
Optimization Algorithms for the Selection of
Key Frame Sequences of Variable Length

Tiecheng Liu and John R. Kender

Department of Computer Science
Columbia University
New York, NY 10027

{tliu,jrk}@cs.columbia.edu

Abstract. This paper presents a novel optimization-based approach for
video key frame selection. We define key frames to be a temporally or-
dered subsequence of the original video sequence, and the optimal k key
frames are the subsequence of length k that optimizes an energy function
we define on all subsequences. These optimal key subsequences form a
hierarchy, with one such subsequence for every k less than the length
of the video n, and this hierarchy can be retrieved all at once using
a dynamic programming process with polynomial (O(n3)) computation
time. To further reduce computation, an approximate solution based on
a greedy algorithm can compute the key frame hierarchy in O(n · log(n)).
We also present a hybrid method, which flexibly captures the virtues of
both approaches. Our empirical comparisons between the optimal and
greedy solutions indicate their results are very close. We show that the
greedy algorithm is more appropriate for video streaming and network
applications where compression ratios may change dynamically, and pro-
vide a method to compute the appropriate times to advance through key
frames during video playback of the compressed stream. Additionally,
we exploit the results of the greedy algorithm to devise an interactive
video content browser. To quantify our algorithms’ effectiveness, we pro-
pose a new evaluation measure, called “well-distributed” key frames. Our
experimental results on several videos show that both the optimal and
the greedy algorithms outperform several popular existing algorithms
in terms of summarization quality, computational time, and guaranteed
convergence.

1 Introduction

Key frames are usually defined to be an unordered subset of video frames that
represent the visual content of a video. They are of great importance in video
indexing, summarization, content retrieval, and browsing [1,4]. There are at least
three main categories of existing video key frame selection approaches [9,11].
In the first, video key frame selection is based on video segmentation, and is
often used on highly edited commercial videos [14]. But because the results
of this approach depends on the accuracy of video segmentation [2], it is not
quite suitable for semi-edited (e.g., instructional) videos, unedited (e.g., home)

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2353, pp. 403–417, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



404 T. Liu and J.R. Kender

videos, or extended single-shot (e.g., surveillance) videos. The second approach
uses clustering techniques based on a definition of “far enough” frames [7,15,
16,17]. But an inherent problem in this approach is the choosing of appropriate
thresholds. Although adaptive clustering methods can manipulate the threshold
to produce a pre-designed number of key frames, this iterative searching process
makes these methods computational expensive. The third approach [3] converts
a key frame selection problem to a problem of searching for the minimum cover
of a set of key frames, based on the definition of a semi-Hausdorff distance
function. But this search can be shown to be NP-hard, and the O(n2) greedy
algorithm approximation to it is computationally expensive. Additionally, in
both this and the previous approaches, the frames are chosen without regard to
their temporal order, although such temporal relations may be very important
in video summarization, streaming and compression.

1.1 Two Levels of Frame Sampling

We note that prior research on key frames does not distinguish much between
two significant levels of frame sampling, each with different applications. Sparse
sampling, the selecting of about one frame per shot or per scene, is usually used
in video content summarization and indexing. However, dense sampling, which
chooses much more than one frame per shot or per scene, is more useful for video
streaming, particularly in network environments where frame-dropping decisions
are made in real time according to dynamic changes of network bandwidths
or user requirements. Most previous work [1,6,9,10,11] appears to concentrate
on sparse video frame sampling. Although some other work, for example the
minimum-cover method [3], can be applied to dense sampling, generally their
complexity make them unsuitable in use for extended or real-time videos.

Thus we note that for a video key frame selection algorithm, the following
features are desirable: 1. A unified approach for both levels of key frame selection,
with application for both video summarization and streaming. 2. The results of
key frame selection should also be easily applied to video indexing and interactive
content retrieval applications [10]. 3. For tractability with extended videos, the
computation complexity should be O(n) or O(n · log(n)) in terms of the number
of video frames.

1.2 Overview of Our Approach

In this paper, we provide an optimization approach for video key frame selection.
We define an energy function on the selected key frames. Considering key frames
as a temporally ordered subsequence of the original video sequence, the key frame
selection problem can then be cast as a global optimization problem, solvable
by dynamic programming. In this paper, the sum of all distances of temporally
adjacent key frames is used as the energy criterion; we show that this maximizes
the cover of the visual content of a video, reduces sampling redundancy, and
avoids the selection of troublesome frames such as those within dissolves. If a
video is considered as a weighted directed acylic graph in which every frame is



Optimization Algorithms for the Selection of Key Frame Sequences 405

represented by a node, the weight of an edge is the measured visual distance
between two frames, and the direction is strictly limited to the temporal order
of frames, then to select k optimal key frames is to find the longest path with k
nodes in the graph.

Based on the criterion defined above, we provide an optimal solution for key
frame selection to compute the entire key frame hierarchy, for all k, 1 ≤ k < n,
based on dynamic programming with O(n3) computation time. To further reduce
computation complexity, we present a greedy algorithm based on a level-to-level,
decreasing k, optimization process with almost linear computation complexity.
We present experimental results of comparisons that indicate the performance of
the greedy algorithm is quite similar to that of optimal algorithm. We show how
the results of our key frame selection via the greedy algorithm can be used in
video indexing and interactive content retrieval. Extensive experiments on key
frame selection show that either of our approaches, whether optimal or greedy,
retrieve better key frames than existing key frame selection algorithms.

2 Key Frame Selection as an Optimization Problem

First, we introduce some terms for video key frame selection. For a n frame video
f1, f2, · · · , fn, let F be the sequence of all frames F = {f1, f2, · · · , fn}. There is
a distance ‖ · ‖ defined on F . This distance can be any user-defined metric; in
this paper, we use the histogram difference based on the L1 norm.

Definitions. F i
k = {fi1 , fi2 , · · · , fik

} is a k key frame selection of F if F i
k ⊂ F

and 1 ≤ i1 < i2 < · · · < ik ≤ n, where i represents a selection method, F i
k �= F j

k

if i �= j. In other words, F i
k is a k key frame selection of F if F i

k is a strict
temporal subsequence of F with k elements.

We introduce an energy function f(α, β), where α is a subsequence (key frame
selection) of the longer sequence β. Assume F p

k is a k key frame selection of F .
F p

k is an optimal k key frame selection of F if it maximizes the energy function
for all k key frame selections:

f(F p
k , F ) = max

i
{f(F i

k, F )}

Let S∗
k = maxi{f(F i

k, F )} be the optimal value of the energy function of all k
key frame selections, F p

k is an optimal key frame sequence of length k if and only
if f(F p

k , F ) = S∗
k .

Using the definitions above, the video key frame selection problem has now
been cast as a subsequence optimization problem. Further, in this paper, we
define the energy function as:

f(F i
k, F ) =

k−1∑
p=1

‖ fip
− fip+1 ‖



406 T. Liu and J.R. Kender

This definition explicitly acknowledges the great perceptual impact that oc-
curs between temporally adjacent key frames, and deliberately rewards the se-
lection of those key frames which are maximally distant from their immediate
temporal predecessors.

3 Optimal Solution Based on Dynamic Programming

3.1 Optimal Algorithm

In searching for the optimal k key frames, one straightforward solution is to
investigate all possible k subsequences of the original video. The number of all
such subsequences is the binomial coefficient Cn

k, which is not polynomial in
terms of n. However, we can reduce the computation complexity to polynomial
time by using a dynamic programming approach. The k key frame selection
problem can be converted to a k-step decision problem solvable by dynamic
programming, by exploiting an “optimal substructure” [5] existing within the
key frame selection.

Optimal substructure. We show that an optimal substructure exists, using a
proof by contradiction. Let F i

k,p = {fi1 , fi2 , · · · , fik−1 , fp} represent k key frames
selected using selection indices i under the condition of last key frame being fp;
it is obvious p ≥ k for any F i

k,p. F i
k,p is called a conditional k key frame selection,

and Si
k,p = f(F i

k,p, F ). Let S∗
k,p be the optimal energy value of k key frames with

that last key frame fp,
S∗

k,p = max
i

{f(F i
k,p, F )}

F ∗
k,p is an optimal k key frame selection with the last key frame fp when

f(F ∗
k,p, F ) = S∗

k,p.

Now assume that F j
k+1,p is an optimal k +1 key frame selection with the last

frame fp. Then F j
k,jk

must also be an optimal k key frame selection with last
frame fjk

, since otherwise there must exist another F t
k,jk

with St
k,jk

> Sj
k,jk

. Let
F t

k+1,p = {ft1 , ft2 , · · · , ftk−1 , fjk
, fp}. F t

k+1,p has energy value

St
k+1,p =‖ fp − fjk

‖ +St
k,jk

>‖ fp − fjk
‖ +Sj

k,p = Sj
k+1,p

But this contradicts with the assumption that F j
k+1,p is an optimal k + 1 key

frame selection with last key frame fp. So the optimal key frame selection prob-
lem has an optimal substructure: any subsequence of the optimal key frame
selection must also be an optimal key frame selection. Thus we have

S∗
k+1,p = max

k≤m<p
{‖ fp − fm ‖ +S∗

k,m}



Optimization Algorithms for the Selection of Key Frame Sequences 407

Dynamic programming. From the equation above, we propose a dynamic
programming approach for optimal key frame selection. According to our defi-
nition of the energy function, Si

1,m = 0 for any m and i. To select k optimal key
frames from the original video, as shown in Figure 1, the first key frame can be
selected from {f1, f2, · · · , fn−k+1}, and S∗

1,m = 0 for 1 ≤ m ≤ n − k + 1, the
second key frame can be selected from the sequence {f2, f3, · · · , fn−k+2}, etc.
We update the optimal values for the second step (or “level”) in Figure 1:

S∗
2,p = max

1≤m<p
{‖ fp − fm ‖ +S∗

1,m}

where 2 ≤ p ≤ n − k + 2.
So after every step, we calculate the optimal values of the conditional key

frame selection, in the following way. Assume we have already calculated the
qth level and derived optimal values S∗

q,m for q ≤ m ≤ n − k + q. For the next
step, the q + 1-th key frame can be chosen from {fq+1, fq+2, · · · , fn−k+q+1}. We
compute all conditional values for level q + 1:

S∗
q+1,p = max

q≤m<p
{‖ fp − fm ‖ +S∗

q,m}

where q + 1 ≤ p ≤ n − k + q + 1. Finally, we get the optimal values for the k-th
step S∗

k,p, k ≤ p ≤ n. Then the optimal value of energy function is

S∗
k = max

k≤p≤n
S∗

k,p

Suppose the last key frame is the frame ft, S∗
k,t = S∗

k . Starting from the last key
frame, we can follow back-pointers to the pre-stored prior optimal subsequences,
and the optimal k key frames can be retrieved.

As shown in the dynamic programming process above, to compute k optimal
key frames, an array of size of k(n−k+1) is needed to store the optimal paths of
subsequences for final retrieval, and another n−k+1 sized array is used to store
the optimal values. Therefore, memory usage is O(k · (n − k)). As for time, the
frame distance computation is 1 + 2 + · · · + (n − k + 1) for every step except the
first step, and there are totally k −1 steps to compute, so the total computation
is O(k(n − k)2). The entire key frame hierarchy of all such k can be computed
in O(n3) time and O(n2) space using a similar process as shown in Figure 1.

3.2 Temporal Boundaries between Key Frames

The selected key frames can be used as a compressed version of the original
video. When playing the compressed video, the appropriate time to advance
between key frames should be properly calculated to ensure good quality of
video playback. For example, suppose the two key frames {f1, f4} are selected
from a video f1 − f2 − f3 − f4 − f5. When playing the compressed version of the
video, there is a problem of when to display video frame f4. The straightforward
solution of displaying a key frame at its corresponding temporal position in
the original video often incurs “content lag”: if frame f3 is closer in content



408 T. Liu and J.R. Kender

Fig. 1. Optimization methods based on dynamic programming. The left figure shows
the process of select key frame sequence of length k, the right one shows the process
of generating a key frame hierarchy.

to frame f4, rather than playing f1 − f1 − f1 − f4 − f4, the video sequence of
f1 − f1 − f4 − f4 − f4 would be more reasonable.

To address “content lag”, we use a criterion of minimum sampling error to
determine the most appropriate times to advance between key frames. Suppose
the original video is {f1, f2, · · · , fn} and the selected k key frames are F i

k =
{fi1 , fi2 , · · · , fik

}. The time to start displaying key frame fip should be between
ip−1 and ip. We choose the start time m such that m minimizes sampling error:

err(ip−1, m, ip) = min
ip−1<t<ip

{err(ip−1, t, ip)}

Therefore, err(ip−1, t, ip) is defined as accumulated sampling error for displaying
fip

at t between ip−1 and ip:

err(ip−1, t, ip) =
t−1∑

j=ip−1+1

‖ fip−1 − fj ‖ +
ip−1∑
j=t

‖ fj − fip
‖

This computation can be done in linear time, as follows. First we calculate

err(ip−1, ip−1 + 1, ip) =
ip−1∑

m=ip−1+1

‖ fm − fip
‖

Then we get err(ip−1, t, ip) of all ip−1 < t < ip by an iterative process. After
err(ip−1, t, ip) is known, err(ip−1, t + 1, ip) can be derived as

err(ip−1, t + 1, ip) = err(ip−1, t, ip)+ ‖ fip−1 − fip−1+t ‖ − ‖ fip − fip−1+t ‖

The computation of all err(ip−1, t, ip) (ip−1 < t < ip) takes O(ip − ip−1) time.
Thus the complexity for computing all appropriate starting times for key frame
playback is O(n).



Optimization Algorithms for the Selection of Key Frame Sequences 409

4 Greedy Algorithm

4.1 Definition

As before, the optimal k key frame selection is defined to be the k frames from
F that optimize the energy function f(F i

k, F ). We now introduce a fast approxi-
mation to the dynamic programming approach. In contrast to the prior method,
this proceeds in order of decreasing k.

Suppose we have already selected k key frames F ′
k. To select k−1 key frames,

instead of directly choosing them from original frame sequence F , we select the
greedy k−1 key frames F ′

k−1 from F ′
k to optimize the energy function. Selecting

k − 1 frames from F ′
k means choosing one frame in F ′

k to drop. Since there are
k such choices, we have

f(F ′
k−1, F

′
k) = max

i
f(F i

k−1, F
′
k) = max

1≤p≤k
f(F ′

k \ {fip}, F ′
k)

Starting from the original n frames (the “nth level”), this level-to-level greedy
algorithm retains for the next level those n − 1 key frames that maximize
f(F i

n−1, F ). And in general, if it has determined a greedy k-level key frame
selection F ′

k, the greedy k − 1-level key frames selection F ′
k−1 is determined

solely from F ′
k. This process continues until it reaches a user-designated level

of key frames. Along the way, we can maintain a list of the frames ranked by
frame “significance”, which records the order in which they were discarded from
level to level. The key frames left in the final level are considered to be the most
significant frames, and the frame dropped from the n to n−1 level is considered
as the least significant frame, as shown in Figure 5.

This greedy algorithm has three advantages. First, its computation complex-
ity is O(n · log(n)), which is much better than the O(n3) complexity of the
dynamic programming solution. Secondly, it provides a hierarchy of key frames
with a shorter “edit distance” between levels, as the key frames in a further level
is a strict subset of the key frames in any prior level, which makes it more ap-
propriate for interactive content retrieval and searching. Thirdly, the results of
the greedy algorithm can easily accomodate the change of network bandwidths
in streaming, as we will show in the section 5.

4.2 Computation of Greedy Algorithm

According to our definition of greedy key frames, the greedy algorithm chooses
k − 1 greedy key frame from k already selected key frames,

S′
k−1 = max

1≤p≤k
Sp

k−1 = max
1≤p≤k

f(F ′
k \ {fip}, F ′

k)

Using the same definition of the energy function, for greedy key frames, we have

Sp
k−1 = S′

k − Vip , 1 ≤ p ≤ k.



410 T. Liu and J.R. Kender

where Vip
is called the “compensation value”, a measure of change of total sub-

sequence energy:

Vip
=




‖ fi1 − fi2 ‖, p = 1
‖ fik

− fik−1 ‖, p = k
‖ fip−1 − fip

‖ + ‖ fip
− fip+1 ‖ − ‖ fip−1 − fip+1 ‖, 1 < p < k

Every frame fip corresponds to a compensation value Vip , which records the
change of energy value if the frame is discarded. We maximize Sp

k−1 by dropping
the frame in {fi1 , fi2 , · · · , fik

} which has the minimum compensation value. As
a consequence, monotonicity of energy values is maintained in the greedy key
frame hierarchy.

In more detail, the bottom-up level-to-level optimization process starts from
original n frames. First, we compute the compensation value for every frame.
Then we find the frame with minimum compensation value, drop that frame and
get the n − 1 greedy key frames. Let

S′
n =

n−1∑
t=1

‖ ft − ft+1 ‖

We update the optimal energy value for n − 1 key frames as

S′
n−1 = S′

n − min
1≤p≤n

{Vp}

At the same time, we correspondingly update the compensation values of the
frames adjacent to the discarded frame fp. For example, suppose we have k
greedy key frames F ′

k = {fi1 , fi2 , · · · , fik
}, and that the minimum of compen-

sation value is Vip
= min1≤t≤k{Vit

}. Then the sequence of k − 1 greedy key
frames is F ′

k−1 = F ′
k \ {fip

}, and the energy value of the k − 1 greedy key frames
is S′

k−1 = S′
k − Vip

. Finally, we delete frame fip
and update the compensation

values of the key frames adjacent to fip . Because in every step there is a “search-
min” operation, we can use a binary heap, where every node in the heap records
the frame number and its corresponding compensation value.

Computation complexity. Memory usage is O(n). As for time, the initializa-
tion step uses O(n) distance computation operations to calculate all the com-
pensation values, and in every step we update the compensation value for a
constant number of key frames; the total distance computation is O(n). It is not
hard to show that the arithmetic and comparison operations are O(n · log(n))
based on the performance of the heap, and for very long videos this would dom-
inate. However, the frame distance computation is usually much more expensive
than arithmetic and comparison operations, so for a video of reasonable size the
frame distance computation, which is linear, is the critical factor.



Optimization Algorithms for the Selection of Key Frame Sequences 411

Fig. 2. The difference of energy values between optimal solution and greedy solution
for two video sequences. Video A is a travelog video of 1453 frames, video B is one full
scene of 4541 frames extracted from the sitcom video “Friends”.

4.3 Comparison between Optimal and Greedy Algorithms

Empirical comparisons between optimal and greedy algorithms on two videos, as
shown in Figure 2, show very close energy values for each level of key frames ex-
tracted by these two algorithms. We notice that for not too high of a compression
ratio, the difference of energy values is very small (usually within 5%).

Fig. 3. The ratio of length of longest common subsequence to that of key frame se-
quence under different “tolerance percentages” for two videos.

We also use another criterion to compare these results. Considering the op-
timal key frames and greedy key frames as two sequences, the longest common
subsequence (LCS) of these two sequences may indicate how much these two
sequences are the same. But for video sequences, a comparison based on strict
LCS may be too restrictive. We use a modified LCS computation method, which
applies a “tolerance distance” in computing LCS. That is, if two frames from
different video sequences have a distance less than the designated tolerance dis-
tance, they are considered to be identical. According to this definition, we select
the distance tolerance as a fixed percentage of the average adjacent key frame
distance, dtolerance = ε ·S∗

k/(k −1), where ε is called the “tolerance percentage”.
Figure 3 shows the the amount of LCS shared between the key frame sequences



412 T. Liu and J.R. Kender

Fig. 4. Compare key frames of hybrid model and greedy model to those of optimal
model in terms of energy value and longest common subsequence. Cutoff value between
optimal and greedy methods is apparently at k = 150 for both graphs.

derived from both methods, under different tolerance percentages, and normal-
ized as a ratio of LCS length to optimal sequence length (perfect capture by the
greedy method gives a ratio of 1).

4.4 Hybrid Model

The memory usage of O(n2) and the computation time of O(n3) of the optimal
method limit the length of a video that dynamic programming can process. The
greedy algorithm takes less memory and almost linear computation time, which
makes it more suitable for extended videos. From Figure 2, we notice that the
greedy key frames are very close to optimal key frames under low compression
ratios. For improved performance for long videos, one feasible approach is to
use a hybrid model. That is, for a video of n frames, we first use the greedy
algorithm to calculate key frames levels from n − 1 to level k, then apply the
dynamic programming algorithm on the selected k key frames to get key frames
sequences of length from 1 to k−1. As shown in Figure 4, the results of the hybrid
model has significant improvement over those of greedy algorithm in terms of
energy values and longest common subsequences: it is immediately apparent
from the figure which value was chosen by the user for k.

5 Video Indexing and Interactive Content Searching

The key frame hierarchy created by the greedy algorithm has two important
applications: video indexing and streaming.

The results of the greedy algorithm are quite appropriate for video indexing
and summarization. Since all frames can be ranked by their significance, it is
easy to select any desired length of a key frame sequence by simply choosing an
appropriate cut-off point in the frame significance array, as shown in Figure 5,
the frames before this point are selected as key frames.



Optimization Algorithms for the Selection of Key Frame Sequences 413

Fig. 5. Greedy algorithm and its application on interactive content retrieval. Figures
from left to right are key frame hierarchy generated by greedy algorithm, frame signif-
icance array and interactive content browsing.

For interactive content retrieval and browsing of a video, different levels of
the key frames can be displayed according to the frame significance array and
the cut-off point. Moving the cut-off point in the direction of less significance
displays more key frames, and vice versa. We may also use the frame significance
array selectively to display more details of a video between any two designated
key frames. For example, in a video of 8 frames as shown in Figure 5, the top
level has frames f2 and f4. To display a bit more content, we move the cut-off
point from “4-8” one step to “8-3”, and therefore display frame f8. Similarly, to
expand content only between f4 and f8, we search the frame significance array
starting from f8 and display the first frame fi such that 4 < i < 8; here, that is
frame f6. This searching process can be simplified by storing two pointers with
each frame number in the frame significance array, one pointing to the most
recently discarded frame with frame index less than the current frame, and the
second with frame index greater.

We have developed a software tool for interactive video browsing and search-
ing based on these frame selection techniques. A user may browse different levels
of key frames, or may view more key frames within a video segment, by a simple
“click-drag” operation. The user selects a key frame as the start, clicks on a key
frame to signal the end frame of a desired video segment, then drags the end
frame to the right while holding the mouse button down. A number of most sig-
nificant key frames will show up to fill the available space between these two key
frames. To maximize the use of screen display, the key frames of selected video
segment can be displayed in a new window below. Figure 6 shows the interactive
video content browsing and searching results on one scene of the sit-com video
“Friends”.

The greedy algorithm can be easily used for dynamic compressed video steam-
ing, particularly in a networked environment with heterogeneous platforms [8,
12,13]. The required compression ratio can change dynamically with available
network bandwidth. Accordingly, the cut-off point in the significance array can
also be adjusted dynamically even during the video streaming.



414 T. Liu and J.R. Kender

Fig. 6. Results of interactive video content browsing in one scene of video “friends”.
The numbers under frames show the actual frame numbers in the video. The top row
is top level key frame overview, the second row expands two adjacent key frames in
top level, the third row similarity expands a key frame pair of the second row.

6 Experimental Results

We compared our optimization algorithms to three other existing methods: a
simple “first frame” method, a clustering method [17] and a set-cover method
[3]. The simple method chooses key frames as follows. It selects the first frame
as a key frame, and searches the frames after it. If a subsequent frame has a
distance to the key frame larger than a designated threshold, this new frame is
selected as the next key frame. This process continues until the end of the video.
Clustering method use a dynamic clustering process, assigning frames to their
nearest existing cluster, unless a new frame is “too far”, in which case a new
cluster is started. The set-cover method searches for the minimum number of
frames whose semi-Hausdorff distance to the original frames is within a given
threshold.

We propose an evaluation method for sparse sampling based on a new concept
of “well-distributed” key frames. We would prefer that any key frame algorithm
should avoid selecting multiple frames with the same visual content and should
also avoid selecting frames within visual transitions (such as dissolves). We define
a key frame which does not duplicate coverage within a shot and which do not
fall within a transition between shots as “well-distributed”; this approximately
measures the perceptual coverage of semantic content. For any given key frame
sequence, we then use the number of “well-distributed” key frames as a criterion
to compare algorithm performance.

Video A is a sample travelog video with multiple gradual shot-shot transi-
tions, and it has a hand-measured ground truth total of 9 “well-distributed”
key frames. The comparison of results of 6 key frame selection methods in Fig-
ure 8 plots the number of actual key frames selected by an algorithm versus
how many are well-distributed. The ideal algorithm would grow linearly with all



Optimization Algorithms for the Selection of Key Frame Sequences 415

Fig. 7. Distributions of key frames selected by different methods for a video segment of
5 shots extracted from video A. The shaded areas show the transitions between shots.

frames well-distributed, until it plateaus at 9, as shown in the figure. Figure 7
shows the distributions of key frames extracted by different methods on a video
of 5 shots. In Table 1, different key frame selection approaches are compared
on two more videos, one is a sit-com video and another is a documentary. All
results indicate that the optimal dynamic programming has the best results.
The greedy algorithm and hybrid method are very close in results to optimal
method, and all three are better than the three other existing algorithms. The
clustering method is a little better than simple and set-cover methods, but still
not as good as optimization methods, especially when the number of selected
key frames is larger than the number of well-distributed frames.

More theoretically, when compared to our optimization methods, there are
two other drawbacks in the clustering and set-cover methods. Firstly, these meth-
ods show non-monotonic behavior: sometimes more selected key frames generate
less well-distributed key frames, usually due to the selection of the midpoint
frame of a transition as a new cluster center or a new covering frame. In con-
trast, for the greedy method monotonicity is guaranteed, since key frames in a
more restricted level always appear in less restricted level. Secondly, convergence
is not guaranteed in the clustering and set-cover methods, which makes some
numbers of key frames not available, as shown in the figure 8 and table 1. To
retrieve a designated number of key frames using either method, it is necessary
to iteratively adjust thresholds, but sometimes such a process does not converge.
In contrast, for any of our three new methods, any number of key frames can be
retrieved.

7 Conclusions and Future Research

In this paper, we presented and evaluated several novel approaches to video key
frame selection. We cast the key frame selection problem to a global optimization



416 T. Liu and J.R. Kender

Fig. 8. Comparison of results of different key frame selection methods on a video of 9
“well-distributed” video key frames.

Table 1. Comparison of key frame selection results of different methods on two videos.
Video B is one scene of sit-com video “Friends” of 31 “well distributed” key frames;
Video C is a video segment extracted from documentary video “A Great Day in
Harlem”. Video C has 25 observed “well distributed” key frames. “NA” means value
not available because of non-convergence.

Video B Video C
number of key frames 6 12 15 22 26 30 40 4 8 12 16 20 25 30
optimal 5 11 14 21 25 29 31 4 8 11 15 18 20 24
hybrid 5 11 14 21 25 28 31 4 8 11 14 18 20 24
greedy 5 11 14 21 25 28 30 4 8 11 14 18 20 24
simple 5 11 13 NA 23 26 28 NA 7 11 13 15 NA 20
clustering NA 10 12 19 24 26 30 4 NA 9 NA 17 19 20
set-cover 5 6 9 13 17 NA 18 2 5 7 12 12 NA 15

problem, and presented an optimal solution based on dynamic programming. Our
method allows any key frame selection criteria as long as it can be expressed as
a maximization of inter frame distance (for example, color, texture, and other
measures derived from them that can be cast as a metric). To further reduce
computation complexity, we developed a greedy algorithm using a bottom-up
level-to-level optimization procedure, and the results of these two methods and
their hybrid method were compared. We applied the results of key frame selection
to video indexing and interactive video content retrieval. Experiments show our
algorithm has better performance compared to other existing approaches, based
on a definition of well-distributed key frames.

Currently our key frame selection methods, both the optimal dynamic pro-
gramming method and the greedy method, are applied to videos off-line. We
are investigating a buffer-based real-time process. In this paper, we choose the
energy function to maximize as the sum of all distances of adjacent key frames,
but other energy functions and other distance definitions may also be used for
key frame selection, according to particular user requirements and applications.



Optimization Algorithms for the Selection of Key Frame Sequences 417

References

1. Edoardo Ardizzone and Mohand-Said Hacid. A Semantic Modeling Approach for
Video Retrieval by Content. In IEEE International Conference on Multimedia
Computing and Systems, pages 158–162, 1999.

2. J. Boreczky and L. Rowe. Comparison of Video Shot Boundary Detection Tech-
niques. In Storage and Retrieval for Still Image and Video Databases, pages 170–
179, 1996.

3. H. S. Chang, S. Sull, and Sang Uk Lee. Efficient Video Indexing Scheme for
Content-based Retrieval. In IEEE Trans. on Circuits and Systems for Video Tech-
nology, pages 1269–1279, Dec. 1999.

4. Tat-Seng Chua and Li-Qun Ruan. A Video Retrieval and Sequencing System. In
ACM Transactions on Information Systems, pages 373–407, Oct. 1995.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, 2001.

6. Madirakshi Das and Shih-Ping Liou. A New Hybrid Approach to Video Organiza-
tion for Content-Based Indexing. In IEEE International Conference on Multimedia
Computing and Systems, 1998.

7. Andreas Girgensohn and John Boreczky. Time-Constrained Keyframe Selection
Technique. In IEEE International Conference on Multimedia Computing and Sys-
tems, pages 756–761, 1999.

8. I.Busse, B. Deffner, and H.Schulzrinne. Dynamic QoS Control of Multimedia Ap-
plications based on RTP. In Computer Communications, Jan. 1996.

9. F. Idris and S. Panchanathan. Review of Image and Video Indexing Techniques.
In Journal of Visual Communication and Image Representation, pages 146–166,
June 1997.

10. Jia-Ling Koh, Chin-Sung Lee, and Arbee L.P. Chen. Semantic Video Model for
Content-based Retrieval. In IEEE International Conference on Multimedia Com-
puting and Systems, pages 472–478, 1999.

11. M. K. Mandal, F. Idris, and S. Panchanathan. A Critical evaluation of image and
video indexing techniques in compressed domain. In Image and Vision Computing,
pages 513–529, 1999.

12. Myung-Ki Shin and Jin-Ho Hahm. Applying QoS Guaranteed Multicast Audio and
Video to the Web. In IEEE International Conference on Multimedia Computing
and Systems, pages 26–30, 1999.

13. Hugh M. Smith, Matt W. Mutka, and Eric Torng. Bandwidth Allocation for Lay-
ered Multicasted Video. In IEEE International Conference on Multimedia Com-
puting and Systems, pages 232–237, 1999.

14. M. Smith and T. Kanade. Video Skimming and Characterization through the
Combination of Image and Language Understanding. In Proceedings of the IEEE
International Worksop on Content-based Access of Image and Video Databases
(ICCV’98), 1998.

15. M. Yeung and B. Liu. Efficient Matching and Clustering of Video Shots. In
Proceedings of the International Conference on Image Processing, pages 338–341,
1995.

16. M. Yeung and B.L. Yeo. Time-Constrained Clustering for Segmentation of Video
into Story Units. In International Conference on Pattern Recognition, pages 375–
380, 1996.

17. Yueting Zhuang, Yong Rui, Thomas S. Huang, and Sharad Mehrotra. Adaptive
Key Frame Extraction Using Unsupervised Clustering. In IEEE International
Conference on Image Processing, pages 866–870, 1998.


	Introduction
	Two Levels of Frame Sampling
	Overview of Our Approach

	Key Frame Selection as an Optimization Problem
	Optimal Solution Based on Dynamic Programming
	Optimal Algorithm
	Temporal Boundaries between Key Frames

	Greedy Algorithm
	Definition
	Computation of Greedy Algorithm
	Comparison between Optimal and Greedy Algorithms
	Hybrid Model

	Video Indexing and Interactive Content Searching
	Experimental Results
	Conclusions and Future Research

