
On Exceptions Versus Continuations in the
Presence of State

Hayo Thielecke?

Department of Computer Science
Queen Mary and Westfield College,

University of London
London E1 4NS UK
ht@dcs.qmw.ac.uk

Abstract. We compare the expressive power of exceptions and conti-
nuations when added to a language with local state in the setting of
operational semantics. Continuations are shown to be more expressive
than exceptions because they can cause a function call to return more
than once, whereas exceptions only allow discarding part of the calling
context.

1 Introduction

Exceptions are part of nearly all modern programming languages, including ma-
instream ones like Java and C++. Continuations are present only in Scheme
and the New Jersey dialect of ML, yet are much more intensely studied by theo-
reticians and logicians. The relationship between exceptions and continuations
is not as widely understood as one would hope, partly because continuations,
though in some sense canonical, are more powerful than would at first appear,
and because the control aspect of exceptions can be obscured by intricacies of
typing and syntax.

We have recently shown that exceptions and continuations, when added to
a purely functional base language, cannot express each other [11]. That paper
affords a comparison of, and contrast between, exceptions and continuations
under controlled laboratory conditions, without any contamination from other
effects so to speak. In this sequel paper we would like to complete the picture
by comparing exceptions and continuations in the presence of state. It is known
(and one could call it “folklore”) that in the presence of storable procedures,
exceptions can be implemented by storing a current handler continuation. It is
also plausible that the more advanced uses of continuations cannot be done with
exceptions, even if state is available too. Hence we would expect a hierarchy
rather than incomparability in the stateful setting.

Formally, we compare expressiveness by means of contextual equivalence. For
instance, we showed that (λx.pxx)M ' pMM is a contextual equivalence in a
language with exceptions, whereas continuations can break it, so that exceptions
? Supported by EPSRC grant GR/L54639

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 397–411, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



398 H. Thielecke

cannot macro-express continuations. Apart from the formal result, we would
like to see the equivalences in the stateless setting of [11] as formalizing, at
least to some extent, the distinction between the dynamic (exceptions) and the
static (continuations) forms of control. The equivalences here give a different
perspective, namely of how both forms of control alter the meaning of procedure
call. With exceptions, a procedure call may discard part of its calling context;
with continuations, a procedure call may return any number of times. It could
be said that this distinction reflects the way that control manipulates the call
stack: exceptions may erase portions of the stack; continuations may in addition
copy them. However, we can make this distinction using only fairly high-level
definitions of languages with exceptions and continuations, and a comparison of
expressiveness. (Though ideally one would hope for a precise connection between
the equivalences that hold for the various forms of control and the demands they
put on storage allocation.)

The notion of expressiveness used here was already mentioned by Landin [6,
7], and formalized by Felleisen [3]. The reader should be warned that this notion
of expressiveness is very different from the one used by Lillibridge [8]. Lillibridge
was concerned with the typing of exceptions in ML, whereas we are concerned
only with the actual jumping, that is, raising and handling exceptions, and
invoking continuations, respectively. The typing of exceptions in ML “is totally
independent of the facility which allows us to raise and handle these wrapped-up
objects or packets” [1]. While the language for exceptions used here most closely
resembles ML, we do not rely on typing, so that everything is also applicable
to the catch/throw construct in LISP [14, 13], as it is essentially a spartan
exception mechanism without handlers.

The remainder of the paper is organized as follows. The main constructs and
their operational semantics are defined in Section 2. We first answer a question
from [11], by showing that local exceptions are more powerful than global ones
in Section 3. The main result of the paper is that continuations in the presence of
state are more powerful than exceptions, which is proved in Section 4. Section 5
sketches how the result here could fit into a more systematic comparison between
exceptions and continuations based on how often the current continuation can
be used. Section 6 concludes.

2 The Languages and Their Operational Semantics

We extend the language used in the companion paper [11] with state by adopting
the “state convention” from the Definition of Standard ML [9]. To avoid clutter,
the store is elided in the rules unless specified otherwise. Formally a rule

M1 ⇓ P1 . . . Mn ⇓ Pn

M ⇓ P

is taken to be shorthand for a rule in which the state changes are propagated:

s0 ` M1 ⇓ P1, s1 . . . sn−1 ` Mn ⇓ Pn, sn

s0 ` M ⇓ P, sn



On Exceptions Versus Continuations in the Presence of State 399

Table 1. Natural semantics of the functional subset

P ⇓ (λx. P1) Q ⇓ V P1[x := V ] ⇓ R

(P Q) ⇓ R

N ⇓ n

(succ N) ⇓ (n + 1)

N ⇓ 0
(pred N) ⇓ 0

N ⇓ (n + 1)
(pred N) ⇓ n

N ⇓ 0 P1 ⇓ R

(if0 N then P1 else P2) ⇓ R

N ⇓ (n + 1) P2 ⇓ R

(if0 N then P1 else P2) ⇓ R

V ⇓ V (rec f(x). P ) ⇓ (λx. P [f := (rec f(x). P )])

Table 2. Natural semantics of exceptions

N ⇓ e P ⇓ V

(raise N P ) ⇓ (raise e V )
N ⇓ e P ⇓ V ′ Q ⇓ (raise e′ V ′′) e 6= e′

(handle N P Q) ⇓ (raise e′ V ′′)

N ⇓ V P ⇓ V ′ Q ⇓ V ′′

(handle N P Q) ⇓ V ′′
N ⇓ e P ⇓ V Q ⇓ (raise e V ′) (V V ′) ⇓ R

(handle N P Q) ⇓ R

N ⇓ (raise e V )
(op N) ⇓ (raise e V )

N ⇓ (raise e V )
(if0 N then P1 else P2) ⇓ (raise e V )

P ⇓ (raise e V )
(P Q) ⇓ (raise e V )

P ⇓ V Q ⇓ (raise e V ′)
(P Q) ⇓ (raise e V ′)

N ⇓ (raise e V )
(raise N P ) ⇓ (raise e V )

N ⇓ V P ⇓ (raise e V ′)
(raise N P ) ⇓ (raise e V ′)

N ⇓ (raise e′ V )
(handle N P Q) ⇓ (raise e′ V )

N ⇓ V P ⇓ (raise e′ V ′)
(handle N P Q) ⇓ (raise e′ V ′)

Table 3. Natural semantics of state

s ` M ⇓ a, s1

s ` (!M) ⇓ s1(a), s1

s ` M ⇓ (raise e V ), s1

s ` (!M) ⇓ (raise e V ), s1

s ` M ⇓ V, s1 a /∈ dom(s1)
s ` (refM) ⇓ a, s1 + {a 7→ V }

s ` M ⇓ (raise e V ), s1

s ` (refM) ⇓ (raise e V ), s1

s ` M ⇓ a, s1 s1 ` N ⇓ V, s2

s ` (M:=N) ⇓ V, s2 + {a 7→ V }

s ` M ⇓ (raise e V ), s1

s ` (M:=N) ⇓ (raise e V ), s1

s ` M ⇓ V ′, s1 s1 ` N ⇓ (raise e V ), s2

s ` (M:=N) ⇓ (raise e V ), s2



400 H. Thielecke

Table 4. Evaluation-context semantics of continuations and state

V ::= x | n | a | λx.M | rec f(x). M | #E

E ::= [·] | (E M) | (V E) | (succ E) | (pred E) | (if0 E then M else M)

| (callcc E) | (throw E M) | (throw V E)

| (refE) | (!E) | (E:=M) | (V :=E)

s, E[(λx. P ) V ] → s, E[P [x := V ]]
s, E[succ n] → s, E[n + 1]
s, E[pred 0] → s, E[0]
s, E[pred (n + 1)] → s, E[n]
s, E[if0 0 then M else N ] → s, E[M ]
s, E[if0 (n + 1) then M else N ] → s, E[N ]
s, E[rec f(x). M ] → s, E[M [f := (λx. (rec f(x). M) x)]]
s, E[callcc (λx. P )] → s, E[P [x := (#E)]]
s, E[throw (#E′) V ] → s, E′[V ]
s, E[refV ] → s + {a 7→ V }, E[a] where a /∈ dom(s)
s, E[! a] → s, E[s(a)]
s, E[a:=V ] → s + {a 7→ V }, E[V ]

This version of exceptions (based on the “simple exceptions” of Gunter, Rémy
and Riecke [5]) differs from those in ML in that exceptions are not constructors.
The fact that exceptions in ML are constructors is relevant chiefly if one does
not want to raise them, using exn only as a universal type. For our purposes,
there is no real difference, up to an occasional η-expansion.

Definition 1. We define the following languages:

– Let λV + be defined by the operational semantics rules in Table 1.
– Let λV +exn be defined by the operational semantics rules in Tables 1 and

2.
– Let λV +state be defined by the rules in Table 3 and those in Table 1 subject

to the state convention.
– Let λV +exn+state be defined by the rules in Table 3, as well as those in

Tables 1 and 2 subject to the state convention.

The rules for state are based on those in the Definition of Standard ML [9] (rules
(99) and (100) on page 42), except that ref, ! and := are treated as special forms,
rather than identifiers. A state is a partial function from addresses to values. For
a term M , let Addr(M) be the set of addresses occurring in M . A program is a
closed term P not containing any addresses, that is Addr(P ) = ∅.

We also need a language with continuations and state:

Definition 2. Let λV +cont+state be the defined by the operational semantics
in Table 4.



On Exceptions Versus Continuations in the Presence of State 401

The small-step operational semantics of λV +cont+state with evaluation con-
texts is in the style of Felleisen [12], with store added. Both addresses a and
reified continuations #E are run-time entities that cannot appear in source pro-
grams.

Let a context C be a term with a hole not containing addresses.

Definition 3. Two terms P and P ′ are contextually equivalent, P ' P ′, iff for
all contexts C, we have ∅ ` C[P ] ⇓ n, s for some integer n, iff ∅ ` C[P ′] ⇓ n, s′.

Contextual equivalence is defined analogously for the small-step semantics. Ho-
wever, in the small-step semantics we will be concerned with breaking equiva-
lences, a strong version of which is the following:

Definition 4. Two terms P and P ′ can be separated iff there is a context C
such that: ∅, C[P ] →∗ s, n for some integer n, and ∅, C[P ′] →∗ s′, n′ with n 6= n′.

(Again, the definition for big-step is analogous.)
Local definitions and sequencing are the usual syntactic sugar:

(let x = M in N) ≡ (λx.N) M

(M ;N) ≡ (λx.N) M where x is not free in N

3 Local Exceptions Are More Powerful than Global Ones

In this section, we show that even a small amount of state affects our comparison
of continuations and exceptions. It may be surprising that local (that is, under
a λ) declarations should have state in them, but local exception declarations
generate new exception names (somewhat like gensym in LISP), and the equality
test implicit in the exception handler is enough to make this observable.

Proposition 1. There are terms that are contextually equivalent in the language
with global exceptions λV +exn, but which can be separated if local exceptions are
added.

Proof. In λV +exn, we have a contextual equivalence

(λx.pxx) M ' pMM

The proof of [11, Proposition 1] generalizes to the untyped setting. But local
exceptions can break this equivalence: see Figure 1 for a separating context. ut
From our perspective, we would maintain that the equivalence holds for the pure
control aspect of exceptions, and is broken only because local exceptions are a
somewhat hybrid notion with state in them.

Since all we need from local exceptions here is that one term evaluates to
1 and another to 2, we do not give a formal semantics for them, referring the
reader to the Definition of Standard ML [9] (for a notation closer to the one used
here, see also [5]).



402 H. Thielecke

fun single m p = let val y = m 0 in p y y end;

fun double m p = p (m 0) (m 0);

fun localnewexn d =
let

exception e
fun r d = raise e
fun h f x = ((f 0) handle e => x)

in
fn q => q r h

end;

fun separate copier =
(copier localnewexn)

(fn q1 => fn q2 =>
q1 (fn r1 => fn h1 =>

q2 (fn r2 => fn h2 =>
h1 (fn d => h2 r1 1) 2)));

separate single;
val it = 1 : int
separate double;
val it = 2 : int

Fig. 1. A separating context using local exceptions in Standard ML

The point in separating (Figure 1) is that each call of localnewexn gene-
rates a new exception. The handler in h2 can only handle the exception raised
from r1 if h2 and r1 come from the same call of localnewexn, as they do in
separate single, but not in separate double.

Local exceptions are relevant for us for two reasons: first, they make the equi-
valence for exceptions used in [11] inapplicable; second, they can to some extent
approximate downward continuations. The example in Figure 1 does perhaps not
witness expressive power in any intuitive sense. A more practical example may be
the following: can one define a function f that passes to some unknown function
g a function h that when called jumps back into f (assuming h is called before
the call of f has terminated, because otherwise this would be beyond excepti-
ons). With downward continuations, one can easily do that: in λV +cont+state,
we would write f as λg.callcc(λk.g (λx.throw k x)). Even such pedestrian con-
trol constructs as goto in ALGOL and longjmp() in C could do this. Yet with
the simple version of exceptions we have in λV +exn, a handler in g may catch
whatever exception h wanted to use to jump into f. With local exceptions howe-
ver, f could declare a local exception for h to raise, which would thus be distinct
from any that g could handle. On the other hand, language designers specifically
chose to equip g so that it can intercept jumps from h to f: in ML even local



On Exceptions Versus Continuations in the Presence of State 403

exceptions can be handled by using a variable (or just a wildcard) pattern in the
handler, while LISP provides unwind-protect.

4 Exceptions Cannot Make Functions Return Twice

Encodings of exceptions in terms of stored continuations have been known for
some time, and can probably be regarded as folklore [5]; see also Reynolds’s
textbook [10]. It would still be worthwhile to analyze encodings of the various
notions of exceptions in more detail. But the fact that such an encoding is pos-
sible, and that consequently continuations and state are at least as expressive
as exceptions and state, will be treated as a known result here. We will strengt-
hen it by showing that continuations in the presence of state are strictly more
expressive than exceptions.

Define terms R1 and R2 in λV +state by

Rj ≡ λz.((λx.λy.(z 0; x:= !y; y:=j; !x)) (ref 0) (ref 0))

Informally, the idea is that j is hidden inside Rj . As the variables x and y are
local, the only way to observe j would be to run the assignments after the call
to z twice, so that j is first moved into y, and then x, whose value is returned
at the end. With exceptions, that is impossible.

The proof uses a variant of the technique used for exceptions in [11], exten-
ded to deal with the store. First we define a relation needed for the induction
hypothesis:

Definition 5. We define relations ∼ and ∼A, where A is a set of addresses, as
follows:

– on terms, let ∼ be the least congruence such that M ∼ M and Rj ∼ Rj′ for
any integers j and j′;

– for stores, let s ∼A s′ iff A ⊆ dom(s) = dom(s′) and for all a ∈ A, s(a) ∼
s′(a) and Addr(s(a)) ⊆ A;

– for stores together with terms, let s, M ∼A s′, M ′ iff s ∼A s′ and M ∼ M ′,
and also Addr(M) ⊆ A.

Intuitively, s, M ∼A s′, M ′ implies that M in store s and M ′ in store s′ are
linked in lockstep; but the stores may differ in addresses outside A, which are
inaccessible from M .

Lemma 1. Assume s, P ∼A s′, P ′ and s ` P ⇓ Q, s1. Then there exist a term
Q′, a store s′

1 and a set of addresses A1 such that

– s′ ` P ′ ⇓ Q′, s′
1;

– s1, Q ∼A1 s′
1, Q

′;
– A ⊆ A1 and (dom(s) \ A) ⊆ (dom(s1) \ A1);
– for all addresses a ∈ dom(s) \ A, the stores satisfy s1(a) = s(a) and s′

1(a) =
s′(a).



404 H. Thielecke

Proof. Proof by induction on the derivation of s ` P ⇓ Q, s1. We assume s, P ∼A

s′, P ′ and proceed by cases on the last rule applied in the derivation.

Case P ≡ MN and s ` MN ⇓ Q, s4. The last rule is

s ` M ⇓ λz.M1, s1 s1 ` N ⇓ V2, s2 s2 ` M1[z := V2] ⇓ Q, s4

s ` M N ⇓ Q, s4

As MN = P ∼ P ′, P ′ must be of the form M ′N ′. By the induction hypo-
thesis applied to s ` M ⇓ (λz.M1), s1, we have s′ ` M ′ ⇓ (λz.M ′

1), s
′
1, with

s1, λz.M1 ∼A1 s′
1, λz.M ′

1.
There are two possible cases implied by λz.M1 ∼ λz.M ′

1: either M1 ∼ M ′
1;

or λz.M1 = Rj and λz.M ′
1 = Rj′ . In the first case, the claim follows by

repeatedly applying the induction hypothesis. So suppose the second, that
λz.M1 = Rj and λz.M ′

1 = Rj′ . We apply the induction hypothesis, giving
us s′

1, N
′ ⇓ V ′

2 , s′
2 with s2, V2 ∼A2 s′

2, V
′
2 . Now

M1[z := V2] = (λx.λy.(V2 0; x:= !y; y:=j; !x)) (ref 0) (ref 0)

This term will allocate two new addresses, so let a, b /∈ dom(s2). Then s2 `
M1[z := V2] ⇓ Q, s4 iff

s2 + {a 7→ 0, b 7→ 0} ` V2 0; a:= !b; b:=j; !a ⇓ Q, s4

There are two possible cases, depending on whether V2 0 in store s2 + {a 7→
0, b 7→ 0} raises an exception or not. First, suppose it does, that is,

s2 + {a 7→ 0, b 7→ 0} ` V2 0 ⇓ raise e V3, s3 (1)

As s2 + {a 7→ 0, b 7→ 0}, V2 0 ∼A2 s2 + {a 7→ 0, b 7→ 0}, V ′
2 0, the induction

hypothesis implies

s′
2 + {a 7→ 0, b 7→ 0} ` V ′

2 0 ⇓ raise e V ′
3 , s′

3

with raise e V3, s3 ∼A2 raise e V ′
3 , s′

3. The exception propagates, devouring
the difference between j and j′ in this call of Rj , more technically:

s2 + {a 7→ 0, b 7→ 0} ` V2 0 ⇓ raise e V3, s3

s2 + {a 7→ 0, b 7→ 0} ` V2 0; a:= !b ⇓ raise e V3, s3

s2 + {a 7→ 0, b 7→ 0} ` V2 0; a:= !b; b:=j ⇓ raise e V3, s3

s2 + {a 7→ 0, b 7→ 0} ` V2 0; a:= !b; b:=j; !a ⇓ raise e V3, s3

That is, s2 +{a 7→ 0, b 7→ 0} ` M1[z := V2] ⇓ raise e V3, s3, hence the whole
call raises an exception

s2 + {a 7→ 0, b 7→ 0} ` MN ⇓ raise e V3, s3 (2)

Analogously for V ′
2 . Letting Q = raise e V3 and s4 = s3, we are done for

this subcase. Now assume V2 0 does not raise an exception, so that there is
a value V3 returned by the call:

s2 + {a 7→ 0, b 7→ 0} ` V2 0 ⇓ V3, s3 (3)



On Exceptions Versus Continuations in the Presence of State 405

We apply the induction hypothesis to the call V2 0, relying on the fact that V2
can only reach addresses in A2, so that it cannot modify the newly allocated
a and b:

s2 + {a 7→ 0, b 7→ 0}, V2 0 ∼A2 s′
2 + {a 7→ 0, b 7→ 0}, V ′

2 0

The induction hypothesis thus gives us s′
2 + {a 7→ 0, b 7→ 0} ` V ′

2 0 ⇓ V ′
3 , s′

3,
and s3, V3 ∼A3 s′

3, V
′
3 . As b ∈ dom(s2 +{a 7→ 0, b 7→ 0}), but b /∈ A2, we have

s3(b) = 0, and s′
3(b) = 0, and also b /∈ A3. Putting the pieces together, we

derive:

s2 + {a 7→ 0, b 7→ 0} ` (V2 0; a:= !b; b:=j; !a) ⇓ 0, s3 + {b 7→ j}
hence

s2 + {a 7→ 0, b 7→ 0}, (λx.λy.(V2 0; x:= !y; y:=j; !x)) (ref 0) (ref 0)
⇓ 0, s3 + {b 7→ j}

Analogously

s′
2 + {a 7→ 0, b 7→ 0} ` (V ′

2 0; a:= !b; b:=j′; !a) ⇓ 0, s′
3 + {b 7→ j′}

hence

s′
2 + {a 7→ 0, b 7→ 0}, (λx.λy.(V ′

2 0; x:= !y; y:=j′; !x)) (ref 0) (ref 0)
⇓ 0, s′

3 + {b 7→ j′}

Thus

s ` MN ⇓ 0, s3 + {b 7→ j} (4)

and s′ ` M ′N ′ ⇓ 0, s3+{b 7→ j′} with s3+{b 7→ j}, 0 ∼A3 s′
3+{b 7→ j′}, 0, as

required. This is the linchpin of the whole proof: b holds j or j′, respectively;
but that is of no consequence, because b, lying outside of A3, is garbage.

Case P ≡ !M and s ` !M ⇓ s1(a), s1. Hence s ` M ⇓ a, s1. As !M ∼ P ′, P ′

must be of the form !M ′ with M ∼ M ′. By the induction hypothesis, s′ `
M ′ ⇓ Q′, s′

1 with s1, a ∼A1 s′
1, Q

′, and Addr(s(a)) ⊆ A1. As this implies
a ∼ Q′, we have a = Q′, so that s′ ` M ′ ⇓ a, s′

1, which implies s′ ` !M ′ ⇓
s′
1(a), s′

1. As a = Addr(Q′) ⊆ A1, s1(a) ∼ s′
1(a). Thus s1, s1(a) ∼A1 s′

1, s
′
1(a),

as required.
Case P ≡ refM and s ` refM ⇓ a, s1 + {a 7→ V }. Hence s ` M ⇓ V, s1 with

a /∈ dom(s1). As refM ∼ P ′, P ′ must be of the form refM ′ with M ∼ M ′.
By the induction hypothesis, s′ ` M ′ ⇓ V ′, s′

1, with s1, V ∼A1 s′
1, V

′ where
A ⊆ A1. Thus s′ ` refM ′ ⇓ a, s′

1 + {a 7→ V ′}. (We can pick the same a,
because a /∈ dom(s′

1) = dom(s1).) Thus, s′ ` refM ′ ⇓ a, s′
1 +{a 7→ V ′} with

s1 + {a 7→ V }, a ∼A1∪{a} s′
1 + {a 7→ V ′}, a

Furthermore, A ⊆ A1∪{a} and dom(s)\A ⊆ dom(s1+{a 7→ V })\(A1 ∪ {a}).



406 H. Thielecke

Case P ≡ (M:=N) and s ` M:=N ⇓ V, s2 + {a 7→ V }. Hence s ` M ⇓ a, s1 and
s1 ` N ⇓ V, s2. As M:=N ∼ P ′, P ′ must be of the form M ′:=N ′, with
M ∼ M ′ and N ∼ N ′. Applying the induction hypothesis to s ` M ⇓ a, s1
gives us Q′ and s′

1 such that s′ ` M ′ ⇓ Q′, s′
1 and s1, a ∼A1 s′

1, Q
′. So a ∼ Q′,

which means Q′ = a. Applying the induction hypothesis to s1 ` N ⇓ V, s2
and s1, N ∼A1 s′

1, N
′ gives us V ′ and s′

2 such that s2, V ∼A2 s′
2, V

′. Thus
s′ ` M ′:=N ′ ⇓ V ′, s′

2 + {a 7→ V ′} with

s2 + {a 7→ V }, V ∼A2 s′
2 + {a 7→ V ′}, V ′

as required. Assume b is an address with b ∈ dom(s) \ A. Then b /∈ A2, and
s2(b) = s1(b) = s(b). Because a ∈ A2, we have b 6= a, so that the store
s2 + {a 7→ V } still maps b to s(b).

Otherwise. The last rule in the derivation must be of the form

s ` P1 ⇓ Q1, s1 . . . sn−1 ` Pn ⇓ Qn, sn

s ` P ⇓ Q, sn

Observe that the Pi in the antecedents are the immediate subterms of the P
in the conclusion, and that conversely the Q in the conclusion is assembled
from subterms of P and some of the Qi in the antecedents. Hence:

Addr(P1) ∪ . . . ∪ Addr(Pn) ⊆ Addr(P )
Addr(Q) ⊆ Addr(P ) ∪ Addr(Q1) ∪ . . . ∪ Addr(Qn)

Because s, P ∼A s′, P ′, we have s ∼ s′ and P ∼ P ′. The case P ≡ Rj is
trivial; otherwise we have P ∼ P ′ due to congruence, so there are P ′

1, . . . , P
′
n

with Pi ∼ P ′
i . Now s, P1 ∼A s′, P ′

1 (because Addr(P1) ⊆ Addr(P ) ⊆ A). By
the induction hypothesis, there exist Q′

1, s′
1 and A1 such that s1, Q1 ∼A1

s′
1, Q

′
1 and A ⊆ A1. Hence s1, P2 ∼A1 s′

1, P
′
2, so that we can apply the induc-

tion hypothesis again to s1 ` P2 ⇓ Q2, s2, and so on for all the antecedents.
Finally, let Q′ be built up from the Q′

i in the same way as Q is built up from
the Qi. By congruence, we have Q ∼ Q′. As sn ∼ s′

n and Addr(Q) ⊆ An, we
have sn, Q ∼An

s′
n, Q′, as required. ut

We have thus shown that terms containing R1 and R2, respectively, proceed in
lockstep. This implies that the Rj are contextually equivalent:

Lemma 2. R1 and R2 are contextually equivalent in λV +exn+state.

Proof. Let C be a context. Suppose ∅ ` C[R1] ⇓ n, s for some integer n. We
need to show that C[R2] also reduces to n. First, note that because ∼ on terms
is defined to be a congruence with R1 ∼ R2, we have C[R1] ∼ C[R2]. As neither
of these terms contains any addresses, they are related in the empty store with
respect to the empty set of addresses, that is ∅, C[R1] ∼∅ ∅, C[R2]. By Lemma 1,
we have ∅ ` C[R2] ⇓ Q′, s′, for some s′, Q′ and A such that s, n ∼A s′, Q′. This
implies n ∼ Q′, so that n = Q′. The argument for showing that ∅ ` C[R2] ⇓ n, s
implies that C[R1] in the empty store also reduces to n is symmetric. ut



On Exceptions Versus Continuations in the Presence of State 407

fun R j z = (fn x => fn y => (z 0; x := !y; y := j; !x))(ref 0)(ref 0);

fun C Rj =
callcc(fn top =>

let
val c = ref 0
val s = ref top
val d = Rj (fn p => callcc(fn r => (s := r; 0)))

in
(c := !c + 1;
if !c = 2 then d else throw (!s) 0)

end);

C(R 1);
val it = 1 : int
C(R 2);
val it = 2 : int

Fig. 2. A separating context using continuations and state in SML/NJ

Note that the proof would still go through if we changed the notion of observation
to termination, or if we restricted to the typed subset.

It remains to show that the two terms that are indistinguishable with ex-
ceptions and state can be separated with continuations and state. To separate,
the argument to Rj should save its continuation, then restart that continuation
once, so the assignments get evaluated twice, thereby assigning j to x, and thus
making the concealed j visible to the context.

Lemma 3. In λV +cont+state, R1 and R2 can be separated: there is a context
C[·] such that

∅, C[R1] →∗ s1, 1
∅, C[R2] →∗ s′

1, 2

This is actually strictly stronger than R1 and R2 not being contextually equiva-
lent (and it is machine-checkable by evaluation). We omit the lengthy calculation
here, but see Figure 2 for the separating context written in Standard ML of New
Jersey. From Lemmas 2 and 3, we conclude our main result:

Proposition 2. There are λV +state terms that are contextually equivalent in
λV +exn+state, but which can be separated in λV +cont+state.

Combined with the known encodings of exceptions in terms of continuations and
state, Proposition 2 means that continuations in the presence of state are strictly
more expressive than exceptions.



408 H. Thielecke

5 Exceptions Can Discard the Calling Context

We have established that continuations are more expressive than exceptions by
showing how they affect functions calls: using continuations, a call can return
more than once. In this section, we aim at an analogous result for showing how
exceptions give rise to added power compared to a language without control:
using exceptions, a function call may discard part of the calling context. To put
it facetiously as a contest between a term and its context, in the previous section
we concocted a calling context whose main ingredient

. . . z 0;x:=!y; y:=j; !x . . .

was chosen such that something good (for separating) would happen if only the
callee z could return twice. Now we need a calling context in which something bad
happens if the callee returns at all. One such context is given by sequencing with
divergence. (The callee could avoid ever returning to the divergence by diverging
itself, but for separating that would defeat the purpose.) More formally, there are
terms that are contextually equivalent in the language with state but no control,
and which can be separated in the language with exceptions and state (in fact,
in any language with control). Let Ω be the diverging term ((rec f(x). f x) 0).
The recursion construct is used here so that everything generalizes to the typed
subset of λV +state; if we are only concerned with the untyped language, we
could just as well put Ω = (λx.xx)(λx.xx). Analogously to Lemma 2, we have

Lemma 4. (M ;Ω) and (N ;Ω) are contextually equivalent in λV +state.

Proof. (Sketch) Let ∼ be the least congruence such that M ∼ M and M ;Ω ∼
N ;Ω for any M and N . Let ∼ be defined on states pointwise, and let s, P ∼ s′, P ′

iff s ∼ s′ and P ∼ P ′. As in Lemma 1, we need to show that if s, P ∼ s′, P ′

and s ` P ⇓ Q, s1, there is a Q such that s′ ` P ′ ⇓ Q′, s′
1 with s1, Q ∼ s′

1, Q
′.

The only non-trivial case if P ≡ (M ;Ω) and P ′ ≡ (N ;Ω). Suppose one of them
reduces to integer. If we do not have control constructs, that can only be the case
if Ω reduces to a value. But here is no V such that s, Ω ⇓ V, s1. (For suppose
they were: there would be a derivation of minimal height, which would have to
contain a smaller one.) ut
The proof is simpler than for exceptions because when we relate two terms
(M ;Ω) and (N ;Ω) it does not matter what M and N do, or what storage they
allocate, as the Ω prevents any observation.

Lemma 5. (M ;Ω) and (N ;Ω) can be separated in λV +exn+state.

Proof. Let

M = raise e 1
N = raise e 2
C = handle e [·] (λx.x)

Then we have ∅ ` C[M ;Ω] ⇓ 1, ∅ and ∅ ` C[N ;Ω] ⇓ 2, ∅ in λV +exn+state. ut



On Exceptions Versus Continuations in the Presence of State 409

Proposition 3. There are two terms in λV + that are contextually equivalent
in λV +state, but which can be separated in λV +exn+state.

So far we have used operational semantics and contextual equivalence as
a kind of probe to observe what control constructs can and cannot do. The
astute reader may however have begun to suspect what the preoccupation with
discarding the current continuation, or using it more than once, is driving at.
In the remainder of this section, we sketch how the earlier material fits in with
linearity in the setting of continuation semantics.

It is evident that in the continuation semantics of a language without control
operators the current continuation is used in a linear way. For the function type
we have

[[A → B]] = ([[B]] → Ans) ( ([[A]] → Ans)

In a language with callcc, the ( would have to be replaced by a →, because
the current continuation could be discarded or copied. Domain-theoretically, the
linear arrow ( can be interpreted as strict function space. So in the case of
M ;Ω, the meaning of a looping term is [[Ω]] =⊥, and because

[[M ]] : Env → ([[B]] → Ans) ( Ans

is strict in its continuation argument, it preserves ⊥. So it is immediate that

[[M ;Ω]] = ⊥ = [[N ;Ω]]

Moreover, this argument is robust in the sense that it works the same in the
presence of state. In the semantics of a language with state, expression conti-
nuations take the store as an additional argument, so that the meaning of M is
now:

[[M ]] : Env → Store → ([[B]] → Store → Ans) ( Ans

This is still strict in its continuation argument, mapping the divergent continua-
tion ⊥ to ⊥.

All this requires little more than linear typechecking of the CPS transform.
What seems encouraging, however, is that exceptions begin to fit into the same
framework. For a language with exceptions or dynamic catch, the continuation
semantics passes a current handler continuation. Here the current continuation
and the handler continuation together are subject to linearity (this linearity is
joint work in progress with Peter O’Hearn and Uday Reddy, which may appear
elsewhere). Assuming that all exceptions are injected into some type E (like exn
in ML), the linearity is seen most clearly in the function type:

[[A → B]] = (([[B]] → Ans)&([[E]] → Ans)) ( ([[A]] → Ans)

(Note that this linear use of non-linear continuations is quite different from
“linear continuations” [4]). Again the linearity would remain the same if state
were added to the continuations. The current continuation can be discarded in
favour of the handler, but never used twice. Exceptions thus occupy a middle



410 H. Thielecke

ground between no control operators (linear usage of the current continuation)
and first-class continuations (intuitionistic, that is unrestricted, usage). For this
reason we regard Lemma 2, which confirms that with exceptions no function call
can return twice, as more than a random equivalence: it seems to point towards
deeper structural properties of control made observable by the presence of state
(in that the ref construct allowed us to “stamp” continuations uniquely, and
then to count their usage with assignments).

6 Conclusions and Directions for Further Research

It is striking how sensitive the comparison between exceptions and continuations
is to the chosen measure of expressiveness: in Lillibridge’s terms, “exceptions are
strictly more powerful” than continuations [8]; in terms of contextual equivalence
and in the absence of state they are incomparable [11]; while in the presence of
state, continuations are strictly more expressive than exceptions. The last of
these is perhaps the least surprising because closest to programming intuition.

Each of these notions is to some extent brittle. For instance, comparisons of
expressiveness based on the ability to encode recursion are inapplicable if the
language under consideration already has recursion—and in the presence of state
(including storable procedures) that is inevitable, as one can use Landin’s tech-
nique of “tying a knot in the store” to define the “imperative Y-combinator”.
On the other hand, the technique of witnessing expressive power by breaking
equivalences, while more widely applicable, is not completely robust either, if
other effects are added to the language that already break the equivalence:
compare Proposition 1 and [11, Proposition 1]. (Equivalences may be broken
for uninteresting as well as interesting reasons.) Furthermore, while we would
claim that Proposition 2 confirms and backs up programming intuition, it can
hardly be said to express the difference between exceptions and continuations.
A type system for the restricted (linear or affine) use of the current continua-
tion would come much closer to achieving this. Ideally, such a linear typing for
continuation-passing style together with typed equivalences of the target langu-
age should entail the equivalences considered here; we hope that our results will
give such a unified treatment something to aim for. It has been suggested to us
that “of course exceptions are weaker—they’re on the stack”. Some substance
might conceivably be added to such statements if it could be shown that linearity
in the use of continuations by dynamic control constructs is what allows control
information to be stack-allocated (see also [2, 15]).

Acknowledgements

Thanks to Jon Riecke, Peter O’Hearn and Josh Berdine.



On Exceptions Versus Continuations in the Presence of State 411

References

[1] Andrew Appel, David MacQueen, Robin Milner, and Mads Tofte. Unifying ex-
ceptions with constructors in Standard ML. Technical Report ECS LFCS 88 55,
Laboratory for Foundations of Computer Science, University of Edinburgh, June
1988.

[2] Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. Representing control in
the presence of one-shot continuations. ACM SIGPLAN Notices, 31(5):99–107,
May 1996.

[3] Matthias Felleisen. On the expressive power of programming languages. In Science
of Computer Programming, volume 17, pages 35–75, 1991.

[4] Andrzej Filinski. Linear continuations. In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Programming Languages, 1992.

[5] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of excep-
tions and control in ML-like languages. In Proceedings of the Seventh Interna-
tional Conference on Functional Programming Languages and Computer Archi-
tecture (FPCA’95), pages 12–23, La Jolla, California, June 25–28, 1995. ACM
SIGPLAN/SIGARCH and IFIP WG2.8, ACM Press.

[6] Peter J. Landin. A generalization of jumps and labels. Report, UNIVAC Systems
Programming Research, August 1965.

[7] Peter J. Landin. A generalization of jumps and labels. Higher-Order and Symbolic
Computation, 11(2), 1998. Reprint of [6].

[8] Mark Lillibridge. Exceptions are strictly more powerful than Call/CC. Technical
Report CMU-CS-95-178, Carnegie Mellon University, July 1995.

[9] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997.

[10] John C. Reynolds. Theories of Programming Languages. Cambridge University
Press, 1998.

[11] Jon G. Riecke and Hayo Thielecke. Typed exceptions and continuations cannot
macro-express each other. In J̌ıŕı Wiedermann, Peter van Emde Boas, and Mogens
Nielsen, editors, Procedings ICALP ’99, volume 1644 of LNCS, pages 635–644.
Springer Verlag, 1999.

[12] Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II: full ab-
straction for models of control. In M. Wand, editor, Lisp and Functional Pro-
gramming. ACM, 1990.

[13] Guy L. Steele. Common Lisp: the Language. Digital Press, 1990.
[14] Guy L. Steele and Richard P. Gabriel. The evolution of Lisp. In Richard L. Wexel-

blat, editor, Proceedings of the Conference on History of Programming Languages,
volume 28(3) of ACM Sigplan Notices, pages 231–270, New York, NY, USA, April
1993. ACM Press.

[15] Mitchell Wand and Dino P. Oliva. Proving the correctness of storage represen-
tations. In 1992 ACM Conferenc on Lisp and Functional Programming, pages
151–160. ACM, ACM, August 1992.


	Introduction
	The Languages and Their Operational Semantics
	Local Exceptions Are More Powerful than Global Ones
	Exceptions Cannot Make Functions Return Twice
	Exceptions Can Discard the Calling Context
	Conclusions and Directions for Further Research

