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José Gomes and Aleksandra Mojsilovic

IBM Watson Research Center
Route 134, Kitchawan Road

Yorktown Heights, N.Y. 10598 , U.S.A
{josegome,saska}@watson.ibm.com

Abstract. We present a novel algorithm for recovering a smooth man-
ifold of unknown dimension and topology from a set of points known to
belong to it. Numerous applications in computer vision can be naturally
interpreted as instanciations of this fundamental problem. Recently, a
non-iterative discrete approach, tensor voting, has been introduced to
solve this problem and has been applied successfully to various appli-
cations. As an alternative, we propose a variational formulation of this
problem in the continuous setting and derive an iterative algorithm which
approximates its solutions. This method and tensor voting are some-
what the differential and integral form of one another. Although iterative
methods are slower in general, the strength of the suggested method is
that it can easily be applied when the ambient space is not Euclidean,
which is important in many applications. The algorithm consists in solv-
ing a partial differential equation that performs a special anisotropic
diffusion on an implicit representation of the known set of points. This
results in connecting isolated neighbouring points. This approach is very
simple, mathematically sound, robust and powerful since it handles in
a homogeneous way manifolds of arbitrary dimension and topology, em-
bedded in Euclidean or non-Euclidean spaces, with or without border.
We shall present this approach and demonstrate both its benefits and
shortcomings in two different contexts: (i) data visual analysis, (ii) skin
detection in color images.

1 Introduction

In this section, we state the considered problem. Then, we give an overview of
the corresponding state of the art. Finally, we present the organization of the
paper.

1.1 Statement of the Problem

Consider a set P containing N points of a n-dimensional manifold Ω. In order
to illustrate the ideas, we may think of P as a data set of N measures performed
on a stochastic (or deterministic) process whose state may be partially (or
totally) described using n numeric values. Consequently, each point in P is a
sample, each coordinate is a parameter of the process under consideration, and
Ω is the set of possible values these variables may take a priori. The paradigm
of experimental disciplines is that each individual sample captures only a
partial information about the state of the process and one hopes, by considering
multiple samples, to apprehend it in a more comprehensive way. Usually, this
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is motivated by the expectation that the variables, i.e. the coordinates of the
points, may not be independent from one another and that the relationships
between the variables capture the ”essence” of the measured process.

In this paper, we propose a theoretical and practical framework for analysing
such data sets when the measured variables are expected to have complex dis-
tributions, strong relationships and more specifically in the limit case of func-
tionally related variables. Formally, this restriction is equivalent to saying that
the points of P are not distributed arbitrarily in Ω but, instead, up to some
noise, belong to a submanifold of Ω of dimension smaller than n. Analysing the
data set is then equivalent to recovering this submanifold. Let us make this idea
clearer through the two following examples.

1.2 Examples

Stereo vision. is perhaps the most straightforward example in computer vision.
Pixel matching algorithms often output a cloud of points in R

3 supposed to
belong to the surfaces of the pictured objects. It remains then to find a surface
“passing” through this points. Here, Ω = R

3, P is the set of points and the
searched surface is M.

Image manifolds. arise when considering a set of image features, like spectral,
color or texture measures, for classification purposes. If n such numeric features
can be extracted for each image then one may well associate a set of N images
and a cloud of N points in R

n, each point representing one image through its
features vector. If complex relationships exist between different features within
a certain class of images, one may ideally expect the corresponding points to
form a submanifold of R

n. A geometric representation of this submanifold may
be used to distinguish this class of images from all the other image points. Here,
Ω = R

n, P is the set of features vectors and M is the submanifold of R
n,

hopefully of low dimension, modeling the relations between the features.

1.3 State of the Art

In this section, we present an overview of the state of the art on recovering
inter-variables relationships and the reader will soon see that our motivation is
actually an old one. We survey general statistical methods and also algorithms
more specific to computer vision.

The case of variables that are well represented by their mean and variance
is covered extensively in statistics. Under some normality and independence
assumptions, the issue of deciding whether or not such relations exist is addressed
by the hypothesis testing methodology [17,14]. In this paper, we are interested
exclusively in data sets with more complex distributions where such assumptions
are not relevant.

In certain situations, this can be addressed by using the statistical non-
parametric methods because they do not rely on the normality assumption.
There are several such methods for estimating a non-parametric correlation
between two or more variables. Well known such methods are Spearman r,
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Kendall τ and coefficient Γ (cf. [14]). Although these tests vary in their
interpretation, they are all appropriate only when N is small because of the
central limit theorem. Also, they are only interesting when the variables under
consideration are well represented by their mean and variance. If higher order
statistics are necessary, an alternative is to use Pearson curves [10] or Johnson
curves [13]. These are families of simple distributions that can approximate
more complex distributions up to their fourth moment. The original Pearson
curves have been defined as the solutions to a differential equation and this is
closely related to the method we are going to present. Though, neither Pearson
curves nor Johnson curves are appropriate when both the distributions and the
relations are expected to be even more complex.

Another traditional approach, exploratory data analysis, consists in identi-
fying relations between several variables by searching systematic patterns. Dif-
ferent methods have been proposed. Most of those assume one of the following.
There are certain particular values of the variables that represent well the data:
cluster analysis. There exists special linear or polynomial combinations of the
variables that yield simple relations: principal component analysis, discriminant
function analysis, multi-dimensional scaling, canonical correlation, step-wise lin-
ear and nonlinear regression, projection pursuit. All these techniques are nicely
presented in this textbook [16]. When no distributional assumption is available,
neural networks are often used for their flexibility, although they relate very
closely to standard statistical regressions [5]. Actually, they are often equivalent
and, even if it is not always explicited, rely on the same assumptions . In addi-
tion, although neural networks are very powerful, their actual process is difficult
to interpret and this may be a drawback in computer vision where geometric
considerations are often crucial.

It is also important to mention a special branch of exploratory data analysis,
visual data analysis, which relies upon the visualization of data sets and the
ability of humans to detect relevant patterns. The most popular technique is
brushing [3,24]. This is an interactive method which allows a user to select, i.e.
brush with color, subsets of the data displayed with a certain representation
(say, a scatter plot) and observe simultaneously the corresponding recolored
subset in another one (say, a histogram). In this technique, the user is also
allowed to manually fit models (curves, surfaces) to the observed distributions.
This powerful technique can be further enhanced by the use of complementary
data representations as well as animation. The weakness of brushing is that it
is not automatic, not quantitative and not objective. Though, it is often the
solution of last resort.

In computer vision, the very same “fitting” problem is particularly recur-
rent because typical detection algorithms output clouds of points that are then
subject to high level processing.

Most of the methods in computer vision focus on reconstructing shapes in
R

2 or R
3 and are motivated by geometric interpretations. As in the case of

neural networks, they are often mathematically equivalent to known statistical
methods but provide an effective way to achieve the result when statistics may
only provide a mathematical interpretation of the underlying regression and
optimality prior conditions. Three methodologies can be identified. The first one
consist in using graph theory. For instance, one can consider P as a set of graph
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vertices [15,6] or use normalized cuts [27] for partitioning the ambient space
into regions. Another interesting approach, alpha shapes [8] defines meaningful
subsets of the Delaunay triangulation of P by balancing convexity and resolution
scale measures. The second methodology consists in gathering local perceptual or
regularity cues for grouping [34,1], like good continuation [7], constant curvature
[22] or local measures of confidence [26,31,25,12,9]. The third methodology also
results in such local operations but is primarily motivated by mechanical or
physical metaphors like in the dynamic particles [29]. They often use a variational
formulation [18,23] and explicit or implicit geometric models [30,33].

However, there is also a more recent interest for methods meant to work in
arbitrary dimension. For instance, tensor voting [21] has been introduced as a
unified formalism for addressing the issues of grouping noisy sets of points into
more regular features. It is founded on tensor calculus: the multi-dimensional
data is first encoded into a tensor, then elements vote in their neighborhood
through a convolution-like operation which is most appropriate in Euclidean
ambient spaces. This results in a dense tensor map, containing both orientation
and confidence informations, from which curves or surfaces can be extracted by
a n-linear interpolation. This algorithm is not iterative because the smoothness
is imposed by convolution. Note that tensor voting was inspired from vector
voting [12].

We suggest another formalism, founded on variational calculus, that is inter-
estingly related to almost all the previous methods. The remainder of the paper
is as follows. In Section 2, we present the theoretical and practical aspects of the
method. In Section 3, we discuss the benefits of this new approach in different
applications. We conclude in Section 4.

2 Theory and Implementation

As a preliminary, we provide the reader with some informal intuition about the
various ingredients of the method. Then, we propose a mathematical formaliza-
tion of it and discuss its implementation.

2.1 Some Intuition

Suppose that P is a sparse cloud of points in the plane (Ω = R
2) and that these

points are roughly distributed along a smooth curve. The problem consists in
recovering “the” smooth curve M that “passes through” P. We simply develop
the idea that P, seen as a subset of Ω, can be transformed continuously into
the curve M. This is achieved through an iterative process in which each point
of P spreads itself in the direction of its neighbouring points. Little by little,
each point in P transforms itself into a short piece of curve oriented toward
other points of P, and grows toward them. Eventually, all those pieces connect
to one another so that the final curve is smooth and simply connected. At the
same time, outliers are eliminated and the shape is regularized. This “spreading”
process transforms continuously P into the smooth manifold M.

In the next section, we design an objective cost, or energy, associated with
this spreading shape at each time instant of its deformation. The iterative
minimization of this energy results in the “right” transformation because the
energy is designed for that very purpose. Like in any variational method, the
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final shape of M will correspond to a minimum of the energy. Now, there are
obviously two main issues here. The first one is “How to define a proper energy
?” and the second one is “How to represent the evolving shape ?”.

As far as the energy is concerned, it has to reflect the relevant properties of
the desired final shape. In variational methods, the energy is often a weighted
sum of several energies. Each term contributes to favor or penalize a certain
shape property. The contributions are often contradictory and they compete
by summation, like kinetic and potential energy do in mechanics. Hopefully, the
achieved minimum of the total energy yields a satisfactory balance between each
effect. In our problem, we need at least two energy terms. There should definitely
be a data attachment term. In effect, shapes which contain a lot of points not
belonging to P should be penalized. This prevents the spreading process to add
too many points and make M too “fat”. Symmetrically, shapes which do not
contain all the points of P should be penalized as well. This is because the final
result should not miss parts of P. But this data attachment alone is useless
because its minimization results in nothing but M = P and that is why it is
called the data attachment term. We definitely need a regularization term as well.
This one should favor better connected and smoother shapes. It will of course
be in competition with the data attachment term because P is not smooth and
is not well connected at all. We do not discuss smoothness further for now since
the issue is so well known. A way to obtain well connected shapes is to favor
convexity. In effect, it is well known that convex shapes are simply connected,
i.e. contain only one connected component. So, the regularization term favors
convexity. Once again, this term alone is useless because minimizing it would
really connect all the points of P. The final result would then be the convex hull
of P and this is not desirable in general. To summarize this paragraph, the total
energy will only favor spreading toward other neighbouring points of P because
this is the only way the two terms may actually reach a satisfying agreement.

The representation of the evolving shape is an important issue as well. In
effect, a priori, no hypothesis is made neither about the dimension of the final
shape M nor its topology. This is a domain where implicit representations are
usually superior to shape explicit parametrizations. In solving this issue, we
were mostly inspired by [2,20] where a curve in R

3 is represented by a one-
parameter family of concentric tubes of increasing radi. The represented curve
is the medial axis of the tubes. If the radius r of the tubes is the parameter of
the family then the tubes converge toward the curve when r tends to 0. This
is actually a very general approach which is valid regardless of the dimension
and topology. The key is to consider neighborhoods (or approximations) of the
represented object with increasing tolerance. Note that those neighborhoods are
always hyper-surfaces of the ambient spaces, i.e.manifolds of dimension n−1. For
instance, in R

3, both concentric tubes and concentric spheres are bi-dimensional
although their limits are curves and points. Finally, those hypersurfaces are
conveniently encoded as the iso-hypersurfaces of a scalar function defined on Ω.
This implicit representation makes it not too hard to formulate the problem as
a variational one.

2.2 Formalization

Let u : Ω → [0, 1] be a smooth function to be constructed so that the family of
hypersurfaces Sα = u−1(α), 0 < α < 1, tends to a submanifold M of Ω when α
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tends to 0. In that sense, u can be interpreted as a weak implicit representation
since

M = lim
α→0+

u−1(α).

In particular, the value of u far from P is 1 and tends to 0 as one approaches P.
We propose to define u as the solution to a variational problem that is naturally
related to the reconstruction one. As a preliminary, we shall present some useful
integral criteria, along with their Euler-Lagrange equations. Then, we shall see
how to combine them and finally, since variational methods are iterative, we
shall describe how to initialize u. We start with the case Ω = R

n.

Ingredients. For the moment, consider independently the four non-negative
integrals∫

P
u2,

∫
Ω/P

(u− 1)2,
∫

Ω

∇2u, and
∫

Ω

∇u ·Qu∇u,

where Qu is the projector onto the sub tangent space of Ω corresponding to
negative eigenvalues of the Hessian of u. In other words, if D2u = PTDP , with
D = Diag(λi) and PTP = I, then Qu = PTGP with G = Diag(ν(λi)) where
ν(R−) = {1} and ν(R∗+) = {0}. Note that Qu is symmetric positive.

The motivation for considering the first three integrals is obvious. The min-
imization of the first one enforces that M passes through P. In effect it is
null if and only if u(P) = {0}. Minimizing the second one prevents M from
passing through other points than those of P. In effect, it is null if and only
if u(M/P) = {1} a.e. in Ω/P. Finally, minimizing the third one enforces the
smoothness of u hence, to some extent1, that of Sα. The Euler-Lagrange equa-
tions of these three first integrals are respectively

2u, 2(u− 1), and − 2∆u

on the domains where the corresponding integrals are defined and 0, i.e. the
null function, elsewhere in Ω.

As for the fourth integral, it is minimized by non-concave functions but this
is not as straightforward and we are going to develop this point further. Note
that the motivation for considering convex u’s is that it implies the convexity
of its iso-hypersurfaces Sα (cf. previous section) and this is how the connection
between neighbouring points is favored. Here is how we minimize this integral.
Although Qu depends upon D2u, we consider only the first order term in the
Euler-Lagrange equation of the integral2. It is equal to

−2∆−u,
1 i.e. to the extent that α is not a singular value of u.
2 Observe that the dependence of Qu with respect to D2u can be thought of as having
a contribution due to its eigenvalues λi and another one due to the isometry P . The
first contribution is null a.e. because the derivative of ν is null a.e.. As for the other
dependence, we neglect it here because it introduces third order derivatives in the
Euler-Lagrange equation and those are too difficult to evaluate numerically. We have
to admit that it is a shortcoming of this method.
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where ∆−u is the sum of the negative eigenvalues of the symmetric matrix D2u,
i.e.

∆−u =
∑

i=1,··· ,n

ν(λi)λi (1)

This result is obtained by writing

∂ (∇u ·Qu∇u)
∂∇u

= (Qu +QT
u )∇u = 2Qu∇u

and then

−∇ · ∂ (∇u ·Qu∇u)
∂∇u

= −2∇ ·Qu∇u

= −2∇ ·Q2
u∇u Qu is a projector

= −2Qu∇ ·Qu∇u Qu is self-adjoint

= −2PTGP∇ · PTGP∇u by definition

= −2GP∇ ·GP∇u PT is an isometry
= −2GP∇ · P∇u G is a self-adjoint projector

= −2
∑

i=1,··· ,n

ν(λi)
∂2u

∂p2
i

= −2∆−u,

where the pi’s are the eigenvector of D2u and ∆−u is defined in Eq. 1.

The quantity ∆−u is the negative part of the Laplacian of u or “the nega-
tive Laplacian”. Obviously, it vanishes when u is a non-concave function. Hence
again, this enforces the convexity of the hypersurfaces of u and consequently the
convexity of M. Of course, the final M will not be globally convex because the
four criteria are actually going to compete.

Putting them all together. Following, it is important to combine these
integrals properly in order to achieve the right balance between each effect. We
are going to form a weighted sum of those four integrals depending only upon
one parameter, the scale σ. We define the scale as the critical distance between
two just distinguishable points of P. This concept from observation theory will
serve as a yard stick to “calibrate” our linear combination of contributions.

First, remind that our integrals are not all defined in Ω, so we use an indica-
trix function of P, i.e. IP(P) = {1} and IP(Ω/P) = {0}. The two first integrals
can then be rewritten∫

Ω

IP(x)u(x)2dx and
∫

Ω

(1 − IP(x))(u(x) − 1)2dx.

Now, we form

E = c1

∫
Ω

IPu2 + c2

∫
Ω

(1 − IP)(u− 1)2 + c3

∫
Ω

∇2u+
∫

Ω

∇u ·Qu∇u, (2)
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and the corresponding Euler-Lagrange equation (up to a factor 1
2 )

∂uE ≡ c1IPu+ c2(1 − IP)(u− 1) − c3∆u−∆−u, (3)

where the three ci’s are to be expressed in terms of σ.

For symmetry reasons, it is natural to choose c1 = c2. Furthermore, consider
the case of two isolated just distinguishable points in R located at coordinates
0 and σ. Setting c3 = 0, because the smoothing must be negligible with respect
to the other effects, the equilibrium condition writes c2(u − 1) − u

′′
= 0, which

is a linear differential equation of the second order. It can be integrated by
quadrature, supposing that u(0) = u(σ) = 0. Then, c2 can be determined
thanks to the additional equation u( 1

2σ) = 1
2 : in effect, the fact that the two

points are just distinguishable means in particular that their middle point can
be assigned neither to M nor to Ω/M.

Finally, we find

c1 = c2 =

(
ln(7 +

√
48)

σ

)2

≈ 6.938
σ2 and c3 = ε << 1,

hence the partial differential equation to be solved ∂u
∂t = −∂uE or

∂u

∂t
=

β2

σ2 (−IPu+ (1 − IP)(1 − u)) + ε∆u+∆−u, (4)

where β = ln(7 +
√
48) and ε << 1.

Non-euclidean ambient spaces. The case where Ω is not Euclidean is im-
portant in practice. For instance, curve normal vectors live in S1, surface normal
vectors in S2, line directions in P1, color hue in S1 and k-uplets of such vari-
ables live in products of those spaces. Non-Euclidean variables occur quite often
in computer vision and, in general, it is not accurate to consider them as taking
values in Euclidean spaces. Fortunately, it is rather straightforward to generalize
the presented method when Ω can be embedded in a Euclidean space. In that
case, one has just to rewrite the previous equations in the tangent plane of Ω as
introduced in [4]. Practically, one still solves a PDE using a regular grid and Ω
is represented implicitly by its distance function.

Initialization of u. One can simply initialize u as follows: u0(P) = {0} and
u0(Ω/P) = {1}. This has the advantage of being simple and fast but it does not
account for repetitions in P and, since the grid has integer coordinates, rounding
effects are important.

Another way that is more robust to outliers and behaves better regarding
redundant samples and rounding effects is to set:

u0(x) =
∏
p∈P

(
1 − εe− (x−p)2

σ2

)
(5)

Of course, this can be implemented efficiently by considering an approximation
of the exponential having a compact support.
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2.3 Implementation Issues

The function u is sampled over a regular grid of Ω if it is Euclidean or over
the Euclidean space of higher dimension in which Ω has been embedded (cf.
Section. 2) otherwise. The equation (4) is discretized using the standard explicit
forward scheme for the time derivative (i.e. ut+dt = ut+(...)dt) and the standard
explicit centered schemes for the spacial derivatives (i.e. the Hessian of u). The
hypersurfaces Sα are extracted by n-linear interpolation. As far as the indicatrix
function is concerned, it can be set to

IP(x) = e− dist2(x,P)
σ2

or any other reasonable approximation. Naturally, the finest possible scale, σ,
is determined by the resolution of the grid. It is achieved by taking σ = 1 (i.e.
two grid nodes are two distinguishable points) but it can be set to a lower value
if needed. The most natural way to work with it is to set α = 1 and choose
an appropriate grid size. An approximation to the “negative Laplacian” may be
computed as

∆−u ≈ Trace(N(D2u))

where N is an appropriate polynomial. In effect, we have Trace(N(D2u)) =∑
i=1,··· ,n N(λi) because D2u is symmetric and thus, D2u and N(D2u) share the

same eigenvectors. So, the polynomial N has just to “turn off” positive λi’s for a
reasonable range of values. This idea has been suggested to us by [30]. Of course,
∆−u may also be simply computed by diagonalizing D2u. These approximations
of ∆−u are only valid if Ω is Euclidean, however it is straightforward to extend
them if Ω is only embedded in a Euclidean space. Finally, in practice, one can
really set ε = 0 because the other spatial centered schemes are already diffusive
enough for assuring a regular solution.

3 Applications

In this section, we discuss the benefits and limitations of the proposed technique
in two different contexts: multi-dimensional data analysis and skin detection in
color images.

3.1 Application to Multi-dimensional Data Analysis

A simple example will demonstrate how this technique can be helpful for the
understanding of multi-dimensional data. When the number of variables is high,
i.e. greater that 2 or 3, a traditional approach is to study slices or projections
of the data with lower dimensions. Typically this approach yields some partial
structural information. One limitation of analysing slices of the data is that one
may fail to detect existing structural information. This is due in part to the
fact that samples that where “almost” lying on the selected slice will be totally
invisible. Fig. 2 depicts this situation on a real data set. Let us see how one
may solve this with our method. Fig. 1 shows the iterative reconstruction of this
data set using Eq.4 and Fig. 3 shows the resulting slice from which patterns
can be detected more confidently. This is a rather trivial example since there
are only three variables and a three-dimensional scatterplot yields the structural
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Fig. 1. This figure shows the iterative resolution of Eq. 4. The curve and the surface
are reconstructed to a certain extent.

information. However, if there are more than 3 variables, one may still perform
exactly the same reconstruction in the whole dimensionality of the data set.
This process cannot be easily visualized. But, once the reconstruction is done,
standard analysis tools can be used to detect more reliably structural information
in slices, scatterplots or other low-dimensional representations. The higher the
number of variables, the more likely the reconstruction will yield information
that would otherwise stay invisible. In practice, this technique would be most
appropriate when the number of variables is smaller than 10 due to important
memory requirements. This point is detailed in Section 4.

3.2 Application to Skin Detection in Color Images

Typical algorithms for detecting skin in color images proceed in two steps. First,
a local skin color and/or skin texture detection is performed. Then, the geometry

Fig. 2. On the left, a cloud of points in R
3 distributed along a one-dimensional curve

and a connected bi-dimensional surface. On the right, the trace of the cloud of points
on a selected slice. Although it is clear from the three-dimensional scatterplot that this
trace is distributed along a curve, this is not visible on the slice alone.
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Fig. 3. The cloud of points of Fig. 2 has been reconstructed, cf. also Fig. 1, and its
trace over the same slice is shown. By connecting points in the full dimensionality of
the data set, on makes it possible to detect structure more reliably. Of course, if the
reconstruction is performed on the initial slice, i.e. in two dimensions, this information
cannot be recovered hence the importance of reconstructing in the full dimensionality,
especially when considering more that 2 or 3 variables.

of the detected regions is regularized using morphological operators. This section
concerns only the first step and deals with the local detection of skin color using
the approach described in this paper: 200 images depicting people have been
segmented manually and the set P is formed by the colors, in the CIE Lab
system, of the millions of pixels corresponding to human skin. Ω is the set of
existing colors in the same color system and M is supposed to approximate
the set of colors corresponding only to human skin. After reconstructing M
(cf. Fig. 4), it is then possible to test whether the condition u(L, a, b) < u0 is
satisfied, where (L, a, b) is the color of a tested pixel and u0 is a selected threshold
related to the probability of a color to belong to M. Consequently, this test may
be used as a local skin color detector. Of course, it is important in this learning
approach to eliminate the differences in lighting and camera responses within the
learning set and we did this partially. To compensate for differences in lighting
conditions, we have applied a simple model of the Von Kries adaptation [11].
The algorithm searches the image for likely representatives of white and black,
and uses these values to compute a modified Von Kries adaptation. Although
the spectrum of the light source cannot be completely recovered from the image,
this model provides good results, as long as the spectrum of the light source
is not too wildly skewed or irregular [28]. Fig. 5 shows a comparison of our
detection method with two others on both images containing skin and images
not containing skin. Of course, one of the strength of the presented method is that
it can be applied with more than three variables and this can be used in order
to further enhance the segmentation. For instance, in Fig. 6, we added a fourth
variable which is the variance of |(L, a, b)− (L0, a0, b0)| in a small neighborhood
of each pixel, where (L0, a0, b0) is the color of the considered pixel and |.| denotes
the Euclidean distance. This measure, noted v(L, a, b) accounts somehow to the
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Fig. 4. This figure shows the learned shape of the set of human skin colors in the CIE
Lab system from different standpoints.

presence of texture and this enhances the results in particular on images which
do not contain human skin. It is also fair to say that the value of the threshold
u0 is rather arbitrary and no physical interpretation has been attached to it,
although it should not be difficult to relate it to a probability.

Fig. 5. Examples of results of skin color detection using (from the left to the right) the
methods proposed in [11], in [28] and in this paper with the variables (L, a, b).
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Fig. 6. Examples of results of skin color detection using (from the left to the right) the
methods proposed in [32], in [19] and in this paper with the variables (L, a, b) and, in
last column, with the variables (L, a, b, v(L, a, b)). Notice how the additional variable,
related to texture, enhances the results in images that do not contain skin.

4 Conclusion

In this paper, we have presented a new solution to the fundamental problem of
recovering a manifold from a set of points known to belong to it. It is founded
on variational calculus and results in a partial differential equation which can be
interpreted explicitly as an anisotropic diffusion that “connects” neighbouring
points. This is particularly interesting when dealing with non-Euclidean ambient
spaces, where convolutions are not easy to implement. Although this technique
is surprisingly simple, it gathers various good ideas from the three classes of
existing methods surveyed in Section 1. In particular, the variational formulation
of geodesic snakes [18], the fact that the initial solution is the set of points itself
like in dynamic particles [29], the balance between convexity and scale like in
alpha shapes [8], and finally the geometric implicit representation like in the
level set methods [33]. All this makes it a very powerful tool in the most difficult
situations as shown by our experiments. As for the limitations of the method,
one has to be aware that, in practice, it is limited to dimensions smaller that
about 10 because of the inherent computational complexity. If a narrow band of
“voxels” is used, then the complexity is linear in the size of the reconstructed
objects, both in time and memory. But, the involved constant may be very
important due to the voxel-based representation. Another difficulty that has
not been addressed is the choice of the metric to use when the variables are
of different nature. However, the framework we have presented is certainly an
appropriate one to introduce these considerations. One has also to be aware of
the two layers of approximations introduced by the weak implicit representation
(cf. Section 2).
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We would like to end this paper with the following general notes. Although
the method performs extremely well in practice, there are several theoretical is-
sues which remain to be investigated. Like in any other variational method, the
Euler-Lagrange equations provide only necessary conditions to the minimization
of the energy and it should be clarified in which cases this is actually not suffi-
cient. Further more, the link to standard statistical methods should be clarified
as well. In particular, is the performed reconstruction equivalent to any known
statistical regression ? Future work on this technique will focus on answering
these questions.
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