
The Coordination Development Environment

João Gouveia1, Georgios Koutsoukos1, Michel Wermelinger2,3,
Lúıs Andrade1,3, and José Luiz Fiadeiro3,4

1 Oblog Software SA
Alameda António Sérgio 7, 1A, 2795-023 Linda-a-Velha, Portugal

{jgouveia,gkoutsoukos}@oblog.pt
2 Dep. de Informática, Fac. de Ciências e Tecnologia, Univ. Nova de Lisboa

2829-516 Caparica, Portugal
http://ctp.di.fct.unl.pt/~mw

3 ATX Software SA
Alameda António Sérgio 7, 1C, 2795-023 Linda-a-Velha, Portugal

landrade@atxsoftware.com

http://www.atxsoftware.com
4 Dep. de Informática, Fac. de Ciências, Univ. de Lisboa

Campo Grande, 1700 Lisboa, Portugal
http://www.fiadeiro.org/jose

1 The Concept

Coordination contracts [1,2] are a modelling primitive, based on methodologi-
cal and mathematical principles [8,3], that facilitates the evolution of software
systems. The use of coordination contracts encourages the separation of compu-
tation from coordination aspects, and the analysis of which are the “stable” and
“unstable” entities of the system regarding evolution. Coordination contracts
encapsulate the coordination aspects, i.e., the way components interact, and as
such may capture the business rules [7] or the protocols [6] that govern interac-
tions within the application and between the application and its environment.

System evolution consists in adding and removing contracts (i.e., changing
the business rules) between given components (the participants of the contract).
As a result of an addition, the interactions specified by the contract are su-
perposed on the functionalities provided by the participants without having to
modify the computations that implement them. In fact, the components are com-
pletely unaware they are being coordinated. The contracts specify a set of rules,
each with a triggering condition (e.g., a call to a method of one participant),
and a rule body stating what to do in that case. Contracts are also unaware of
the existence of other contracts. This facilitates enormously incremental system
evolution, because explicit dependencies between the different parts of the sys-
tem are kept to a minimum, and new contracts can be defined and added to
the system at any time (even run-time), thus coping with changes that were not
predicted at system design time.

Consider the banking domain, in which ATX Software has several years of
experience. Usually, there is an object class account with an attribute balance
and a method withdrawal with parameter amount. In a typical implementation

R.-D. Kutsche and H. Weber (Eds.): FASE 2002, LNCS 2306, pp. 323–326, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

http://ctp.di.fct.unl.pt/~mw
http://www.atxsoftware.com
http://www.fiadeiro.org/jose


324 João Gouveia et al.

one can assign the guard balance≥amount restricting this method to occur in
states in which the amount to be withdrawn can be covered by the balance.
However, as explained in [2], assigning this guard to withdrawal can be seen as
part of the specification of a business requirement and not necessarily of the
functionality of a basic business entity like account. Indeed, the circumstances
under which a withdrawal will be accepted can change from customer to customer
and, even for the same customer, from one account to another depending on its
type.

Inheritance is not a good way of changing the guard in order to model these
different situations. Firstly, inheritance views objects as white boxes in the sense
that adaptations like changes to guards are performed on the internal structure of
the objects, which from the evolution point of view of is not desirable. Secondly,
from the business point of view, the adaptations that make sense may be required
on classes other than the ones in which the restrictions were implemented. In
our example, this is the case when it is the type of client, and not the type of
account, that determines the nature of the guard that applies to withdrawals.
The reason the guard will end up applied to withdrawal, and the specialization
to Account, is that, in the traditional clientship mode of interaction, the code is
placed on the supplier class.

Therefore, it makes more sense for business requirements of this sort to be
modeled explicitly outside the classes that model the basic business entities,
because they represent aspects of the domain that are subject to frequent changes
(evolution). Our proposal is that guards like the one discussed above should be
modeled as coordination contracts that can be established between clients and
accounts.

contract class standard-withdrawal
participants x : Account; y : Customer;
constraints ?owns(x,y)=TRUE;
coordination
sw : when y.calls(x.withdrawal(z))

with x.Balance() >= z;
do x.withdrawal(z)

end contract

The constraint means that instances of this contract can only be applied to
instances of Customer that own the corresponding instance of Account. The co-
ordination rule is only triggered when the participating Customer calls the with-
drawal operation of the participating Account. The rule superposes the guard
(after the with keyword) that restricts withdrawals to states in which the bal-
ance is greater than the requested amount. If the guard is false, the rule fails,
i.e., the withdrawal operation is not executed.

Having externalized the ”business rule” that determines the conditions under
which withdrawals can be made, we can support its evolution by defining and
superposing new contracts. For instance, consider a contract that a customer
may subscribe to instead of standard-withdrawal: whenever the balance is less



The Coordination Development Environment 325

than the amount, instead of occurring a failure, the whole balance would be
withdrawn.

contract class limited-withdrawal
participants x : Account; y : Customer;
constraints ?owns(x,y)=TRUE;
coordination
lw: when y.calls(x.withdrawal(z))

do x.withdrawal(min(z, x.Balance()))
end contract

Besides operation calls, triggers may be changes in state. Consider the fol-
lowing scenario, based on a real financial product offered by a Portuguese bank:
whenever the balance of the customer’s checking account goes below some thresh-
old, money is transferred from the savings account; whenever it goes above some
upper limit, money is transferred to the savings acount to earn better interest.

contract class automatic-transfer
participants chk, sav : Account;
attributes low, high, amount: Integer;
constraints ?owns(x,y)=TRUE;
coordination
s2c: when chk.Balance() < low

do amount := min(sav.Balance(), low - chk.Balance());
sav.withdrawal(amount);
chk.deposit(amount);

c2s: when chk.Balance() > high
do amount := chk.Balance() - high;

chk.withdrawal(amount);
sav.deposit(amount);

end contract

2 The Tool

For this approach to be usable in real applications, it requires a tool to support
system development and evolution using coordination contracts. Capitalising on
the expertise of Oblog Software in building development tools, the Coordination
Development Environment (CDE) we envisage [5] allows the following activities:

Registration: component types (developed separately) are registered to the
tool as candidates for coordination.

Edition: contract types are defined, with participants taken from the available
component types.

Deployment: the code necessary to implement the coordinated components
and the contract semantics is generated. This code is then compiled and
linked (ouside of CDE) with the non-coordinated components to produce
the complete application.



326 João Gouveia et al.

Configuration: contracts (i.e., instances of contract types) are created or re-
moved between given components (i.e., instances of component types) at
run-time and the values of the attributes can be changed.

Animation: the run-time behaviour of contracts and their participants can be
observed, to allow testing of the application.

The current version of CDE helps programmers to develop Java applications
using coordination contracts. More precisely, it allows to write contracts (in a
concrete syntax different from the modelling syntax of the previous section),
to translate them into Java, and to register Java classes (components) for co-
ordination. The code for adapting those components and for implementing the
contract semantics is generated based on a micro-architecture we developed [5]
that is based on the Proxy and Chain of Responsibility design patterns. The CDE
also includes an animation tool, with some reconfiguration capabilities, in which
the run-time behaviour of contracts and their participants can be observed us-
ing sequence diagrams, thus allowing testing of the deployed application. Future
work will include the implementation of coordination contexts [4], a modelling
primitive to specify reconfiguration actions.

CDE is written in Java and requires JDK 1.2. Its first public release is freely
available for download from the ATX website (http://www.atxsoftware.com).

References

1. L. Andrade and J. L. Fiadeiro. Interconnecting objects via contracts. In UML’99
-Beyond the Standard, LNCS 1723, pp. 566–583. Springer-Verlag, 1999.

2. L. Andrade and J. L. Fiadeiro. Coordination technologies for managing information
system evolution. In Proc. CAiSE’01, LNCS 2068, pp. 374–387. Springer-Verlag,
2001.

3. L. Andrade and J. L. Fiadeiro. Coordination: the evolutionary dimension. In Proc.
TOOLS 38, pp. 136–147. IEEE Computer Society Press, 2001.

4. L. Andrade, J. L. Fiadeiro, and M. Wermelinger. Enforcing business policies
through automated reconfiguration. In Proc. of the 16th IEEE Intl. Conf. on Au-
tomated Software Engineering, pp. 426–429. IEEE Computer Society Press, 2001.

5. J. Gouveia, G. Koutsoukos, L. Andrade, and J. L. Fiadeiro. Tool support for
coordination-based software evolution. In Proc. TOOLS 38, pp. 184–196. IEEE
Computer Society Press, 2001.

6. G. Koutsoukos, J. Gouveia, L. Andrade, and J. L. Fiadeiro. Managing evolution
in telecommunication systems. In New Developments in Distributed Applications
and Interoperable Systems, pp. 133–139. Kluwer, 2001.

7. G. Koutsoukos, T. Kotridis, L. Andrade, J. L. Fiadeiro, J. Gouveia, and M. Wer-
melinger. Coordination technologies for business strategy support: a case study
in stock trading. In Proc. of the ECOOP Workshop on Object Oriented Business
Solutions, pp. 41–52, 2001. Invited paper.

8. A. Lopes and J. L. Fiadeiro. Using explicit state to describe architectures. In
Proc. of Fundamental Approaches to Software Engineering, LNCS 1577, pp. 144–
160. Springer-Verlag, 1999.

http://www.atxsoftware.com

	The Coordination Development Environment
	The Concept
	The Tool


