
Adaptive Creation of Network Applications in
the Jack-in-the-Net Architecture

Tomoko Itao1, Tetsuya Nakamura1, Masato Matsuo1, Tatsuya Suda2�, and
Tomonori Aoyama3

1 NTT Network Innovation Laboratories, Nippon Telegraph and Telephone
Corporation (NTT), 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585, Japan

{tomoko, tetsuya, matsuo}@ma.onlab.ntt.co.jp
2 Information and Computer Science, University of California, Irvine, Irvine, CA

92697-3425, USA
suda@ics.uci.edu

3 Information and Communication Engineering, The University of Tokyo, 7-3-1
Hongo Bunkyo-ku, Tokyo, 113-8656, Japan

aoyama@mlab.t.u-tokyo.ac.jp

Abstract. The Jack-in-the-Net Architecture (Ja-Net) is a biologically-
inspired approach to design adaptive network applications in large-scale
networks. In Ja-Net, a network application is dynamically created from
a collection of autonomous components called cyber-entities. Cyber-
entities first establish relationships with other cyber-entities and collec-
tively provide an application through interacting or collaborating with
relationship partners. Strength of a relationship is the measure for the
usefulness of the partner and adjusted based on the level of satisfaction
indicated by a user who received an application. As time progresses,
cyber-entities self-organize based on strong relationships and useful ap-
plications that users prefer emerge. We implemented Ja-Net platform
software and cyber-entities to verify how popular applications (i.e., ap-
plications that users prefer) are created in Ja-Net.

1 Introduction

We envision in the future that the Internet spans the entire globe, interconnecting
all humans and all man-made devices and objects. When a network scales to
this magnitude, it will be virtually impossible to manage a network through a
central, coordinating entity. A network must be autonomous and contain built-in
mechanisms to support such key features as scalability, adaptability, simplicity,
� A part of Tatsuya Suda’s research presented in this paper was supported by
the National Science Foundation through grants ANI-0083074 and ANI-9903427,
by DARPA through Grant MDA972-99-1-0007, by AFOSR through Grant MURI
F49620-00-1-0330, and by grants from the University of California MICRO Pro-
gram, and Nippon Telegraph and Telephone Corporation (NTT).
Tatsuya Suda also holds the title of NTT Research Professor, and his NTT contact
information is same as the co-authors’ contact information.

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 129–140, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



130 T. Itao et al.

and survivability. We believe that applying concepts and mechanisms from the
biological world provides a unique and promising approach to solving key issues
that future networks face.

The Jack-in-the-Net Architecture (Ja-Net)[1][2] is a biologically-in-
spired approach to design adaptive network applications in future networks. The
biological concept that we apply in Ja-Net is emergent behavior where desirable
structure and characteristics emerge from a group of interacting individual en-
tities. In Ja-Net, a network application is dynamically created from a group
of interacting autonomous components called cyber-entities. A cyber-entity is
software with simple behaviors such as migration, replication, reproduction, re-
lationship establishment and death, and implements a set of actions related to
a service that the cyber-entity provides. An application is provided through
interactions of its cyber-entities. In providing applications, cyber-entities first
establish relationships with other cyber-entities and then choose cyber-entities
to interact with based on relationships. Strength of a relationship indicates the
usefulness of the partner and dynamically adjusted based on the level of satisfac-
tion indicated by a user who received an application. As time progresses, cyber-
entities self-organize based on strong relationships resulting in useful emergent
applications that users prefer.

In this paper, we describe design and implementation of mechanisms to create
applications adaptively in Ja-Net. The rest of the paper is organized in the fol-
lowing manner. Section 2 describes related work. Section 3 describes the overview
of Ja-Net Architecture and design of cyber-entities. Section 4 describes exper-
iments on dynamic creation of applications in Ja-Net. Conclusion and future
work are discussed in section 5.

2 Related Work

Currently, some frameworks and architectures exist for dynamically creating
applications. One such example is Hive [3], where an application is provided
through interaction of distributed agents. In Hive, agents choose agents to in-
teract with by specifying the Java interface object that each agent implements.
Thus, interaction in Hive is limited to among the agents that mutually imple-
ment the interface object of the partner. Unlike Hive, Ja-Net supports ACL
(Agent Communication Language) [4] to maximize flexibility in cyber-entity in-
teractions. Bee-gent [5] is another example of a framework to create applications
dynamically. It uses a centralized mediator model; a mediator agent maintains
a centralized application scenario (logic) and coordinates agent interactions to
reduce complexity in multi-agent collaboration. With this centralized mediator
approach, Bee-gent restricts the flexibility and scalability of the agent collabo-
ration. Unlike Bee-gent, in Ja-Net, there is no centralized entity to coordinate
cyber-entity services, and thus, it scales in the number of cyber-entities. In addi-
tion, Ja-Net goes one step further than these architectures by providing built-in
mechanisms to support adaptive creation of network applications that reflect
user preferences and usage patterns.



Adaptive Creation of Network Applications 131

Virtual Machine
(Java)

Heterogeneous
Operating Systems / Hardware

Cyber-Entities

Link A

Link B

Link C

Link D

W
ir

el
es

s 
In

te
rf

ac
e

W
ir

ed
 I

nt
er

fa
ceJa-Net Platform Software

Fig. 1. Ja-Net node structure

Current popular mobile agent systems, including IBM’s Aglets [6], General
Magic’s Odyssey [7], ObjectSpace’s Voyager [8] and the University of Stuggart’s
Mole project [9], adopt the view that a mobile agent is a single unit of compu-
tation. They do not employ biological concepts nor take the view that a group
of agents may be viewed as a single functioning collective entity.

3 Design of Cyber-Entities

3.1 Overview of the Ja-Net Architecture

Each node in Ja-Net consists of the layers as shown in Figure 1. Ja-Net platform
software (referred to as the platform software in the rest of the paper) runs using
a virtual machine (such as the Java virtual machine) and provides an execution
environment and supporting facilities for cyber-entities such as a communication
and life-cycle management of cyber-entities. Cyber-entities run atop the platform
software. The minimum requirement for a network node to participate in Ja-Net
to run the platform software.

A cyber-entity consists of three main parts: attributes, body and behaviors.
Attributes carry information regarding the cyber-entity (e.g., cyber-entity ID,
service type, keywords, age, etc.). The cyber-entity body implements a service
provided by a cyber-entity. Cyber-entity behaviors implement non-service related
actions of a cyber-entity such as migration, replication, relationship establish-
ment and death.

3.2 Cyber-Entity Communication

In order to collectively provide an application by a group of cyber-entities, cyber-
entities exchange messages during the execution of cyber-entity services. Upon
receiving a message, a cyber-entity interprets the message and invokes an appro-
priate service action and sends the outcome of the action to another cyber-entity
that it interacts with. This, in turn, triggers service invocation of those cyber-
entities that receive a message. Cyber-entities may also invoke their services
based on an event notification. In Ja-Net, various events may be generated trig-
gered by changes in the network or in the real world (such changes may be
captured by sensors).



132 T. Itao et al.

In Ja-Net, to maximize the flexibility in application creation, we adopt Speech
Act based FIPA ACL (Agent Communication Language)[4] with extensions spe-
cific to the Ja-Net as a communication language of cyber-entities. In the Ja-Net
ACL, we define a small number of communicative acts (such as request, agree,
refuse, inform, failure, query-if, advertise, recruit, and reward) to facilitate com-
munication between cyber-entities. Advertise, recruit and reward are not in the
FIPA ACL communicative acts and specific to the Ja-Net ACL. They are used
during the execution of relationship establishment behavior (please see section
3.4 for relationship establishment behavior). In the Ja-Net ACL, an event noti-
fication message is also delivered in ACL using inform communicative act. Each
ACL message exchanged between cyber-entities contains a communicative act
and parameters such as :receiver, :sender, :in-reply-to, :ontology, :sequence-id and
:content. :Receiver and :sender, parameters specify the receiver of the current
message and the sender of the current message, respectively. :In-reply-to specifies
to which message it is replying and is to manage the message exchange flow be-
tween cyber-entities. :Ontology specifies the vocabulary set (dictionary) used to
describe the content of the message. :Sequence-id specifies a unique identifier of
a message sequence in providing an application . A sequence-id is generated by a
cyber-entity at the initial point of an application and piggy backed by each ACL
message exchanged during the application. :Content specifies data or informa-
tion associated with a communicative act in the message. A :content parameter
is described with Extensible Markup Language (XML)[10].

3.3 Cyber-Entity Body

A cyber-entity service is implemented as a finite state machine. A cyber-entity
may have multiple state models and execute them in parallel. Each state model
consists of states and state transition rules. A state implements an atomic service
action and message exchanges associated with the action (to allow inputting data
to and outputting data from a given action in a given state). A state transition
rule associated with a state specifies the next state to transit to. When an action
in a given state completes, the current state moves to the next state based on
the state transition rule.

In sending the outcome of a service action, a cyber-entity may either respond
to a cyber-entity that sent the previous message, or send the message to another
cyber-entity (or cyber-entities) by selecting a cyber-entity (or cyber-entities) to
interact with using relationship (please see section 3.4 for interaction partner
selection mechanism). Upon receiving a message from another cyber-entity, a
cyber-entity invokes an appropriate state (action) that can handle the message
by examining parameters of the incoming message in the following manner. If
the parameter :in-reply-to is set in the incoming message, it is in response to a
previously transmitted message. In this case, the cyber-entity compares the data
type of the :content in the incoming message with the input data type required
by an action (state) where the previous message was transmitted, and invokes
the action if it can take the incoming message as its input. If the parameter :in-
reply-to of the incoming message is null, the incoming message is the first message



Adaptive Creation of Network Applications 133

A base class of a 
cyber-entity

Cyber-Entity 
Body

(1) register

Communication Service

(6) act

Relationship 
Record

(3) get

(2) dispatch

(5) create

(7) set
(8) select

(10) convey/spread
Platform 
Software

Relationship 
Establishment 

Behavior

State Model 
Engine

(4) invoke
Caster Proxy

State Model

Other 
Behaviors…

Action 
(9) tell

Fig. 2. Function components at a cyber-entity

from the sender cyber-entity. In this case, the receiver cyber-entity examines the
current state of a state model that is ready to interact with a new cyber-entity
and the initial state of each and every state model that it implements. Among
them, a state that can take the incoming message as its input is then invoked.

Figure 2 shows the main function components (classes) of a cyber-entity. In
our current design, classes in the cyber-entity body except action as well as classes
in cyber-entity behaviors are implemented in a base class of a cyber-entity, and all
cyber-entities are derived from the base class. Service actions are implemented
by cyber-entity designers and registered with a state model (depicted as (1)
“register” in Figure 2). Caster receives an ACL message from another cyber-
entity via the communication service in the platform software (depicted as (2)
“dispatch” in Figure 2), examines state models (depicted as (3) “get” in Figure
2) and invokes an appropriate state (action) (depicted as (4) “invoke” and (6)
“act” in Figure 2). State model engine is a generic class to execute a state model.
Proxy represents a remote cyber-entity and provides an API to send a message
to the remote cyber-entity (depicted as (9) “tell” in Figure 2). The outgoing
message is unicast (or multicast)/broadcast by the platform (depicted as (10)
“convey/spread” in Figure 2).

3.4 Relationship Management

Relationship Attributes. A relationship may be viewed as (cyber-entity’s)
information cache regarding other cyber-entities. Table 1 shows example rela-
tionship attributes stored in a relationship record (depicted as “Relationship
Record” in Figure 2) at a cyber-entity. CE-id is to uniquely identify a relation-
ship partner cyber-entity. Action-name specifies an action of the cyber-entity
itself to interact with a relationship partner cyber-entity. Service-properties is to
store information regarding the service that a relationship partner cyber-entity
provides (such as the service type and keywords of a relationship partner cyber-
entity). Access-count may be incremented when a service message is exchanged
with a relationship partner cyber-entity. Strength evaluates the usefulness of a



134 T. Itao et al.

Table 1. Example attributes of a relationship record at a cyber-entity

Attribute Meaning
CE-id A globally unique identifier of a relationship partner cyber-entity.
Action-name An action of the cyber-entity itself that may be used to interact with

a relationship partner cyber-entity.
Service-
properties

Information regarding the service that a relationship partner cyber-
entity provides.

Access-count The number of interactions with a relationship partner cyber-entity.
Strength Indication of the usefulness of a relationship partner cyber-entity.

partner cyber-entity and is used to help cyber-entities to select useful interaction
partners.

Relationship Establishment. Cyber-entities first establish relationships
with other cyber-entities to interact with. For instance, a cyber-entity that has
just migrated to a new node may broadcast an advertise message specifying in-
formation regarding the sender cyber-entity (e.g., service type and/or attributes)
to establish relationships with nearby cyber-entities. Upon receiving an adver-
tise message, a cyber-entity creates a new relationship record (depicted as (5)
“create” in Figure 2) and stores the sender cyber-entity’s CE-id and information
obtained from the incoming advertise message in the relationship record. Addi-
tional information about a relationship partner cyber-entity obtained through
interaction may be stored in the Service-properties of its relationship record (de-
picted as (7) “set” in Figure 2). Alternatively, a cyber-entity may broadcast
a recruit message specifying conditions on a partner (e.g., service type and/or
attributes required for a partner cyber-entity). A cyber-entity that receives a re-
cruit message responds with an inform message containing its own information if
it satisfies conditions specified in the recruit message. Through this interaction,
the sender cyber-entity and the receiver cyber-entity of the recruit message may
mutually establish a relationship with each other.

Partner Selection. In selecting an interaction partner cyber-entity (or
cyber-entities), a cyber-entity may specify one or more relationship attributes as
keys and retrieve its relationship records that match the specified keys (depicted
as (8) “select” in Figure 2). If there are multiple relationship records that match
the keys, a cyber-entity narrow these relationship records based on relationship
strengths so that the cyber-entity interacts more often with cyber-entities with
stronger relationships. If there is none or less relationship record that matches
the keys, a cyber-entity attempts to discover new cyber-entities by broadcasting
an advertise message or a recruit message to nearby cyber-entities.

Strength Adjustment. In Ja-net, a user indicates in happiness the degree
of his/her satisfaction with the received application. When a user receives an
application, the user creates a reward message and sets happiness value in the
message content. The reward is back propagated along the message exchange se-
quence from a cyber-entity at the end point of the application to a cyber-entity
at the initial point of the application. In order to remember a back propagation



Adaptive Creation of Network Applications 135

path, each cyber-entity records the previous and the next cyber-entities in the
message sequence along with the corresponding sequence-id (which is obtained
from ACL :sequence-id parameter). Upon receiving a happiness value in the re-
ward message, each cyber-entity modifies the strength of relationships regarding
cyber-entities that it interacted with in providing an application. If a user likes
the application, positive happiness value is returned and the strength value is
increased. If a user dislikes the application, negative happiness value is returned
and the strength value is decreased. If user is neutral or no happiness value
is returned, there is no change in the strength value. Therefore, cyber-entities
that collectively provide a popular application (i.e., application that a number
of users like) will receive a positive happiness value more often and strengthen
the relationship among themselves, while relationships among cyber-entities that
provide a not-so-popular application are weakened.

Group Formation. In order to allow users to explicitly request for an ap-
plication, cyber-entities collectively providing an application form a group when
the relationship strengths among themselves exceed a predetermined threshold
value. Once a group is formed, a unique group ID, as well as human-readable ap-
plication name, is assigned to each group member cyber-entity. Thus, users can
request for a group service either by a unique group ID or by a human-readable
application (group) name.

4 Experiments on Dynamic Application Creation

In order to verify dynamic creation of applications in Ja-Net, we implemented
multiple cyber-entities, as well as platform software, based on the design de-
scribed in section 3 and performed basic experiments. In our experiments, various
realistic scenarios were simulated through running multiple cyber-entities and
multiple platform software on computers. Our implementation and experiments
are explained below.

4.1 Application Implementation

In applications that we implemented, we consider popular public spots such as
the New York City’s Times Square, a theater in the nearby Broadway theater
district and a cafe on the New York City’s Fifth Avenue. A number of people
(users) visit these locations, stay there for a while (doing, for instance, window
shopping, watching a show, having some coffee at a cafe), and leave. Assume
that these users carry a mobile phone or a PDA that is capable of running
cyber-entities and communicating with other mobile phones and PDAs in an
ad-hoc manner. Assume also that shops in these area implement cyber-entities
related to their service and run these cyber-entities on a computer in the shop.
In addition, some users may implement their own cyber-entities or have down
loaded and carry cyber-entities in their mobile phones and PDAs from where they
visited earlier in the day. Various cyber-entities join/leave to/from each location



136 T. Itao et al.

User
cyber-entity 

Non-User 
cyber-entity 

Ja-Net node

Host 1:
The Times Square

User A’s PDA PC

Digital ScreenUser B’s PDA PC

MPEG
player 

Ticket 
Sales

Theater 
Commercial 

Screen

Auctioneer 

Theater 
Commercial 

Host 2: 
The Theater

Host 3: 
The Cafe

(1) move (3) move
(2) move

Fig. 3. Overview of the Ja-Net experiment system

according to the movement of users, which triggers actions and interactions of
other cyber-entities.

Figure 3 shows the overview of the Ja-Net experiment system. Each host
represents different public spot, such as the Times Square, a theater and a cafe,
respectively, and each Ja-Net node represents a PC, a device or user’s PDA
that is supposed to be present at a location that its host computer represents.
User’s PDA runs a cyber-entity (user cyber-entity) representing the user. Each
node runs one or more cyber-entities as described below. User A’s PDA at the
Times Square runs a user cyber-entity representing user A. A PC at the theater
runs a TheaterCommercial cyber-entity that stores information of a theater show
(assume that this information contains a URL of a commercial video clip of the
theater show and a button to request for a ticket purchase as well as other show
information) and a TicketSales cyber-entity that issues a theater show ticket and
generates a certification of ticket purchase. A digital screen in the theater runs a
Screen cyber-entity that displays image or video on the digital screen. A PDA of
another user B at the theater runs a user cyber-entity representing user B and
a MPEGplayer cyber-entity (assume that it is down loaded by user B earlier
in the day). A PC in the cafe runs an Auctioneer cyber-entity that purchases
commercial products from other cyber-entities and sells them at auction.

In order to capture users’ behaviors in our experiments, we defined two types
of events. NODE ARRIVAL is an event generated by platform software when a Ja-
Net node arrives at a new location. USER BROWSING is an event that is generated
by a user cyber-entity when a human user shows interests in the information
displayed on his/her PDA. (For instance, this event is generated when a user
scrolls the window up and down on his/her PDA). These events are broadcast
to cyber-entities in the same location (i.e., in the same host).

Example Application Sequence. Figure 4 shows an message sequence
of an application we implemented (referred to as ticket sales sequence). In this
sequence, a TheaterCommercial cyber-entity displays information of a theater
show (depicted as (1) “inform” in Figure 4) on user’s PDA. Suppose that the
user is interested in the show and sends a request for ticket purchase to the The-
aterCommercial cyber-entity (depicted as (2) “request” in Figure 4). Since the
TheaterCommercial cyber-entity only stores information of the show and does



Adaptive Creation of Network Applications 137

Ticket Sales Theater 
Commercial

(1) inform
(2) request(3) request

(4) inform (5) inform
(6) reward(7) reward

User

Cyber-entity

Fig. 4. An example of an application sequence (ticket sales)

not implement a ticket sales service, it forwards the request to a TicketSales
cyber-entity that it has relationship with (depicted as (3) “request” in Figure
4). Upon receiving a forwarded request for a ticket purchase, the TicketSales
cyber-entity issues a certificate for ticket purchase and sends the certification to
the User cyber-entity via the TheaterCommercial cyber-entity (depicted as (4)
“inform” and (5) “inform” in Figure 4 respectively). When a human user obtains
a ticket (i.e., a certificate of a ticket purchase) from the User cyber-entity, he/she
expresses the level of satisfaction as the happiness value. User cyber-entity then
creates a reward message and sends it to the TheaterCommercial cyber-entity,
which, in turn, forwards the reward message to the TicketSales cyber-entity (de-
picted as (6) “reward” and (7) “reward” in Figure 4). The relationship strength
between the TheaterCommercial cyber-entity and the TicketSales cyber-entity
is adjusted based on the happiness value.

4.2 Experimental Results

In our experiments, we only implemented the body (i.e., services) and relation-
ship establishment behavior of cyber-entities. Thus, cyber-entities were manually
moved to simulate their migration behavior when necessary in our experiments.
When an experiment starts, cyber-entities initially do not have relationship with
any other cyber-entities. Each cyber-entity dynamically establishes relationships
with cyber-entities in the same location (i.e., in the same host) by broadcasting
an advertise message or a recruit message. Once relationships are established,
cyber-entities start interacting with relationship partners and collectively pro-
vide applications. We performed several experiments to examine dynamic appli-
cation creation in Ja-Net. Our experiments are described below.

Experiment 1. In this experiment, we manually moved a node representing
user A’s PDA and a user cyber-entity representing user A (on user A’s PDA)
from the Times Square to the theater (depicted as (1) “move” in Figure3) to
simulate user A’s movement and observed that an application emerged through
interactions of cyber-entities (detailed explanation is described below). Upon ar-
riving at the theater, user A’s PDA generated NODE ARRIVAL event and broadcast
the event to all cyber-entities in the theater. Upon receiving the event, a user
cyber-entity on user A’s PDA, one of the cyber-entities in the theater, broadcast
an advertise message to cyber-entities in the theater. Then, upon receiving the
advertise message, the TheaterCommercial cyber-entity (on PC) established a
relationship with a user cyber-entity (on user A’s PDA) and sent theater show



138 T. Itao et al.

Fig. 5. A screen snap shot of application windows

information that it stores to the user cyber-entity (on user A’s PDA), which
in turn displayed the theater show information on user A’s PDA. At this mo-
ment, user A scrolled a window on his/her PDA. (In our experiments, we, human
operators conducting the experiment, scrolled a window up and down on user
A’s PDA). This generated a USER BROWSING event. The event was broadcast to
cyber-entities in the theater. In this experiment, we assumed that the Theater-
Commercial cyber-entity had a relationship with a MPEGplayer cyber-entity on
a PDA of another user B. Thus, the TheaterCommercial cyber-entity, upon re-
ceiving the USER BROWSING event, sent theater show information that it stores to
the MPEGpalyer cyber-entity. The MPEGplayer cyber-entity invoked its service
and accessed a commercial video clip of a theater show using a URL included
in the theater show information. In this experiment, we also assumed that the
MPEGplayer cyber-entity had a relationship with a Screen cyber-entity on the
digital screen. Thus, the MPEGplayer cyber-entity sent the outcome of its action
to the Screen cyber-entity. Consequently, the Screen cyber-entity displayed the
commercial video clip of a show on the digital screen in the theater.

Figure 5 shows application windows displayed by each node. A window of
user A’s PDA (on the left) displays theater show information and a window of
the digital screen (in the center) displays a commercial video clip of a show.

Experiment 2. In this experiment, while theater show information is dis-
played on user A’s PDA, user A clicked a ticket purchase button. (In our ex-
periments, we, human operators conducting the experiment, clicked the button
on user A’s PDA). A user cyber-entity on user A’s PDA generated a request
message for a ticket purchase and sent it to the TheaterCommercial cyber-entity
(on PC). Then, we observed interaction between the TheaterCommercial cyber-
entity and the TicketSales cyber-entity (on PC) shown in Figure 4. User A then



Adaptive Creation of Network Applications 139

received a certificate of ticket purchase. At this point, we have demonstrated
that an application was created upon receiving a request message from a user.

Next, in order to show that different applications emerge in different en-
vironments (i.e., environments where different sets of cyber-entities exist), we
simulated the TheaterCommercial cyber-entity migrated to user A’s PDA (i.e.,
TheaterCommercial cyber-entity was manually moved to user A’s PDA, which is
depicted as (2) “move” in Figure 3), and also simulated user A’s movement from
the theater to the cafe (depicted as (3) “move” in Figure 3). Upon arriving at
the cafe, user A’s PDA generated a NODE ARRIVAL event and broadcast the event
to cyber-entities in the cafe (including the TheaterCommercial cyber-entity on
user A’s PDA). Upon receiving the event, the TheaterCommercial cyber-entity
broadcast an advertise message to cyber-entities in the cafe. Upon receiving the
advertise message, the Auctioneer cyber-entity (on PC in the cafe) established
a relationship with the TheaterCommercial cyber-entity and invoked its service
action to purchase a commercial product (i.e., a show ticket in this case). Then,
a request for a ticket purchase is sent from the Auctioneer cyber-entity to the
TheaterCommercial cyber-entity, which in turn forwarded the request message
to the TicketSales cyber-entity (on PC in the theater) following the same se-
quence shown in Figure 4 except the Auctioneer cyber-entity played the role of
“User” in this case. The Auctioneer cyber-entity received a certificate of ticket
purchase and it provided auction service to users by selling the ticket. This ex-
periment verified that the same cyber-entity may provide different applications
by interacting with different cyber-entities.

Experiment 3. In order to examine the group formation mechanism pro-
posed in this paper, we artificially created a large number of requests on user A
(in the cafe) to purchase a show ticket and sent them to the TheaterCommer-
cial cyber-entity (on user A’s PDA in the cafe). We assumed in this experiment
that user A is satisfied with a ticket purchased from the TheaterCommercial
cyber-entity, and thus, user A always returned a positive happiness value. As
time progresses, we observed that the relationship strength from the Theater-
Commercial cyber-entity to the TicketSales cyber-entity (on PC in the theater)
as well as the relationship strength from the TicketSales cyber-entity to the
TheaterCommercial cyber-entity gradually increased. When both relationship
strengths exceeded a predetermined threshold value, a group of the Theater-
Commercial cyber-entity and the TicketSales cyber-entity was formed. Once a
group is formed, the TheaterCommercial cyber-entity, an initial point of the ap-
plication, sent an advertise message containing the group ID, and user A was
able to invoke the group service by sending a request message containing the
group ID to the TheaterCommercial cyber-entity.

Through experiments 1–3, we verified that through the mechanisms we pro-
posed in this paper, Ja-Net dynamically creates applications that reflect user
preferences and usage patterns. Several applications emerged in our experi-
ments, and only popular applications (i.e., applications that users prefer) formed
a group.



140 T. Itao et al.

5 Conclusion and Future Work

The Jack-in-the-Net (Ja-Net) Architecture is a biologically-inspired approach to
design and implement adaptive network applications. Ja-Net is inspired by and
based on the Bio-Networking Architecture project in University of California,
Irvine [11][12]. This paper described design of cyber-entities and key mechanisms
used in Ja-Net for cyber-entity interaction and relationship management. This
paper also examined and verified these key mechanisms through experiments.

As for future work, we plan to support interaction protocols between cyber-
entities to allow more complex collaboration. We also plan to investigate various
algorithms for relationship strength adjustment and partner selection in addition
to these described in this paper. Various algorithms will be empirically evaluated
for their efficiency in creation and provision of adaptive applications. Experimen-
tal study through implementation and deployment of a large scale applications
will also be conducted.

References

1. T. Suda, T. Itao, T. Nakamura and M. Matsuo, “A Network for Service Evolution
and Emergence,” Journal of IEICEJ, Invited Paper, Vol.J84-B, No.3, 2001.

2. T. Itao, T. Nakamura and M. Matsuo, T. Suda, and T. Aoyama, “Service Emer-
gence based on Relationship among Self-Organizing Entities,” Proc. of the IEEE
SAINT2002 (Best Paper), Jan., 2002.

3. N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes, “Hive: Distributed Agents
for Networking Things,” Proc. of the ASA/MA ’99, Aug., 1999.

4. Foundation for Intelligent Physical Agents, “FIPA Communicative Act Library
Specification, 2000,” available at http://www.fipa.org/

5. T. Kawamura, Y. Tahara, T. Hasegawa, A. Ohsuga and S. Honiden, “Bee-gent:
Bonding and Encapsulation Enhancement Agent Framework for Development of
Distributed Systems,” Journal of the IEICEJ, D-I, Vol. J82-D-I, No.9, 1999.

6. D. B. Lange and M. Oshima, “Programming & Deploying Mobile Agents with Java
Aglets,” Addison-Wesley, 1998.

7. Odyssey Home Page. http://www.genmagic.com/technology/odyssey.html
8. Voyager Home Page. http://www.objectspace.com/products/voyager/
9. Mole Project Home Page,

http://inf.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html
10. XML web site, http://www.xml.org
11. The BNA Project Home Page. http://netresearch.ics.uci.edu/bionet
12. Michael Wang and Tetsuya Suda, “The Bio-Networking Architecture: A Bio-

logically Inspired Approach to the Design of Scalable, Adaptive, and Surviv-
able/Available Network Applications,” Proc. of the IEEE SAINT2001, Jan., 2001.


	Introduction
	Related Work
	Design of Cyber-Entities
	Overview of the Ja-Net Architecture
	Cyber-Entity Communication
	Cyber-Entity Body
	Relationship Management

	Experiments on Dynamic Application Creation
	Application Implementation
	Experimental Results

	Conclusion and Future Work

