid or invalid may in-
dicate that the program annotations and/or the background theory needs to be
extended. VC’s which are found to be invalid mean that there is a mistake, prob-
ably in the program or the annotations but possibly in the theory used during
the proof. If all VC’s can be proved then the program satisfies its specification
and the user will have increased confidence that it will behave as expected.

2 Specification and the Larch Approach

In this section we describe the languages and tools which comprise the Larch for-
mal specification system, and propose a methodology for using Larch to specify
AXIOM and Aldor components. Examples of specifications which relate directly
to the AXIOM/Aldor CAS are provided.

Larch [16] is based on a two-tiered system. In the first tier users write alge-
braic specifications in a programming-language independent algebraic specifica-
tion language called the Larch Shared Language (LSL). These specifications pro-
vide the background theory for the problem domain and allow the investigation of
design options. The second tier consists of a family of behavioural interface speci-
fication languages (BISL’s), each tailored to a particular programming language.
User programs are annotated in the BISL of their choice. BISL specifications are
primarily concerned with implementation details such as side-conditions on func-
tions, memory allocation and pointer dereferencing. The Larch philosophy is to



1762 Martin N. Dunstan et al.

do as much work as possible at the LSL level, leaving implementation-specific
details to be described using the BISL. This allows BISL specifications to be
both concise and unambiguous.

2.1 The Larch Shared Language

The LSL tier allows the user to define operators and sorts (types) which provide
semantics for terms appearing in the BISL annotations. The basic unit of LSL
specification is a trait. The following example provides a basic abstraction of
complex numbers (providing a constructor of ordered pairs from a commutative
ring, and observers for the real and imaginary parts of a complex entity) which
will be used in the case study:

RequirementsForComplex (CR) : trait

assumes CommRingCat (CR)

introduces

complex : CR,CR ! T

imag, real : T ! CR

asserts

T partitioned by real, imag

T generated by complex

∀ x,y : CR

complex(x,y) = complex(u,v) ) x = u ^ y = v;

imag(complex(x,y)) == y;

real(complex(x,y)) == x;

implies

∀ z : T

z == complex(real(z),imag(z))

The sections of the trait have the following meanings:

• assumes—textually include other traits (with renaming)
• introduces—declare new mix-fix operators
• asserts—define a set of axioms
• implies—statements implied by the axioms of this trait

The trait defines values of sort T, and is parameterized by the sort name CR. The
partitioned by clause states that all distinct values of sort T can be distin-
guished using real and imag. The generated by clause states that all T values
can be obtained using complex. What it means to be a value of sort CR is defined
in the assumed trait CommRingCat. This assumption generates a proof obligation:
any supplied argument must be shown to satisfy the axioms of a commutative
ring (the LSL includes command is used to inherit properties without justifica-
tion). LATEX is used for graphical symbols/operators, e.g. ∀ is written \forall.
The first assertion formalises equality for complex values; the reverse implication
is automatically true, since LSL operators always return equal results for equal
arguments. The remaining assertions provide straightforward semantics for the



Formal Methods for Extensions to CAS 1763

observers in terms of the constructor. The implies section is used as checkable
redundancy; proving the statements provides confidence that the axioms defined
are specified correctly. Failed proof attempts may indicate the presence of errors
or omissions in the original traits. This section can also provide extra informa-
tion and lemmas which might not be obvious from the rest of the trait, but are
useful properties for another trait to inherit.

A tool called lsl can be used to perform syntax and type checking of LSL
specifications. It can also convert LSL specifications into the object language of
the Larch Prover (LP), a proof assistant for a many-sorted first order logic with
induction which can be used to check properties of LSL specifications.

2.2 Specifying AXIOM Using LSL and LP

The specification of AXIOM categories in LSL was described in [9]. The next
stage is to specify AXIOM functors and debug these specifications using the
Larch Prover. The resulting abstract specifications provide concrete definitions of
the primitives which are used in interface specifications (annotations) to produce
verification conditions.

An AXIOM category is a set of operator names, signatures and methods
which provide an abstract framework for the definition of computer algebra
types. A category will, in general, have many models; each implemented model
is an AXIOM domain. For example, the AXIOM domains Matrix Integer and
Polynomial Integer are both implementations of the AXIOM category Ring.
We say that these domains have type Ring; their basic operators were defined
in the Ring category.

AXIOM domains are constructed by functors. These take domains as ar-
gument, and return a domain as output. In the above examples Matrix and
Polynomial are the functors, each taking the domain Integer as argument.
AXIOM assigns a type to each domain returned by a functor. This assignment
follows informal inbuilt rules which are not always valid. Thus AXIOM can as-
sign an incorrect type to a functor, and hence obtain incorrect results. We give
an example of this incorrect typing behaviour in our case study: AXIOM ax-
ioms asserts that a domain with non-zero zero divisors is a field. Prior to our
work, the only method of checking the correctness of these assignments was
experimentation with AXIOM code in conjunction with detailed examination
of AXIOM documentation. This method is unsatisfactory: even if each existing
AXIOM domain is tested, there remains the problem of testing domains not yet
implemented.

Our approach is to provide a generic methodology, applicable both to ex-
isting and potential implementations. We supply LSL specifications of functors
which allow us to formally verify that a given implementation is a model of
the categories which define the type of a resulting domain. These proofs can be
thought of as providing enhanced type-checking. Proof obligations are obtained
by adding the clause

implies TypeTrait(Sortname, Opnames for names)



1764 Martin N. Dunstan et al.

to the functor trait, where TypeTrait is a trait representing an AXIOM cate-
gory, Sortname is the sort name for the domain produced by the functor, and
Opnames for names replaces high level operator names with appropriate imple-
mentation level operator names.

The specifications also allow formal checks that implementations of operators
act as expected in the model. For example we can check that abstract algebraic
properties hold at the domain level, or that the implementation operators com-
bine together in a satisfactory manner. Moreover an LSL clause of the form
assumes CategoryName(CN) generates a proof obligation that a specification
of an argument domain (with sort name CN)) is a model of the specification
of CategoryName. Hence we can verify that argument domains are of the in-
tended type. Examples of enhanced type-checking, operator suitability proofs,
and argument correctness verification are given in Section 4.1

2.3 Larch BISL’s

Once the necessary theories have been defined in LSL (and checked with LP),
the user can proceed to write their program. In the ideal world implementations
would be developed in conjunction with the annotations but in the case of legacy
systems this may not be possible. For such systems specifying their behaviour
as it has been implemented may be the only option, at least as the first step.

To date there are around 14 different Larch BISL’S for languages ranging
from CLU [30] and Modula-3 [21] to C [16] and C++ [23]. Each has been designed
to investigate various aspects of imperative programming such as inheritance [23]
and concurrency [21] as well as different development methodologies such as
specification browsing [5] and interactive program verification [15]. The syntax
and use of BISL specifications is essentially the same in all languages. Functions
and procedures can be annotated with statements defining their pre- and post-
conditions as well as indicating any client-visible state which might be modified
when the function is executed.

Below is a simple example of an annotated Aldor function declaration for
iqsrt which computes the integer square root of a positive number:

++} requires :(x < 0);

++} ensures (r*r � x) ^ (x < (r+1)*(r+1));

++} modifies nothing;

iqsrt(x:Integer):(r:Integer);

Annotations are embedded in the program source code and appear as special
comments marked by lines beginning with “++}”. In the example above the
requires clause defines the pre-condition of the function and states that the
argument must be a non-negative integer. The ensures clause defines the post-
condition in terms of the return value “r” and places restrictions on the possible
set of values that “r” may hold such that

∀x • x ≥ 0 ⇒ isqrt(x) = b√xc



Formal Methods for Extensions to CAS 1765

The modifies clause specifies which parts of the client-visible state (such as
global variables) might be modified when this function is executed. A function
is permitted to mutate at most the objects listed in the modifies—it may alter
some or none of them if appropriate.

2.4 Larch/Aldor

As part of our work we have designed a Larch BISL for Aldor, the extension pro-
gramming language for AXIOM, which we are using to investigate how program
annotations can improve the reliability and robustness of computer algebra rou-
tines. Aldor programs may be annotated with Larch BISL specifications which
can be used as clear, concise and machine-checkable documentation; they may
also be used for verification condition generation (see Section 3). An example
of a Larch/Aldor program which implements the integer division algorithm is
given below.

++} requires :(g = 0);

++} ensures (f = ((result.q)*g + result.r))

++} ^ (abs(result.r) < abs(g));

++} modifies nothing;

integerDivide(f:INT, g:INT):Record(q:INT, r:INT) == {

local quo:INT := 0;

local rem:INT := f;

++} requires :(g = 0) ^ (quo^ = 0) ^ (rem^ = f);

++} ensures (f = (quo’*g + rem’)) ^ (abs(rem’) < abs(g));

++} invariant f = (quo*g + rem);

++} measure abs(rem);

++} modifies quo, rem;

while (abs(rem) � abs(g)) repeat {

quo := quo + sign(f)*sign(g);

rem := rem - sign(f)*abs(g);

}

record(quo, rem);

}

In the annotations of the example above, identifiers represent logical values
of the corresponding Aldor variables. The identifiers marked with a caret (^)
indicate that the value is with respect to the state of the program before the
function is executed (the pre-state) while the primed identifiers correspond to
values in the post-state. Unadorned identifiers are interpreted according to the
context and usually have the same value in the pre- and post-states. The iden-
tifier result is known as a specification or ghost-variable and its value is the
return value of the function. It is important to note that operators and functions
that appear in the annotations are LSL operators and not Aldor functions.



1766 Martin N. Dunstan et al.

3 Application of the Larch Method to CAS

The AXIOM computer algebra system has a large library containing numerous
functors, as described in Section 2.2. Although a few of these can be applied to
any type, such as List(T:Type), many have restrictions on the types of domains
which they can accept as arguments and which they will return. As shown in the
case study in Section 4, the functor Complex can only be applied to domains CR
which are of type CommutativeRing. This means that the operations defined by
Complex are able to rely on the fact that CR is a CommutativeRing, irrespective
of the concrete instance of CR. This creates the risk that functors may contain
errors that are not revealed by their application to any domain in the existing
library, but may appear when new domains are added.

3.1 Lightweight Verification Condition Generation

Our proposal is to formally specify the requirements of the categories and the
behaviour of functors, to allow checks that do not depend on specific domains.
The diagram below is intended to describe the development used for Larch/Aldor
programs. Users begin by writing LSL specifications which provide the theory for
their problem. Next the interface specifications and Aldor source are produced,
perhaps leaving some functions as stubs without a proper implementation. A
separate tool can then generate verification conditions which can be analysed
using LP, by hand or by some other theorem prover as appropriate. A prototype
VC generator for Larch/Aldor has been implemented in Aldor by the authors.

Larch
Prover

Verification

Conditions

LSL
Specification

BISL

Specification

Code
Source

We use the notation {P} C {Q} to state that the program fragment C has
the pre-condition P and post-condition Q; P and Q are the specification of C. If
{P} C {Q} is interpreted as a “partial correctness” statement then it is true, if
whenever C is executed in a state satisfying P and if the execution of C terminates,



Formal Methods for Extensions to CAS 1767

then it will be in a state which satisfies Q. If {P} C {Q} is interpreted as being
“totally correct” then it must be partially correct and C must always terminate
whenever P is satisfied. The approach often taken to prove that {P} C {Q} is
partially or totally correct is to reduce the statement to a set of purely logical
or mathematical formulae called verification conditions [13] or VC’s. This is
achieved through the use of proof rules which allow the problem to be broken
into smaller fragments. For example, the rule for assignment might be:

P ⇒ Q [e/v]
{P} v := e {Q}

which states that to prove the partial correctness of {P} v := e {Q} we need
to prove that P ⇒ Q [e/v] where Q [e/v] represents the formula Q with every
occurrence of v replaced with e. For example, the partial correctness proof of
{x = 0} x := x + 1 {x = 1} generates the VC (x = 0) ⇒ (x + 1) = 1; for total
correctness we must also show that the evaluation of e terminates.

Our approach to verification condition generation is different—the assign-
ment rule in the previous section is relatively simple but the construction of
rules for other features of a programming language such as Aldor is not so easy.
In particular, determining the verifications resulting from calling a procedure
which mutates the values of its arguments is difficult. In [9] we proposed the use
of lightweight formal methods to step around this problem in computer algebra
systems. Rather than undertaking long verification proofs, we suggest that the
correctness of a procedure may be taken on trust.

Using our notation, {P} C {Q} might represent the correctness of a standard
library procedure C. In any context which executes C we have the verification
condition that P is satisfied in this context; we can then assume that Q is satisfied
in the new context after C has terminated. Our justification for this is that we
believe it is more likely that programming errors will be due incorrect application
of functions or procedures than due to mistakes in the the implementation of
computer algebra routines. After all the algorithms upon which they are based
have almost certainly been well studied.

As an example, consider the ‘isqrt’ function specified in Section 2.3. With
our approach we trust that the implementation of this function satisfies its
specification, namely that if ¬(x < 0) then the result r satisfies r ∗ r ≤ x <
(r + 1) ∗ (r + 1). Now whenever we see a statement such as ‘a := isqrt(z)’ we
can generate the verification condition that ¬(z < 0) holds before the assign-
ment and from the post-condition we infer that a∗a ≤ z < (a+1)∗ (a+1) holds
afterwards. This inference may help to discharge other verification conditions.
Furthermore the user may wish to apply the VC generator to the implementation
of ‘isqrt’ to check that it does indeed satisfy its specification.

4 Case Study

In this section we analyse the behaviour of specific examples of the AXIOM cate-
gories and domains described in Section 2.2. We use these examples to illustrate



1768 Martin N. Dunstan et al.

incorrect AXIOM output. In Section 4.1 we provide LSL specifications which
provide a formal check on the type-correctness of the example domains. The use
of BISL’s to provide a complementary methodology for checking type-correctness
is described in Section 4.3.

Our case study concerns essential side-conditions for a functor in the AX-
IOM library. These conditions are present only as informal comments in the
documentation, which are themselves inaccurate. This can result in erroneous
AXIOM development in two ways: (i) the library developer may not be aware of
the comments and hence the existence of side-conditions, (ii) the library devel-
oper may take the side-conditions into account, but be misled by the inaccurate
comments. The AXIOM category ComplexCategory

– contains domains which represent the Gaussian integers (Complex Integer)
and Gaussian rationals (Complex Fraction Integer)

– contains analogous domains, also obtained by the use of the functor Complex
– defines the constants 0, 1, and the square root of −1
– defines multiplication, addition, and subtraction operators
– defines other useful operators, such as norm and conjugate.

The AXIOM functor Complex

– takes an AXIOM domain of type CommutativeRing, for example Integer
– represents ordered pairs as records of two elements
– implements the operators defined in ComplexCategory in terms of the record

representation and the structure of the argument domain
– returns an AXIOM domain of computation of type ComplexCategory.

AXIOM can behave incorrectly when the argument to Complex is an integral
domain or a field. An integral domain is a commutative ring in which the product
of two non-zero elements is always non-zero. This is known as the “no zero
divisors” axiom, and can be written as ∀x, y xy = 0 ⇒ x = 0 ∨ y = 0. For
example, Integer is an AXIOM integral domain. A field is an integral domain
in which each non-zero element has a multiplicative inverse.

In AXIOM, a domain of type ComplexCategory(K) (where K is either an in-
tegral domain or a field), is assigned type IntegralDomain or Field respectively.
However, the correctness of this type-assignment is dependent on

(i) x2 +y2 = 0 having no non-trivial solutions in K when K is an integral domain
(ii) x2 + 1 = 0 having no solutions when K is a field.

These properties do not hold for every integral domain and field. The follow-
ing AXIOM session demonstrates this: we take the field containing exactly five
elements, PrimeField 5, and show that Complex PrimeField 5 is incorrectly
given type Field, even though 3+ i and 3− i are zero divisors, contradicting one
of the field axioms. This behaviour is a consequence of the fact that x2 + 1 = 0
has the solutions 2 and 3 in PrimeField 5.



Formal Methods for Extensions to CAS 1769

(1) ! K := PrimeField 5

(1) PrimeField 5

Type: Domain

(2) ! Complex K has Field

(2) true

Type: Boolean

(3) ! a := 3 + %i :: Complex K

(3) 3 + %i

Type: Complex PrimeField 5

(4) ! b := 3 - %i :: Complex K

(4) 3 + 4%i

Type: Complex PrimeField 5

(5) ! a*b

(5) 0

Type: Complex PrimeField 5

Our solution to this incorrect type-assignation, presented in the following sec-
tion, is to (i) specify the AXIOM category, (ii) provide formal axiomatisations
and proofs of the conditions for type correctness, and (iii) import these into the
specification of the Complex functor. The Aldor library developer is then able to
view the conditions in the specification as conditional attributes of the particu-
lar argument domain under consideration. Section 4.2 illustrates the verification
techniques that we have developed. In Section 4.3 we show how interface spec-
ifications can reinforce the properties of the LSL specification of Complex by
allowing the generation of VC’s.

4.1 LSL Specification of the AXIOM Functor Complex

The LSL trait RequirementsForComplex (given in Section 2.1) defined, at a
high level of abstraction, the constructor and observer operations required by
an implementation of complex numbers. We specified that elements of sort T
have extractable real and imaginary parts, can be obtained only as a result of
applying the complex operator, and are equal iff they have equal real and imag-
inary parts. The trait assumed that the argument domain has AXIOM type
CommutativeRing. The ComplexCategory trait below lowers the level of ab-
straction by the provision of (i) constants of sort T, (ii) the useful shorthand
operators conjugate and norm, and (iii) multiplication, addition and subtrac-
tion over T. The assertions supply the standard algebraic notions of multiplica-
tion, addition and subtraction of complex ring elements represented (in terms of
complex) as ordered pairs of elements from the underlying ring. The operators
norm, conjugate and imaginary have standard mathematical definitions.
The implications of the trait are:

A Larch handbook [16] traits, which combine to require that T is shown to
be a commutative ring with unity. Hence Complex (CR) is shown to be a
commutative ring whenever CR is.



1770 Martin N. Dunstan et al.

ComplexCategory (CR) : trait

assumes CommRingCat (CR)

includes RequirementsForComplex (CR)
introduces
imaginary, 0, 1 : ! T

conjugate : T ! T

norm : T ! CR

__+__, __*__ : T,T ! T

-__ : T ! T

asserts ∀ w,z : T

imaginary == complex(0,1);

0 == complex(0,0);

1 == complex(1,0);

conjugate(z) == complex(real(z),-imag(z));

norm(z) == (real(z)*real(z)) + (imag(z)*imag(z));

w + z == complex(real(w)+real(z),imag(w)+imag(z));

w*z == complex((real(w)*real(z)) - (imag(w)*imag(z)),

(real(w)*imag(z)) + (imag(w)*real(z)));

-z == complex(-real(z),-imag(z))

implies

AC (*, T), AC (+, T), Distributive(+, *, T),

Group(T for T, + for ◦, 0 for unit, -__ for −1),

Monoid(T for T, * for ◦, 1 for unit)

9=
;A

∀ z,w : T

imaginary*imaginary == -1;
	

B

B A check that imaginary has been defined correctly as a square root of the
additive inverse of the multiplicative unity element of the underlying ring.

4.2 Proving Properties

Proving the implications labelled A and B shows directly that an AXIOM do-
main of type ComplexCategory will have inherited the correct properties as-
serted informally in the AXIOM documentation. These straightforward proof
goals normalise immediately in LP. We now address type correctness in the case
that the argument CR is an integral domain or a field.
The following trait provides the necessary conditions for type-correctness of an
AXIOM domain of type ComplexCategory. The implications are:

A if the argument type is a field in which x2 = −y2 ⇐⇒ x = 0, then the
resulting complex type will have multiplicative inverses

B if the argument type is a field in which x2 = −1 never holds, then the
complex type will have no zero divisors

C if the argument type is an integral domain in which x2 = −y2 ⇐⇒ x = 0,
then the complex type is an integral domain.



Formal Methods for Extensions to CAS 1771

TypeConditions (CR,T) : trait
includes
CommRingCat (CR), ComplexCategory (CR)

introduces
TypeCondition_1, TypeCondition_2 : ! Bool

InverseExistence : ! Bool

asserts ∀ a,b,c : CR

TypeCondition_1 ) (a := 0 ) a*a := -(b*b));

TypeCondition_2 ) (a*a := -1);

InverseExistence ) (a := 0 ) 9 c (a*c = 1))

implies ∀ v,z,w : T

TypeCondition_1 ^ noZeroDivisors ^ InverseExistence

) (w := 0 ) 9 v (w*v = 1));

�
A

TypeCondition_2 ^ noZeroDivisors ^ InverseExistence

) (w*z=0 ) w=0 _ z=0);

�
B

TypeCondition_1 ^ noZeroDivisors ) (w*z=0 ) w=0 _ z=0)
	

C

Proof of implication A:
Suppose that the relevant conditions hold, and that w = (a, b) is non-zero.
Then a2 + b2 6= 0 (by type condition 1), and so there exists a c such that
c(a2 + b2) = 1 (by inverse condition). By setting v = (ca, c(−b)) we obtain
vw = (ca,−cb)(a, b) = (ca2 + cb2,−cba + cba) = (c(a2 + b2), 0) = (1, 0) and
hence v is the required multiplicative inverse. 2
Proof of implications B and C:
Suppose the relevant conditions hold, and that z ∗ w = 0 with z = (a, b) and
w = (c, d). Then we have

ac − bd = 0
ad + bc = 0

}
(∗)

If a = 0 and b 6= 0, then bd = 0 and bc = 0, giving d = c = 0 and hence
w = (0, 0) = 0. Similar arguments hold whenever b, c, or d are zero, and the
implications are proved for all these cases. If a, b, c, and d are all nonzero then,
by equations (∗), ab(ac) = ab(bd), or a2(bc) = (−bc)b2 after substituting for
ad. Hence a2 = −b2 holds for non-zero a and b, immediately contradicting type
condition 1 for implication B. When b has the multiplicative inverse c, we have
that a2 = −b2 gives (ac)2 = −bcbc = −1, contradicting type condition 2 for
implication C. Hence the result is proved for both implications 2

The Aldor library developer, by using this specification, can check the condi-
tions for the particular domain of computation under consideration. For example,
neither type condition holds in PrimeField 5, so Complex PrimeField 5 will
have type CommutativeRing (justified by the implications of the specification
of ComplexCategory) but not type Field. Conversely, since type condition 1
holds in the type Integer, Complex Integer can correctly be assigned type
IntegralDomain, with implication C above as formal justification.



1772 Martin N. Dunstan et al.

Complex (CR) : trait

assumes CommRingCat(CR)

includes ComplexCat(CR), TypeConditions (CR,T)

BiRecord(T, CR, CR, .real for .first, .imag for .second)
introduces
coerce : CR ! T

__*__ : N,T ! T

isZero, isOne : T ! Bool

asserts ∀ x,y : CR, z : T, n : N

complex(x,y) == [x,y];

coerce(x) == [x,0];

n*z == [n*(z.real), n*(z.imag)];

isZero(z) == z = 0;

isOne(z) == z = 1
implies
RequirementsForComplex(CR, __.real for real, __.imag for imag)

∀ z, w : T

norm(z*w) == real((z*w)*conjugate(z*w));

imag((z*w)*conjugate(z*w)) == 0;

conjugate(z)*conjugate(w) == conjugate(z*w)

converts complex

We now wish to show that the record representation for complex numbers
used by AXIOM satisfies our high level requirements. The trait Complex(CR)
above is simply a copy of the AXIOM documentation with the element x + iy
represented by the record [x,y]. By implying RequirementsForComplex we
generate the required proof goal. The proof (although straightforward in LP)
is not trivial: we have included the specification of ComplexCategory, which it-
self includes RequirementsForComplex, but not under the renaming of operators
given in the implies clause. Hence we are checking that the record representation
is suitable, where suitability was defined in the trait RequirementsForComplex.
The same methodology would be used to show that a representation of x+ iy as
(r, θ) (i.e. the standard modulus/amplitude representation) satisfied our abstract
requirements. The remaining implications check that the combined operator def-
initions satisfy standard results from the abstract theory of complex numbers.

4.3 The Interface Specification

In the previous section we described how the AXIOM functor Complex(CR)
allows the user to construct an object which AXIOM considers to be a field
even though it is not. Here we show how interface specifications may be used
to deal with the problem in a different yet complementary way to that adopted
in the previous section. Since functors are functions from types to types, it is
quite natural to use interface specifications such as those described earlier to
describe their behaviour. In general a functor will not make any modifications
to client-visible state which simplifies any reasoning about them. However, since
the arguments and return values are types we may need to resort to a higher



Formal Methods for Extensions to CAS 1773

order logic to capture their meaning. This is not always the case as can be seen
here. In the example below we present the skeleton of a Larch/Aldor program
which describes the Complex(CR) domain.

++} requires isIntegralDomain(CR) ^ :(∃ x,y:CR • (x*x + y*y = 0));

++} ensures isIntegralDomain(%);

++} modifies nothing;

Complex(CR:CommutativeRing):CommutativeRing;

The predicate isIntegralDomain(CR) in the pre-condition corresponds to a
trait in our LSL theory and is true iff the domain CR satisfies the properties of
a mathematical integral domain; the statement ¬(∃x, y : CR • (x2 + y2 = 0)) is
intended to capture the notion of type correctness described in the previous sec-
tion. In the post-condition the concrete instance of Complex(CR) is represented
by the AXIOM symbol %.

If the user instantiates the domain Complex(Integer) we can generate the
verification condition

isIntegralDomain(Integer) ∧ ¬∃x, y : Integer • (x2 + y2 = 0)

Since Integer is an integral domain isIntegralDomain(Integer) holds; in
fact the interface specification for Integer will state this property as part of its
post-condition. This means that the VC can be simplified to

¬∃x, y : Integer • (x2 + y2 = 0)

and if the user is familiar with elementary mathematics, they will be able to
show that this is true. In doing so they will hopefully gain confidence that the
Complex(Integer) domain will behave in the way that they expect it to. In
addition to the verification condition we infer from the post-condition that

isIntegralDomain(Complex(Integer))

and as mentioned earlier, this may help to discharge other VC’s.
If we repeat the process with Complex(PrimeField 5) (which AXIOM con-

siders to be valid even though it isn’t an integral domain) we obtain a similar
VC to the one above

¬∃x, y : PrimeField 5 • (x2 + y2 = 0)

since PrimeField 5 is a finite integral domain (and hence a field). However, this
VC can be shown to be false by providing the witnesses x = 2 and y = 4.

5 Conclusions and Future Work

We have augmented our specification of the AXIOM algebraic category hierar-
chy with LSL specifications of AXIOM functors. The methodology used allows



1774 Martin N. Dunstan et al.

enhanced type-checking and verification of argument types, as well as proofs of
operator properties with respect to value representations. We have implemented
a prototype lightweight verification condition generator in Aldor for Larch/Aldor
programs. To achieve this the grammar of an Aldor compiler was extended to
allow Larch annotations to be recognised. Further modifications to the compiler
were made so that it could generate an external representation of the parse tree
complete with types and specifications. The prototype analyser uses the parse
tree to generate verification conditions and inferences from the user’s program.
For example, given the annotated Aldor program in Section 2.4 and the pro-
gram statement “ans := integerDivide(23, 6)” our tool could, in principle,
produce the VC ¬(6 = 0) which is obviously true and the inference that:

(23 = ((ans.q) ∗ 6 + ans.r)) ∧ (abs(ans.r) < abs(6))

The prototype VC generator is by no means completely finished and there is
scope for further improvement. Indeed it would be interesting to incorporate it
into the compiler itself so that existing control-flow functions and data-structures
could be utilised, and so that VC generation could be used to provide additional
compiler warnings. In spite of its limitations the authors feel that the prototype
is useful as a proof-of-concept and given time it could be extended to analyse
functions and domains as well. At present the LP proof assistant is more than
capable of discharging the simple verification conditions that it has generated so
far. However, we believe that more interesting case studies will probably require
the use of a more developed theorem prover such as HOL [14] or PVS [25].

5.1 Related Work

There are a number of other systems which are related to our work and from
which we have drawn upon for our ideas. Examples of ways in which CAS and
automated theorem proving technology have been used together include work
linking HOL and Maple [1] where simplification rules were added to HOL to
make selected Maple routines available; the Analytica system which implements
automated reasoning techniques in the Mathematica CAS [2]; the Theorema
project uses the rewriting engine of Mathematica as a logical system to provide
a single framework for both symbolic computation and proof [3]; REDLOG is an
extension of the REDUCE to allow symbolic manipulation of first order formulas
in a CAS [8]. These approaches differ in the amount of trust given to CAS and
ATP results, their overall goals (better ATP, better CAS, or possibly better
formalised mathematics), and in the hierarchy of the systems (for example ATP
slave to the CAS master or vice versa).

Closer to our work is that of [26] where the Aldor type system is being
extended to increase the potential of its dependent types. This work can be used
to incorporate pre- and post-conditions into type declarations and admit proofs
that properties in the documentation also hold at the computational level.

On the Larch side of our work (see Section 2) we are aware that many of
the Larch behavioural interface specification languages (BISL’s) do not have



Formal Methods for Extensions to CAS 1775

any program analysis tools associated with them—they are primarily used as
clear and concise documentation. One exception is Larch/Ada [15] which uses
a syntax-directed editor called Penelope [15] for the interactive development
and verification of Larch/Ada programs. Another exception is Larch/C [10] for
which the LcLint [10] static program checker has been written. This tool is able
to detect violations of subset of Larch/C interface specifications and check other
special program annotations. Also in the Larch world, Speckle [29] is an optimis-
ing compiler for the CLU language which uses Larch-style interface specifications
to select specialised procedure implementations.

The Extended Static Checking (ESC) system [6] provides automatic ma-
chine checking of Modula-3 programs to detect violations of array bounds, NIL
pointer dereferencing, deadlocks and race conditions through the use of simple
yet powerful annotations. ProofPower is a commercial tool developed by the
High Assurance Team at ICL [22] based on the HOL theorem prover and the Z
notation for a subset of Ada. Programs are prototyped and refined using Compli-
ance Notation into Ada. Verification conditions generated from the Compliance
Notation can be discharged via formal or informal arguments as required.

Also of note are the Eiffel [24] and Extended ML [28] programming languages.
In Eiffel pre- and post-conditions are an integral part of the language syntax.
These annotations can be converted into runtime checks by the compiler and
violations may be handled by the programmer via exception handlers. Extended
ML also incorporates specifications into its syntax—users can write algebraic
specifications describing the properties of functions and use stepwise refinement
(c.f. reification [20]) to obtain suitable implementations.

Acknowledgements

We acknowledge support of the UK EPSRC under grant number GR/L48256 and of

NAG Ltd. We also thank James Davenport of the University of Bath and Mike Dewar

from NAG for their interest and suggestions.

References

[1] Ballarin, C., Homann, K., and Calmet, J. Theorems and algorithms: An
interface between Isabelle and Maple. In Proceedings of International Symposium
on Symbolic and Algebraic Computation (1995), A.H.M.Levelt, Ed., ACM Press,
pp. 150–157.

[2] Bauer, A., Clarke, E., and Zhao, X. Analytica—an experiment in combining
theorem proving and symbolic computation. J. Automat. Reason. 21, 3 (1998),
295–325.

[3] Buchberger, B. Symbolic computation: computer algebra and logic. In Fron-
tiers of combining systems (Munich, 1996). Kluwer Acad. Publ., Dordrecht, 1996,
pp. 193–219.

[4] Char, B. W. Maple V language Reference Manual. Springer-Verlag, 1991.



1776 Martin N. Dunstan et al.

[5] Cheon, Y., and Leavens, G. T. A gentle introduction to Larch/Smalltalk
specification browsers. Tech. Rep. TR 94-01, Department of Computer Science,
Iowa State University, 226 Atanasoff Hall, Ames, Iowa 50011-1040, USA, Jan.
1994.

[6] Detlefs, D. L. An overview of the Extended Static Checking system. In Pro-
ceedings of The First Workshop on Formal Methods in Software Practice (Jan
1996), ACM (SIGSOFT), pp. 1–9.

[7] Dingle, A., and Fateman, R. J. Branch cuts in computer algebra. In Symbolic
and Algebraic Computation (1994), ISSAC, ACM Press.

[8] Dolzmann, A., and Sturm, T. REDLOG: Computer algebra meets computer
logic. ACM SIGSAM Bulletin 31, 2 (June 1997), 2–9.

[9] Dunstan, M., Kelsey, T., Linton, S., and Martin, U. Lightweight formal
methods for computer algebra systems. In ISSAC (1998).

[10] Evans, D. Using specifications to check source code. Master’s thesis, Department
of Electrical Engineering and Computer Science, MIT Lab. for Computer Science,
545 Technology Square, Cambridge, MA 02139, June 1994.

[11] Feit, W., and Thompson, J. G. Solvability of groups of odd order. Pacific
Journal of Mathematics 13 (1963), 775–1029.

[12] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.
Aachen, St Andrews, 1998. (http://www-gap.dcs.st-and.ac.uk/~gap).

[13] Gordon, M. J. C. Programming language theory and its implementation. Series
in Computer Science. Prentice Hall International, 1988.

[14] Gordon, M. J. C., and Melham, T. F., Eds. Introduction to HOL. Cambridge
University Press, Cambridge, 1993. A theorem proving environment for higher
order logic, Appendix B by R. J. Boulton.

[15] Guaspari, D., Marceau, C., and Polak, W. Formal verification of Ada pro-
grams. In First International Workshop on Larch (July 1992), U. Martin and
J. Wing, Eds., Springer-Verlag, pp. 104–141.

[16] Guttag, J. V., and Horning, J. J. Larch: Languages and Tools for Formal
Specification, first ed. Texts and Monograps in Computer Science. Springer-Verlag,
1993.

[17] Harrison, J., and Théry, L. Extending the HOL theorem prover with a com-
puter algebra system to reason about the reals. In Higher order logic theorem prov-
ing and its applications (Vancouver, BC, 1993). Springer, Berlin, 1994, pp. 174–
184.

[18] Jackson, P. Enhancing the NUPRL Proof Development System and Applying it
to Computational Abstract Algebra. PhD thesis, Department of Computer Science,
Cornell University, Ithaca, New York, Apr. 1995.

[19] Jenks, R. D., and Sutor, R. S. AXIOM. Numerical Algorithms Group Ltd.,
Oxford, 1992. The scientific computation system, With a foreword by David V.
Chudnovsky and Gregory V. Chudnovsky.

[20] Jones, C. B. Systematic Software Development using VDM, second ed. Computer
Science. Prentice Hall International, 1990.

[21] Jones, K. D. LM3: a Larch interface language for Modula-3, a definition and
introduction. Tech. Rep. 72, SRC, Digital Equipment Corporation, Palo Alto,
California, June 1991.

[22] King, D. J., and Arthan, R. D. Development of practical verification tools.
The ICL Systems Journal 1 (May 1996).

[23] Leavens, G. T., and Cheon, Y. Preliminary design of Larch/C++. In First
International Workshop on Larch (July 1992), U. Martin and J. M. Wing, Eds.,
Workshops in Computing, Springer-Verlag, pp. 159–184.



Formal Methods for Extensions to CAS 1777

[24] Meyer, B. Object-Oriented Software Construction. Computer Science. Prentice
Hall International, 1988.

[25] Owre, S., Shankar, N., and Rushby, J. M. User Guide for the PVS Specifi-
cation and Verification System. Computer Science Laboratory, SRI International,
Menlo Park, CA, Feb. 1993.

[26] Poll, E., and Thompson, S. Adding the axioms to Axiom: Towards a system
of automated reasoning in aldor. Technical Report 6-98, Computing Laboratory,
University of Kent, May 1998.

[27] Potter, B., Sinclair, J., and Till, D. An introduction to formal specification
and Z. Prentice Hall International, 1991.

[28] Sannella, D. Formal program development in Extended ML for the working
programmer. In Proceedings of the 3rd BCS/FACS Workshop on Refinement
(1990), Springer Workshops in Computing, pp. 99–130.

[29] Vandevoorde, M. T., and Guttag, J. V. Using specialized procedures and
specification-based analysis to reduce the runtime costs of modularity. In Proceed-
ings of the 1994 ACM/SIGSOFT Foundations of Software Engineering Conference
(1994).

[30] Wing, J. M. A two-tiered approach to specifying programs. Tech. Rep. LCS/TR–
299, Laboratory for Computer Science, MIT, May 1983.

[31] Wing, J. M., Rollins, E., and Zaremski, A. M. Thoughts on a Larch/ML and
a new application for TP. In First International Workshop on Larch (July 1992),
U. Martin and J. M. Wing, Eds., Workshops in Computing, Springer-Verlag,
pp. 297–312.

[32] Wolfram, S. Mathematica: A system for doing mathematics by computer, 2 ed.
Addison Wesley, 1991.


	Introduction
	Motivation
	Using Verification Conditions

	Specification and the Larch Approach
	The Larch Shared Language
	Specifying AXIOM Using LSL and LP
	Larch BISL's
	Larch/Aldor

	Application of the Larch Method to CAS
	Lightweight Verification Condition Generation

	Case Study
	LSL Specification of the AXIOM Functor texttt {Complex}
	Proving Properties
	The Interface Specification

	Conclusions and Future Work
	Related Work


