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1 Introduction

It is commonly observed that the continued exponential growth in the capacity of
fundamental computing resources — processing power, communication bandwidth,
and storage — is working a revolution in the capabilities and practices of the research
community. It has become increasingly evident that the most revolutionary
applications of this superabundance use resource sharing to enable new possibilities
for collaboration and mutual benefit. Over the past 30 years, two basic models of
resource sharing with different design goals have emerged. The differences between
these two approaches, which we distinguish as the Computer Center and the Internet
models, tend to generate divergent opportunity spaces, and it therefore becomes
important to explore the alternative choices they present as we plan for and develop
an information infrastructure for the scientific community in the next decade.
Interoperability and scalability are necessary design goals for distributed systems
based on resource sharing, but the two models we consider differ in the positions they
take along the continuum between total control and complete openness. That
difference affects the tradeoffs they tend to make in fulfilling their other design goals.
The Computer Center model, which came to maturity with the NSF Supercomputer
Centers of the 80s and 90s, was developed in order to allow scarce and extremely
valuable resources to be shared by a select community in an environment where
security and accountability are major concerns. The form of sharing it implements is
necessarily highly controlled — authentication and access control are its characteristic
design issues. In the last few years this approach has given rise to a resource sharing
paradigm known as information technology “Grids.” Grids are designed to flexibly
aggregate various types of highly distributed resources into unified platforms on
which a wide range of “virtual organizations” can build. [11] By contrast, the Internet
paradigm, which was developed over the same 30-year period, seeks to share network
bandwidth for the purpose of universal communication among an international
community of indefinite size. It uses lightweight allocation of network links via
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packet routing in a public infrastructure to create a system that is designed to be open
and easy to use, both in the sense of giving easy access to a basic set of network
services and of allowing easy addition of privately provisioned resources to the public
infrastructure. While admission and accounting policies are difficult to implement in
this model, the power of the universality and generality of the resource sharing it
implements is undeniable.

Though experience with the Internet suggests that the transformative power of
information technology is at its highest when the ease and openness of resource
sharing is at its greatest, the Computer Center model is experiencing a rebirth in the
Grid while the Internet paradigm has yet to be applied to any resource other than
communication bandwidth. But we believe that the Internet model can be applied to
other kinds of resources, and that, with the current Internet and the Web as a
foundation, such an application can lead to similarly powerful results. The storage
technology we have developed called the Internet Backplane Protocol (IBP) is
designed to test this hypothesis and explore its implications. IBP is our primary tool
in the study of logistical networking, a field motivated by viewing data transmission
and storage within a unified framework. In this paper we explain the way in which
IBP applies the Internet model to storage, describe the current API and the software
that implements it, lay out the design issues which we are working to address, and
finally characterize the future directions that this work will take.

2 Background: The Internet Protocol and the Internet
Backplane Protocol

The Internet Backplane Protocol is a mechanism developed for the purpose of
sharing storage resources across networks ranging from rack-mounted clusters in a
single machine room to global networks. [4, 6, 15] To approximate the openness of
the Internet paradigm for the case of storage, the design of IBP parallels key aspects
of the design of IP, in particular IP datagram delivery. This service is based on packet
delivery at the link level, but with more powerful and abstract features that allow it to
scale globally. Its leading feature is the independence of IP datagrams from the
attributes of the particular link layer, which is established as follows:

3 Aggregation of link layer packets masks its limits on packet size;

4  Fault detection with a single, simple failure model (faulty datagrams are
dropped) masks the variety of different failure modes;

5 Global addressing masks the difference between local area network addressing
schemes and masks the local network’s reconfiguration.

This higher level of abstraction allows a uniform IP model to be applied to network

resources globally, and it is crucial to creating the most important difference

between link layer packet delivery and IP datagram service. Namely,

Any participant in a routed IP network can make use of any link layer
connection in the network regardless of who owns it. Routers aggregate
individual link layer connections to create a global communication service.
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This IP-based aggregation of locally provisioned, link layer resources for the
common purpose of universal connectivity constitutes the form of sharing that has
made the Internet the foundation for a global information infrastructure.

IBP is designed to enable the sharing of storage resources within a community in
much the same manner. Just as IP is a more abstract service based on link-layer
datagram delivery, IBP is a more abstract service based on blocks of data (on disk,
tape or other media) that are managed as “byte arrays.” The independence of IBP byte
arrays from the attributes of the particular access layer (which is our term for storage
service at the local level) is established as follows:

6 Aggregation of access layer blocks masks the fixed block size;

7 Fault detection with a very simple failure model (faulty byte arrays are
discarded) masks the variety of different failure modes;

8 Global addressing based on global IP addresses masks the difference between
access layer addressing schemes.

This higher level of abstraction allows a uniform IBP model to be applied to
storage resources globally, and this is essential to creating the most important
difference between access layer block storage and IBP byte array service:

Any participant in an IBP network can make use of any access layer storage
resource in the network regardless of who owns it. The use of IP networking to
access IBP storage resources creates a global storage service.

Whatever the strengths of this application of the IP paradigm, however, it leads
directly to two problems. First, in the case of storage, the chronic vulnerability of IP
networks to Denial of Use (DoU) attacks is greatly amplified. The free sharing of
communication within a routed IP network leaves every local network open to being
overwhelmed by traffic from the wide area network, and consequently open to the
unfortunate possibility of DoU from the network. While DoU attacks in the Internet
can be detected and corrected, they cannot be effectively avoided. Yet this problem
is not debilitating for two reasons: on the one hand, each datagram sent over a link
uses only a tiny portion of the capacity of that link, so that DoU attacks require
constant sending from multiple sources; on the other hand, monopolizing remote
communication resources cannot profit the attacker in any way - except, of course,
economic side-effects of attacking a competitor’s resource. Unfortunately neither of
these factors hold true for access layer storage resources. Once a data block is written
to a storage medium, it occupies that portion of the medium until it is deallocated, so
no constant sending is required. Moreover it is clear that monopolizing remote
storage resources can be very profitable for an attacker and his applications.

The second problem with sharing storage network-style is that the usual definition
of a storage service is based on processor-attached storage, and so it includes strong
semantics (near-perfect reliability and availability) that are difficult to implement in
the wide area network. Even in “storage area” or local area networks, these strong
semantics can be difficult to implement and are a common cause of error conditions.
When extended to the wide area, it becomes impossible to support such strong
guarantees for storage access.

We have addressed both of these issues through special characteristics of the way
IBP allocates storage:
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9  Allocations of storage in IBP can be time limited. When the lease on an
allocation expires, the storage resource can be reused and all data structures
associated with it can be deleted. An IBP allocation can be refused by a storage
resource in response to over-allocation, much as routers can drop packets, and
such “admission decisions” can be based on both size and duration. Forcing
time limits puts transience into storage allocation, giving it some of the fluidity of
datagram delivery.

10 The semantics of IBP storage allocation are weaker than the typical storage
service. Chosen to model storage accessed over the network, it is assumed that an
IBP storage resource can be transiently unavailable. Since the user of remote
storage resources is depending on so many uncontrolled remote variables, it may
be necessary to assume that storage can be permanently lost. Thus, IBP is a
“best effort” storage service. To encourage the sharing of idle resources, IBP
even supports “volatile” storage allocation semantics, where allocated storage
can be revoked at any time. In all cases such weak semantics mean that the level
of service must be characterized statistically.

Because of IBP’s limitations on the size and duration of allocation and its weak

allocation semantics, IBP does not directly implement reliable storage abstractions

such as conventional files. Instead these must be built on top of IBP using techniques
such as redundant storage, much as TCP builds on IP’s unreliable datagram delivery
in order to provide reliable transport.

3 The IBP Service, Client API, and Current Software

IBP storage resources are managed by “depots,” or servers, on which clients perform
remote storage operations. The IBP client calls fall into three different groups:

Table 1. IBP API Calls

Storage Management Data Transfer Depot Management
IBP_allocate IBP_store, IBP_load IBP_status
IBP_manage IBP_copy, IBP_mcopy

IBP_allocate is used to allocate a byte array at an IBP depot, specifying the size,
duration and other attributes. A chief design feature is the use of capabilities
(cryptographically secure passwords). A successful IBP_allocate returns a set of
three capabilities: one for reading, one for writing, and one for managing the
allocated byte array. The IBP_manage call allows the client to manipulate the read
and the write reference counter for a specific capability, probe the capability itself or
change some of its characteristics. The IBP_store and IBP_load calls are two
blocking calls that store and load the data on a particular capability; while with the
IBP_status call it’s possible to query a depot about its status and to change some
parameters. The IBP_copy and IBP_mcopy calls provide data transfer, and will be
analyzed in more depth in section 4.
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Prototype versions of IBP were available since 1999. Version 1.0 was released in
March 2001, and the current release of the code (1.1.1), developed in C, is available
for free download at our web site (http://loci.cs.utk.edu/ibp/). It has been successfully
tested under Linux, Solaris, AIX, DEC and Apple OS X machines. A Windows
version also exists, for both client and depot, and a Java client library is also
available.

4 The Data Mover

Since the primary intent of IBP is to provide a common abstraction of storage, it is
arguable that third party transfer of data between depots is unnecessary. Indeed, it is
logically possible to build an external service for moving data between depots that
access IBP allocations using only the 1Bp 1o0ad and IBP_store calls; however,
such a service would have to act as a proxy for clients, and this immediately raises
trust and performance concerns. The IBP_copy and IBP_mcopy data movement
calls were provided in order to allow a simple implementation that avoids these
concerns, even if software architectures based on external data movement operations
are still of great interest to us.

The intent of the basic IBP_copy call is to provide access to a simple data
transfer over a TCP stream. This call is built in the IBP depot itself, to offer a simple
solution for data movement; to achieve the transfer, the depot that receives the call is
acting as a client doing an IBP_store on the target depot.

IBP_mcopy is a more general facility, designed to provide access to operations
that range from simple variants of basic TCP-based data transfer to highly complex
protocols using multicast and real-time adaptation of the transmission protocol,
depending of the nature of the underlying backbone and of traffic concerns. In all
cases, the caller has the capacity to determine the appropriateness of the operation to
the depot’s network environment, and to select what he believes the best data transfer
strategy. A similar control is given over error recovery.

The data mover is a plug-in module to an IBP depot that is activated either by an
IBP_mcopy call or by an IBP_datamover call. The second call is not an API
call, but an internal call made b the sending Data Mover. The sender depot is
responsible for invoking a Data Mover plug-in on the receiving depot, and it
accomplishes this by forking a data mover control process that sends an
IBP_datamover request, causing the receiving depot to fork a symmetric data
mover control. Sending and receiving control processes then exec the appropriate
Data Mover plug-ins for the requested operation and these cooperate to perform the
operation, then the plug-in at the sending depot replies to the client and then both
plug-ins terminate.

The Data Mover architecture can support a wide variety of operations, including:
Point-to-multipoint through simple iterated TCP unicast transfers
Point-to-multipoint through simultaneous threaded TCP unicast transfers.
Unreliable UDP point-to-mulitpoint utilizing native IP mulitcast

Reliable point-to-multipoint utilizing native IP multicast

S Ui A WD

Fast, reliable UDP data transfer over private network links [5]
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Experimental results

The design goal of the Data Mover plug-in and the function IBP_mcopy is to provide
an optimized point to multipoint transfer tool, as well as a support for different
protocols and methods for data transfer. In order to visualize and compare the
behavior of the different methods to perform the data movement, two main
experiments were completed under a specific environment where each of the nodes
involved were interconnected with a stable, fast link within a local area network
(LAN).  The subsections 4.1.1 and 4.1.2 describe these experiments and their
corresponding results, as well as a comparison of their performance and possible
optimizations, using the Data Mover module, with the commonly used methods, such
as IBP_copy and TCP respectively.

Point to Multipoint TCP

This subsection concentrates in comparing the transfer of different amounts of data
using multiple simultaneous point to point TCP data transfers implemented at user
level using threads, and using a single point to multipoint implementation of the Data
Mover to transfer the same amounts of data.

As figure 2 reveals the latter approach shows an improvement in the overall
transfer time. This experiment consisted of transferring several pieces of data of
different sizes from one to various numbers of nodes.

Comparison between Simultaneous point2point and single
point2multipoint Data M ovements
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——a——n4
—&—n5
---X---n'2
------- n'=3
A -n'=4

L] -n's5

size(MB)

Fig. 2. Dotted lines represent the multiple simultaneous point to point TCP transfers the
number of hosts used in different tests is given by n. The continuous lines represent point
to multipoint approach, and number of hosts for this cases is given by n .
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Point to Point UDP versus TCP

The experiment described in this subsection consists of a comparison between the
transfer times using TCP and UDPBlaster point to point Data Movers.

Figure 3 shows the improvement achieved by using UDPBlaster. The Data Mover
plug-in could support a variety of protocols and methods, however, for the purpose of
this experiment we concentrate on the comparison of TCP versus UDP, to show how
the improvement can be achieved within the same data mover using different protocol
depending on the characteristics of the backbone being used. It is important to note
that since this protocol is still in the experimental phase may behave differently in
diverse test environments under different circumstances.

Comparison between different protocols for data transfer

/ —e—TCP (IBP)

~——&——UDP Blaster (IBP)

time (sec)
- &

size (MB)

Fig. 3 Improvement seen by using UDPBlaster

5 The exNode

One of the key strategies of the IBP project was adhering to a very simple
philosophy: IBP models access layer storage resources as closely as possible while
still maintaining the ability to share those resources between applications While this
gives rise to a very general service, it results in semantics that might be too weak to
be conveniently used directly by many applications. As in the networking field the IP
protocol alone does not guarantee many highly desirable characteristics, and needs to
be complemented by a transport protocol such as TCP, what is needed is a service at
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the next layer that, working in synergy with IBP, implements stronger allocation
properties such as reliability and arbitrary duration that IBP does not support.

Following the example of the Unix inode, that aggregates disk blocks to implement
a file, we have chosen to implement a single generalized data structure, which we call
an external node, or exNode, in order to manage aggregate allocations that can be
used in implementing network storage with many different strong semantic
properties. Rather than aggregating blocks on a single disk volume, the exNode
aggregates storage allocations on the Internet, and the exposed nature of IBP makes
IBP byte-arrays exceptionally well adapted to such aggregations. In the present
context the key point about the design of the exNode is that it has allowed us to create
an abstraction of a network file to layer over IBP-based storage in a way that is
completely consistent with the exposed resource approach.

The exNode library has a set of calls that allow an application to create and destroy
an exNode, to add or delete a mapping from it, to query it with a set of criteria, and to
produce an XML serialization, to allow the use of XML-based tools and
interoperability with XML systems and protocols.

A more complete explanation of the exNode and the tools we developed is
available online (http://loci.cs.utk.edu/exNode/index.htm). The software library,
written in ¢, is currently in its beta release, while a java version is under development.
We plan to make them available together with our IBP distribution in the very near
future through our web site.

6 Experience and Applications

Our method in developing the Internet Backplane Protocol is based on
implementation and experimentation. A number of simple applications from within
our own research group have formed the basis of the experience that has guided our
work. In addition, a few external application groups have picked up on early
implementations of IBP and contribute by both tracking our releases and giving us
needed feedback for future developments. However, it is only with the upcoming
release of the exNode library and serialization that we believe a wide application
community will find the supporting tools necessary to adopt an IBP-based
methodology.

3 NetSolve is a distributed computation tool created by Casanova and Dongarra
[8] to provide remote invocation of numerical libraries for scientific code. One
shortcoming of the initial NetSolve architecture is that it is stateless: a series of
calls to the same server cannot, for instance, cache arguments or results in order
to avoid unnecessary data movement in subsequent calls. One of the approaches
taken to optimize NetSolve was to use an IBP depot at the server to implement a
cache under the control of the client. Such short-lived use of IBP for value
caching is able to make good use of even volatile and time-limited allocations
[2]. Experiments conducted by the NetSolve group, using a Client application at
the University of California, San Diego requesting a pool of computational
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resources and Data Storage at the University of Tennessee, showed a much-
improved efficiency. [1, 2, 9].

4 TAMANOIR [12] is a project developed by the RESAM lab of the Ecole Normale
Superieure of Lyon in the field of Active Networking. It is a framework that
allows users to easily deploy and maintain distributed active routers in a wide
area network. IBP depots will be among the standard tools available to services
implemented within the TAMANOIR framework, along with other basic tools
such as the routing manager and stream monitoring tools. It will also be used to
implement distribution and caching of services (distributed as Java byte-code
modules) that are loaded by TAMANOIR on-demand, freeing TAMANOIR to
manage only is own internal cache of services.

7 Related Work

IBP occupies an architectural niche similar to that of network file systems such as
AFS [14] and Network Attached Storage appliances [13], but its model of storage is
more primitive, making it similar in some ways to Storage Area Networking (SAN)
technologies developed for local networks. In the Grid community, projects such as
GASS [7] and the SDSC Storage Resource Broker [3] are file system overlays that
implement a uniform file access interface and also impose uniform directory,
authentication and access control frameworks on their users.

8 Conclusions

While some ways of engineering for resource sharing, such as the Computer Center
model, focus on optimizing the use of scarce resources within selected communities,
the exponential growth in all areas of computing resources has created the
opportunity to explore a different problem, viz. designing new architectures that can
take more meaningful advantage of this bounty. The approach presented in this paper
is based on the Internet model of resource sharing and represents one general way of
using the rising flood of storage resources to create a common distributed
infrastructure that can share the growing surplus of storage in a way analogous to the
way the current network shares communication bandwidth. It uses the Internet
Backplane Protocol (IBP), which is designed on the model of IP, to allow storage
resources to be shared by users and applications in a way that is as open and as easy
to use as possible while maintaining a necessary minimum of security and protection
from abuse. IBP lays the foundation for the intermediate resource management
components, accessible to every end-system, which must be introduced to govern the
way that applications access, drw from, and utilize this common pool in a fully
storage-enabled Internet.
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