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Abstract. The dissemination of the Internet technologies, increasing
communication bandwidth and processing speeds, and the growth in de-
mand for multimedia information gave rise to a variety of applications.
Many of these applications demand the transmission of a continuous
flow of data in real time. As such, continuous media applications may
have high storage requirements, high bandwidth needs and strict delay
and loss requirements. These pose significant challenges to the design
of such systems, specially since the Internet currently provides no QoS
guarantees to the data it delivers. An extensive range of problems have
been investigated in the last years from issues on how to efficiently store
and retrieve continuous media information in large systems, to issues on
how to efficiently transmit the retrieved information via the Internet.
Although broad in scope, the problems under investigation are tightly
coupled. The purpose of this chapter is to survey some of the techniques
proposed to cope with these challenges.

1 Introduction

The fast development of new technologies for high bandwidth networks, wireless
communication, data compression, and high performance CPUs has made it
technically possible to deploy sophisticated communication infrastructures for
supporting a variety of multimedia applications. Among these we can distinguish,
for instance, quality audio and video on demand (to the home), virtual reality
environments, digital libraries, and cooperative design.

Multimedia objects, such as movies, voice extracts, texts, and pictures, are
usually stored in compressed (encoded) form on the disks of a multimedia server.
Since the encoded objects might be long, the playing of an object should not be
delayed until the whole object is transmitted. Instead, the playing of the object
should be initiated as early as possible.

A common characteristic among multimedia applications is the so-called con-
tinuous nature of their generated data. In continuous media (CM), strict timing
relationships exist that define the schedule by which CM data must be rendered
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(e.g., a video displayed, 3D graphics rendered, or audio played out). These tim-
ing relationships coupled with the high aggregate bandwidth needs, the high
individual application bandwidth needs, and the high storage requirements pose
significant challenges to the design of such systems. This is particularly trouble-
some in the scenario of the Internet, which is beginning to be used to convey
multimedia data but which was not designed for this purpose.

In this work, we discuss the main technical issues involved in the design and
implementation of practical (distributed) multimedia systems. We take a partic-
ular view, which divides the system in three main components: the multimedia
server, the resource sharing techniques for transmitting data across the network,
and methods for improving the utilization of network bandwidth and buffers. We
look at each of these components, reviewing the related literature, introducing
the key underlying technical issues, and providing insights on how each of them
impacts the performance of the multimedia system.

2 The Multimedia Server

The multimedia server is a key component of a distributed multimedia system.
Its performance (in terms of the number of clients supported) affects the overall
cost of the system and might be decisive for determining economical viability.
As a result, studying the performance of multimedia servers is an important
problem which has received wide attention lately [8,42,19,18,17,28,30,34,33,45,
46,54,63]. The server is a computer system containing one or more processors,
a finite amount of memory M , and a number D of disks. The disks are used to
store compressed multimedia objects, which are retrieved by the clients.

Compressed video objects are composed of frames, where a frame is a snap-
shot of the state of all bits in the screen. To decode the frames in a stream,
the client has to store them in memory which requires some level of buffering.
The frames are consumed at a constant rate. Since the number of bits in each
component frame varies, the input bit rate and the output bit rate for the buffer
at the client side are variable (VBR).

It is common to implement the server such that it always sends data to the
client in blocks of fixed size. When it is possible to always send the same number
of blocks in the unit of time, we say that the traffic flows at a constant bit
rate (CBR). Keeping a CBR (or nearly CBR) traffic implies that the frame rate
varies at the input of the client buffer. To avoid interruption of the display, a
much larger buffer might be required at the client to compensate for variations
in the frame arrival rate. In Sec. 3 we discuss traffic smoothing techniques to
compensate for these rate variations. Several proposals in the literature are then
based on CBR assumptions [9,14,53,55,67].

Due to disk seek and rotational delays, one or more sectors need to be re-
trieved from the server during each disk access to attain good performance.
The set of disk sectors that the server sends to the client at one time is here
called a data block. Each data block is stored in the buffer of the client and
consumed from there. While the client decodes a data block, other clients can
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be served. This way the server is able to multiplex the disk bandwidth among
various clients, which are served concurrently. The approach works because the
total disk bandwidth available at the server far exceeds the display rate with
which each client consumes bytes.

Let Oi be a reference to the ith multimedia object in the server and bi be a
reference to any data block of the object Oi. Consistently with several prototype
implementations, we assume that the data blocks of each object Oi are all of
the same size. The data blocks of distinct objects, however, might be of different
sizes (i.e., size(bi) �= size(bj)).

A client makes a request for an object Oi. If this request is admitted into the
system, the server starts sending blocks of the object Oi to the client machine.
The client might have to wait until the buffer fills up to a pre-defined threshold
before starting to play the object. The time interval between the client request
and the beginning of the display is called startup latency. To send the blocks
to the client, the server first retrieves them from disk into main memory. Thus,
buffers are also required at the server side.

A client gets a block of data and starts consuming it. Before consuming all
the data in that block, the client must get the next block of data for the object
it is playing. Otherwise, interruption in the service will occur. In the case of
a movie, this means that the motion picture might suddenly freeze in front of
the user (also called hiccup). Thus, each client must get the blocks of data in a
timely fashion.

2.1 The Size of the Multimedia Server

The size of a multimedia server installation is a direct function of the number
D of disks in the system. Given the server size, the maximum load that can be
imposed to the system is determined, as we now discuss.

The number of disks used in a multimedia server is related to the bandwidth
demand, to the storage requirements, and to the amount of capital available for
investing in the system. Consider, for instance, movie objects encoded in MPEG-
2 (320 × 240 screen). The typical bandwidth requirement for such objects is 1.5
Mbps (mega bits per second). Thus, to support the display of 1500 MPEG-2
movie objects, a total net bandwidth of 2250 Mbps is required. The scenario 1
below illustrates this situation.
Scenario 1: SCSI Technology: effective disk bandwidth: 60 MBps = 480
Mbps1; disk storage capacity: 73.4 GB; maximum number of concurrent cus-
tomers: 1500; bandwidth requirement of 1 MPEG-2 object: 1.5 Mbps; storage re-
quirement of 1 MPEG-2 object: 1 GB; effective server bandwidth required: 1500
* 1.5 = 2250 Mbps; rough number of disks required in the server: �2250/480� = 5;
number of distinct MPEG-2 objects in storage: �5∗73.4� = 367; number of disks
with 20% redundancy: 6.

1 Estimated bandwidth in mega bits per second (Mbps), including seek time, for cur-
rent disk technology.
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Thus, to provide 1500 customers with real-time MPEG-2 streams we need a
total of 5 SCSI disks (current technology). This computation is quite rough, since
it does not consider memory and bus bandwidth bottlenecks, and redundancy
for fault tolerance. With a 20% degree of redundancy, a total of 6 disks would
be required.

Besides bandwidth, the storage requirements need also to be taken into ac-
count. Since the storage capacity of each SCSI disk considered above is 73.4 GB
(giga bytes) and each MPEG-2 object of 1 hour and 40 minutes takes roughly 1
GB, with 5 disks we can store up to 367 MPEG-2 objects.

However, 367 is not really the number of movies one would expect to find
in a video store. Typically, at least a few thousand movies should be available.
One alternative is to use cheaper technology, such as IDE, to provide plenty
of storage capacity with good bandwidth delivery. For instance, consider the
scenario 2 immediately below.
Scenario 2: IDE Technology: effective disk bandwidth: 16 MBps = 128 Mbps;
disk storage capacity: 80 GB; maximum number of concurrent customers: 1500;
bandwidth requirement of 1 MPEG-2 object: 1.5 Mbps; storage requirement of
1 MPEG-2 object: 1 GB; effective server bandwidth required: 1500 * 1.5 = 2250
Mbps; rough number of disks required in the server: �2250/128� = 18; number
of distinct MPEG-2 objects in storage: �18 ∗ 80� = 1440; number of disks with
50% redundancy: 27.

Thus, we can now store up to 1440 distinct MPEG-2 objects in 18 IDE disks
of 80 GB each. And this is accomplished while attending up to 1500 concurrent
customers as before. Notice that we now use a degree of redundancy of 50%,
because disks based on IDE technology are not as reliable as disks based on
SCSI technology. Since each IDE disk in scenario 2 costs about 1/6 of an SCSI
disk in scenario 1, the configuration in scenario 2 is either cheaper or price
equivalent to the configuration in scenario 1. Most important, replacing IDE
disks is easier because they can be bought everywhere at any time (i.e., IDE
technology is really ubiquitous nowadays).

The data block size, contrary to the number of disks, is related more to
the design of the system itself. Given a number of disks and a memory space
for buffers, usually an optimal block size can be determined. The block size
can be chosen to minimize the cost per stream or to maximize the number of
streams that can be supported concurrently. One primary constraint has to be
met: the block size must be large enough to amortize the delays due to seek and
rotational latency. Block sizes ranging from 512 Kbytes to 1 Mbytes are usually
large enough to accomplish this effect.

2.2 The Layout

The blocks which compose the various multimedia objects are laid out across
the disks in the system. A simplistic approach is to store all blocks of the same
object on a single disk. The main advantage of this approach is simplicity and
ease of maintenance. However, there is a considerable disadvantage. If a popular
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video is heavily requested, the disk that stores that video will be overloaded.
Thus, severe load imbalance might result, which limits the number of clients
that can be served. More sophisticated strategies involve spreading the blocks of
the same object across multiple disks (the so called striping techniques).
Layout Using Striping. The key idea of striping is to spread out the data
blocks of each object across the disks of the server. This way, during the service
time of an object, each client request is continuously moved from one disk to
another and shares the bandwidth of all the disks in the system. We say that
the object storage has been decoupled from the disks and call this effect object
decoupling (see Figure 1). Object decoupling provides a load balancing effect
which allows a higher number of clients in the system and a better utilization of
disk bandwidth.

Usually, when a striped layout is used, the server operates in cycles. At
each cycle of duration T , the server retrieves one data block for each client in
the system (this retrieval incurs in three delays: seek time, rotational latency,
and transfer time). While that client consumes the block, other clients can be
served. Discontinuities in the service are avoided by guaranteeing that each client
is served in every cycle. When all clients in the system have been served, the
server sleeps if there is still time available in the current cycle of duration T .

To accommodate objects with distinct bandwidth requirements, we can sim-
ply allow the sizes of the storage units to vary. For instance, objects Oi and Oj
will have blocks sizes bi and bj (bi �= bj), respectively. Each block is stored as
a separate storage unit. For a same object Oi, however, the block sizes are all
the same (i.e., bi[j] = bi[j + 1]). At the disk level, one can keep the storage unit
size constant to avoid fragmentation. For an object that has higher bandwidth
requirements, two or more storage units can be combined to compose a data
block, as illustrated in Figure 1. Each data block of the object Oi is composed
of a single storage unit while each data block of the object Oj is composed of
two storage units. We see that two or more disks might now be involved in the
retrieval of a unique data block. Since the storage unit size is kept constant,
storage and bandwidth fragmentation problems are minimized.
Random Data Allocation Layout. Striping layouts are good because they
provide object decoupling. However, in general, all striping strategies impose a
tight coupling between the layout itself and the block access pattern as a way
to balance the load among the various disks. To avoid this tight coupling, an al-
ternative is to employ a random data allocation. It can be shown that a random
layout is as good as striping in terms of performance [64], but presents important
advantages as we briefly point out here.

A random data allocation layout uses storage units that are all of the same
size. However, contrary to the striping approach, each storage unit is stored in a
disk position that is determined according to the following procedure: (a) select
a disk at random; (b) within that disk, select a free position at random.

As a result, storage units are placed randomly across the disks of the system.
Objects with higher bandwidth requirements are served by combining several
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Fig. 1. Hybrid layout with equal-sized stripe units and block sizes which vary from one
object to the other.

storage units to form a data block. Also, the physical location of the data blocks
is now independent of the block access pattern.

A random data allocation layout provides the following characteristics: object
decoupling; access pattern decoupling; no disk storage fragmentation; small prob-
ability of prolonged bandwidth fragmentation; good performance. The good per-
formance is attained because the load tends to be statistically balanced among
the various disks. Random data allocation is the only layout scheme that pro-
vides all these features together. Because of this, it simplifies the overall design
and implementation of the system. Therefore, we argue that it is the paradigm
of choice for the design and implementation of multimedia servers in general.
Comparative Performance Analysis: Striping versus Random Layout.
In [64] a detailed comparison between a server based on striping and a server
based on a random layout is presented. The experimental results show that
system performance with a random layout is competitive or superior to the
performance obtained with a striping layout. This is the case not only for un-
predictable access patterns generated by sophisticated interactive applications
such as virtual worlds and scientific visualizations, but also for sequential access
patterns generated by more standard video applications.

To illustrate, let us focus on the case of standard video applications. When
only a small amount of buffer is allowed at the server (say, 1.5 MBytes per
stream), a striping layout performs slightly superior to a random layout providing
an increase in the maximum number of streams sustained of roughly 5%. If the
amount of buffer per stream is allowed to increase to 3.5 MBytes per stream,
both layouts lead to the same overall performance. Additional increments in
buffer space per stream favor the random layout, whose performance becomes
superior.

Assume now that more disk space is made available, such that data blocks
can be replicated. This is useful, for instance, to improve reliability against disk
failure. Consider a 25% degree of replication of video data blocks. This is good
for a random layout because replicated blocks can be used to alleviate the load
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of momentarily overloaded disks. In this case, with a buffer space of 3.5 MBytes
per stream, a server based on a random layout presents performance (maximum
number of streams sustained by the server) that is 10-15% higher than the
performance of a server based on a striping layout.

2.3 Staging, Reconfiguration, and Fault Tolerance

In practical installations, there are other important issues that have to be con-
sidered for proper operation of a multimedia server. Among these, we distinguish
the staging of new videos, the reconfiguration of the server to improve perfor-
mance, and fault tolerance against failures of service in the disks of the server.
In this section, we discuss these issues in more detail and compare their relative
performance considering random-based and striping-based servers.
The Staging Mechanism. Since multimedia objects might be quite large (par-
ticularly movie objects), the number of objects that can be stored on the disks
of the system might be quite limited. This implies that the objects in the system
need to be replaced by new ones from time to time. Since the new objects are
usually loaded from tape, we call this process the staging mechanism. This is
an issue which has not received much attention in the specialized literature but
which is critically important in any practical system.

For offline staging, the use of block decoupling provides an efficient solution.
If online staging is desired, the admission control and the scheduling processes
are affected because a new stream has to be admitted and scheduled. This type of
stream might require higher bandwidth because redundant data (such as copies
of the data to support fault tolerance) have also to be updated. For a striped
layout under heavy load, it might be the case that two fragmented pieces of
bandwidth are available but cannot be used for staging because a coalesced
bandwidth is required. For instance, this might be the case of a new stream
which is been fed live to the server. If the new stream is not live, then there is
no problem because the staging can proceed in non real-time mode.

Staging has similar costs both for a striped and for a random layout, when-
ever the staging is offline. For online staging, a random layout is advantageous.
For instance, a random layout makes it easier to deal with the staging of a new
stream which is been fed live. Also, a random layout allows the staging of a
new object at a rate which is different from its playout rate which is often more
difficult to do with a striped layout.
Disk Reconfiguration. In practical situations, it is reasonable to expect that
the demand on a given server system might eventually exceed its planned ca-
pacity. For instance, it might be the case that the demand for disk bandwidth
exceeds the total disk bandwidth currently available in the server. This problem
can be fixed by adding new disks to the system and copying data blocks (of the
objects already in the system and of new objects) into the new disks. This is
what we call disk reconfiguration. We would like to be able to reconfigure the
system while maintaining the server fully operational.
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Consider that we have D disks in the system and that we want to add K
new disks. For simplicity, we consider here that the new disks are of the same
capacity and of the same bandwidth as the disks already installed in the server.
Consider also that no new objects will be added to the system. With current
disk technology, the extra K disks can be “hot” inserted into the system while
it is running. Thus, no interruption in service is required. However, the storage
units need to be remapped to take advantage of the newly available bandwidth.

To exemplify, assume an installation with 8 disks to which 2 new disks are
added. We have that D = 8 and K = 2. In this case, it can be shown that 80%
of all storage units need to be moved if the layout is done with striping, while
only 20% of all storage units need to be moved if the layout is random. Thus, we
conclude that it is much cheaper to reconfigure an installation when the layout
is random.
Fault Tolerance. Maintaining the integrity of the data and its accessibility are
crucial aspects of a multimedia server. Particularly critical are failures of the
disks of the system. While each individual disk is fairly reliable, a large set of
disks presents a considerably higher likelihood of failure of a component. With
a multimedia server, it is particularly important to provide tolerance to this
type of failure because failure of a single disk might disrupt the service to all
clients in the system. Basically, fault tolerance is provided by the maintenance
of redundant information about the data. Two basic schemes can be used: full
replication and parity encoding.

With parity encoding, the D disks of the system are divided in ng groups.
Let g, g = D/ng, be the number of disks per group. For each group, one of the
disks is reserved for storing parity information while the remaining g − 1 are
used for storing data. The parity information is computed as the exclusive-or of
the storage units in the g − 1 disks. We use storage units instead of data blocks
because, in case block decoupling is used, data blocks are not confined to a single
disk. Let sui[k], sui[k+1], . . . , sui[k+g−2] be g−1 consecutive storage units
(belonging to data blocks of object Oi) which appear each in a separate disk
(assume this for now). Then, the parity information pi[k] for this set of storage
units is computed as pi[k] = sui[k] ⊕ sui[k + 1] ⊕ . . . ⊕ sui[k + g − 2]. The
set composed of the parity storage unit p[k] and of the g − 1 storage units from
sui[k] to sui[k+ g− 2] is called a parity group of size g. If the disk that contains
sui[k + 1] is lost, this storage unit can be rebuilt by the following computation
sui[k + 1] = sui[k] ⊕ pi[k] ⊕ . . . ⊕ sui[k + g − 2]. Thus, the disk with the
parity information takes the place of the disk which was lost.

The idea of fault tolerance with full replication is to use additional space
which is of the same size of the space occupied by the whole set of data blocks.
Thus, all data blocks are duplicated. While more expensive in terms of space,
this approach allows recovering from some types of catastrophic failures and
improving the performance of the system. Gains in performance are possible
because any request for a data block can now be served by two different disks
and thus, we can always select the disk with a smaller queue.
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Full replication can also be useful in situations where a parity-based scheme
is not the most appropriate one. For instance, consider a distributed server com-
posed of multiple machines which contain themselves multiple disks. Assume
that we stripe the data across the multiple disks. In case a parity-based scheme
is adopted for fault tolerance, parity groups should be confined to individual
machines to avoid overheads in buffer, networking, and synchronization. This
provides tolerance to a disk failure but not to the failure of a machine. To pro-
vide tolerance to a machine failure, a full replication scheme can be adopted
instead in which each data block and its copy reside on separate machines. This
is in fact the approach adopted in [9].

It can be shown that a random layout allows using a parity-based scheme as
well as any random layout. Further, full replication can be better taken advantage
of with the adoption of a random layout (instead of a striped layout). In fact,
the design and implementation of recovery and load balancing algorithms is
simplified because one can rely on the randomness of the data block allocation
to even out the load.

3 Transmitting Information

There are several performance issues that need to be addressed in order to trans-
mit continuous real-time streams over the Internet with acceptable quality. For
instance, real time video encoded in MPEG2 typically requires an average band-
width of approximately 1-4 Mbps, and a voice stream approximately from 6-
64Kbps, depending on the encoding scheme. However, so far the Internet does
not allow bandwidth reservation as needed. In addition congestion in the net-
work may cause significant variability on the interval between the arrival of
successive packets (jitter). Since real time streams must be decoded and played
following strict time constraints, large jitter values will cause the playout pro-
cess to be interrupted. Packet losses may also severely degrade the quality of the
multimedia presentation, depending on the loss pattern. Yet another problem is
network heterogeneity and client heterogeneity. Client heterogeneity means that
the receivers have different network requirements, due to different capabilities
to present the received multimedia information. For multicast applications, the
heterogeneity imposes an additional challenge since a stream being transmitted
would have to be multicast through several networks and clients (with possi-
bly drastic different characteristics) and somehow adapt to the needs of each
client. In this section we discuss a few mechanisms used to mitigate the effects
of random delay and losses in the network.

3.1 How to Cope with Network Jitter and the Rate Variability

We start by considering an audio stream encoded with PCM, say with silence
detection. The audio stream is sampled at 125µsec interval and usually 160
samples are collected in a single packet generating a CBR stream of one IP packet
per 20msec [47] at each active interval. The client consumes the 160 samples at
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every 20msec, and thus it is vulnerable to random delays in the network. If the
expected information does not arrive on time, annoying distortions may occur
in the decoded audio signal. Let T be the packet generation interval and X the
corresponding segment interarrival time. The random variable J = X − T is
called jitter.

One simple mechanism to reduce the jitter is to use a playout buffer at the
client, where a given number of packets are stored. At the beginning of each
active period, where packets are generated, the client stores packets till a given
threshold is reached before starting to decode the received samples. The thresh-
old value may be fixed at the beginning of the connection or be adjusted dynam-
ically during the duration of the session. Figure 2 illustrates the basic idea. In
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that figure, the curve l(t) is equal to the number of packets consumed by the ap-
plication by time t. (In this example, it is assumed PCM encoding and thus the
packet consumption rate is constant.) The upper curve is simply u(t) = l(t)+B
where B is the playout buffer space. The curve labeled a(t) is equal to the num-
ber of packets that have arrived by time t. Note that the arrival instants are not
equally spaced due to the jitter introduced by the network. In the leftmost part
of Fig. 2, B = 8 and H = 6, and so the decoding starts immediately after the
arrival of the 6-th packet. The amount of packets stored in the playout buffer
as a function of time is a(t) − l(t), while u(t) − a(t) quantifies the buffer space
available at t. Buffer starvation occurs if the lower curve touches the bottom
curve and buffer overflow occurs when the middle curve crosses the top curve.
As shown in the figure, the buffer empties at t = 18. Thus, at t = 19 there is no
packet to be decoded (buffer starvation). When this occurs, some action must be
taken perhaps re-playing the last information in the buffer, as an approximation
of the data carried by the missing packet at that time. In the right hand part
of Fig. 2 the threshold value H is increased to H = 7. As a consequence, l(t)
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is shifted to the right. In this example, this change prevents buffer starvation
during the observation period. The value of B is also decreased to 7, and u(t) is
moved downwards with respect to the preceding curve.

It is easy to see that this simple technique eliminates any negative jitter. From
Fig. 2, it is also clear that larger threshold values decrease the jitter variabil-
ity. However, latency increases with increasing threshold values. But interactive
applications, such as a live conversation, do not tolerate latencies larger than
200− 300 msec. This imposes a constrain of 20-25 packets on H. An issue is the
choice of H and the amount of buffer space necessary to minimize the loss of
packets in case a long burst of packets arrive at the receiver.

Diniz and de Souza e Silva [22] calculate the distribution of the jitter as seen
by the client, when a playout buffer is used. The packet interarrival time is mod-
eled by a phase-type distribution that matches the first and second moments
of this measure obtained from actual network measurements. Packets are con-
sumed at constant rate (PCM), similar to the example of Fig. 2. Silent periods
are included in the model. The goal is to study the tradeoffs between latency and
probability of a positive jitter. It was concluded that the probability of a positive
jitter can be significantly reduced, while maintaining an acceptable latency for
real time traffic.

In addition to the delay variability imposed by the network, compressed
audio/video streams exhibit non-negligible burstiness on several time scales, due
to the encoding schemes and scene variations. Sharp variations on traffic rates
have a negative impact on resource utilization. For instance, more bandwidth
may be necessary to maintain the necessary QoS for the application. The issue
is to develop control algorithms to smooth the CM traffic before transmission to
the clients.

Smoothing techniques can be applied at the traffic source or at another in-
termediate node (e.g., a proxy) in the path to the client. Sen et al [65] address
the issue of online bandwidth smoothing. To better understand the problem con-
sider Fig. 3, where it is assumed that there is no variable delay imposed by the
network when a compressed video stream is sent to a client.

Due to the compression encoding, the rate of bit consumption at the client
node varies with time. Video servers however, read fixed size blocks of informa-
tion from the storage server (each block may be fragmented into packets to fit
the network maximum transfer unit (MTU) before transmission). Then in Fig.
3, the interval between the consumption of constant size data blocks at the client
varies with time. The jumps in the y-axis (a block of data) are of constant size.
This contrasts with the usual representation of variable frame size consumed at
fixed intervals of time (e.g. 1/30sec).

In Fig. 3, a controller at the server site schedules the transmission of video
blocks after they are retrieved from the storage server and queued in a FIFO
buffer. Two sets of curves are shown in the figure. In set 1, let lc(t) be the number
of bits consumed by the client by time t, and uc(t) = lc(t) + Bc, where Bc is
the size of the playout buffer. Similarly, let as(t) (in set 2) be the accumulated
number of bits that are read from the server disks during (0, t) according to the
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demand of the client, and ls(t) be the smoothed stream curve, i.e. the number
of bits effectively dispatched by t. Note that: (a) ac(t) = ls(t − τ) where τ is a
(assumed constant) network delay from the server to the client; (b) as(t− τ ′) =
lc(t) where τ ′ is the constant network delay plus the delay to fill the playout
buffer; (c) the jumps of lc(t) occur at the instants of consumption of a block of
data. If we assume that the playout buffer is filled until its capacity before the
continuous stream is played back, the number of bits in the playout buffer is
given by the difference between the top and the middle curves in set 1.

The server seeks to transmit data to the client as smooth as possible that is,
ls(t) in the figure should resemble a straight line with the smallest possible right
angle. Since the shape of lc(t) and consequently uc(t) and as(t) is determined
by the encoding algorithm applied to the video to be transmitted, the issue is
how to plan the transmission of the data so that uc(t) ≤ ac(t) ≤ lc(t), and
yet the maximum transmission rate is kept as close as possible to the average
consumption rate.

In [62] Salehi et al obtained an efficient algorithm that can generate a trans-
mission schedule given the complete knowledge of ac(t). This is referred to as an
offline algorithm. Roughly, from a initial time ti (start from i = 0), one should
construct the longest possible line that does not violate the constraints imposed
by uc(t) and lc(t) in Fig. 3. Clearly, by construction, this straight line intersects
one of the boundary curves at a time point t′i+1 > ti, (and so the rate would
have to be changed at this point), and touches one of these curves at a time
ti+1 < t′i+1. To avoid sudden rate changes one should vary the previous rate
as soon as possible. Consequently a new starting point is chosen at ti+1. The
process is repeated (setting i = i+1) until the end of the stream is reached, and
ac(t) is obtained which determines the scheduling algorithm.
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The set 2 in Fig. 3 shows the arrival and transmission curves at the server.
Note that the server starts its transmission as soon as a threshold H is reached
(in the figure the threshold is equal to 5 blocks). us(t) = ls(t) + Bs, where
Bs is the FIFO buffer available at the server. One should note that, once ls(t)
is determined, Bs and the threshold can be calculated to avoid overflow and
underflow.

We can represent the curves uc(t), lc(t) and ac(t) as vectors u, l, a respec-
tively, each with dimension N , where N is the number of data blocks in the video
stream, and the i-th entry in one of the vectors, say vector l, is the amount of
time to consume the i-th block. In [62] majorization is used as a measure of
smoothness of the curves. Roughly, if a vector x is majorized by y (x ≺ y) then
x represents a smoother curve than y. It is shown in [62] that if x ≺ y then
var(x) =

∑
i(xi − x)2 and since, by definition, the maximum entry in x is less

or equal than the corresponding entry in y, a vector x that is majorized by y
has smaller maximum rate and smaller variance than y. The schedule algorithm
outlined above is shown to be optimum and unique in [62]. Furthermore the
optimal schedule minimizes the effective bandwidth requirements.

This algorithm is the basis for the online smoothing problem [65]. It is as-
sumed that, at any time τ , the server has the knowledge of the time to consume
each of the next P blocks. This is called the lookahead interval and is used to
compute the optimum smoothing schedule using the algorithm of [62]. Roughly,
blocks that are read from the storage server are delayed by w units and passed
to the server buffer that implements the smoothing algorithm which is invoked
every 1 ≤ α ≤ w blocks.

Further work in the topic include [50] where it is shown that, given a buffer
space of size B at the server queue, a maximum delay jitter J can be achieved
by an off-line algorithm (similar to the above algorithm). Furthermore, an on-
line algorithm can achieve a jitter J using buffer space 2B at the server FIFO
queue. While the smoothing techniques described above are suitable for video ap-
plications, interactive visualization applications pose additional problems. This
subject was studied in [73].

In summary, the amount of buffer space in the playout buffer of Fig. 3 is a
key parameter that determines how smooth the transmission of a CM stream
can be. It also serves to reduce the delay variability introduced by the network.
The queue at the server site in Fig. 3 implements the smoothing algorithm and
the amount of buffer used is also a design parameter. As mentioned above, jitter
reduction and smoothness are achieved at expense of the amount of buffer space.
But the larger these buffers the larger the latency to start playing the stream.

3.2 How to Cope with Losses

In the previous subsection we are concerned with random delays introduced by
the network as well as the ability to reduce sudden rate chains in the coded data
stream to lower the demand for network resources. Besides random delays, the
Internet may drop packets mainly due to congestion at the routers. Furthermore,
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packet delays may be so large that they may arrive too late to be played at the
receiver, in a real time application.

A common method to recover from a packet loss is retransmission. However,
a retransmitted packet will arrive at the receiver at least one round-trip-time
(RTT) later than the original copy and this delay may be unacceptable for real
time applications. Therefore, retransmission strategies are only useful if the RTT
between the client and the server is very small compared with amount of time
to empty the playout buffer.

A number of retransmission strategies have been proposed in the context
of multicast streaming. For example, receiver-initiated recovery schemes may
obtain the lost data from neighboring nodes which potentially have short RTTs
with respect to the node that requested the packet [69].

The other methods to cope with packet loss in CM applications are error
concealment, error resilience, interleaving and FEC (forward error correction).
Error resilience and error concealment are techniques closely coupled with the
compression scheme used. Briefly error resilience schemes attempt to limit the
error propagation due to the loss, for instance via re-synchronization. An error
propagation occurs when the decoder needs the information contained in one
frame to decode other frames. Error concealment techniques attempt to recon-
struct the signal from the available information when part of it is lost. This is
possible if the signal exhibits short term self-similarities. For instance, in voice
applications the decoder could simply re-play the last packet received when the
current packet is not available. Another approach is to interpolate neighboring
signal values. Several other error concealment techniques exist (see [57,74] for
more details and references on the subject).

Interleaving is an useful technique for reducing the effect of loss bursts. The
basic idea is to separate adjacent packets of the original stream by a given
distance, and re-organize the sequence at the receiver. This scheme introduces
no redundancy (and so does not consume extra bandwidth), but introduces
latency to re-order the packets at the receiver.

FEC techniques add sufficient redundancy in the CM stream so that the
received bit stream can be reconstructed at the receiver even when packet losses
occur. The main advantage of FEC schemes is the small delay to recover from
losses in comparison with recovery using retransmission. However, this advantage
comes at the expense of increasing the transmission rate. The issue is to develop
FEC techniques that can recover most of the common patterns of losses in the
path from the sender to the receiver without much increase in the bandwidth
requirements to transmit the continuous stream.

A number of FEC techniques have been proposed in the literature [57,74].
The simplest approach is as follows. The stream of packets is divided into groups
of size N − 1, and a XOR operation is performed on the N − 1 packets of each
group. The resulting “parity packet” is transmitted after each group. Clearly, if
a single packet is lost in a group of N packets the loss can be recovered.

Three issues are evident from this simple scheme. First, since a new packet
is generated for every N − 1 packets the bandwidth requirements increases by
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a factor of 1/(N − 1). As an example, considering voice PCM transmission, if
N = 5 the new necessary bandwidth to transmit the stream would be 80 Kbps
instead of 64 Kbps. Second, it is necessary to characterize the transmission losses
to evaluate how effective is the FEC scheme. If losses come into bursts of length
B > 1, then this simple scheme is evidently not effective. Third, a block of N
packets must be entirely received in order to recover from a loss. Consequently,
N must be smaller than the receiver playout buffer which is in turn limited
by the latency that can be tolerated in an interactive application. Furthermore,
suppose a loss occurs at position n in a block. Then N−n should be smaller than
the number of packets in the playout buffer at the arrival time of the (n− 1)-th
packet in the block. This indicates that the probability that the queue length of
playout buffer is smaller than N should be small for the method to be effective.
In summary, to avoid a substantial increase in the bandwidth requirements the
block size should be larger, but a large block size implies a large playout buffer
which in turn increase latency.

Measures in the Internet have shown that loss probabilities are little sensitive
to packet sizes [10,29]. Therefore, another scheme to protect against losses is to
transmit a sample of the audio stream in multiple packets [12]. For instance,
piggybacking the voice sample carried by packet n in packet n+ 1 as well. This
technique allows the recovery of single losses with minimum latency, but at the
expense of doubling the throughput. A clever way to reduce the bandwidth
requirements is to include in packet n + 1 the original (voice) sample sent in
packet n, but further compressed using a smaller bit rate codec than the primary
encoding. As an example, suppose the primary (voice) sample of each packet is
replicated twice. If we use PCM codec for the primary sample (64k Kbps), GSM
for the first copy (13.2 Kbps) and LPC for the second copy (≈ 5 Kpbs) burst sizes
of length 2 can be recovered at the expense of increasing the throughput from
64 Kbps to ≈ 82 Kbps. Therefore, with only a 20.8% increase in the throughput,
and an increase in latency of 40 msec (2 × 20 msec packet delay), bursts of
length 2 can be recovered in this example.

Packet losses occur mostly due to congestion in the network and so it can be
argued that increasing the throughput rate of a stream transmission to recover
from losses is unfair with respect to flow controlled sessions such as TCP. There-
fore, it is evident that FEC schemes should be optimized for the type of loss
incurred by the network in order to have the smallest impact in the consumed
bandwidth. The work in [29] was aimed at studying the packet loss process in
the Internet and at proposing a new efficient XOR-FEC mechanism extending
previous work. Several measures were calculated from traces between Brazil and
the USA such as: the distribution of the number of consecutive losses and the
distribution of the number of packets received between two losses. These two
measures are particularly important for determining the efficiency of a recovery
XOR-FEC based algorithm. The approach proposed in [29] can be briefly de-
scribed as follows. The CM stream is divided into groups each called a window
and the packets in a window is sub-divided into non-overlapping sets, each pro-
tected by an XOR operation. Figure 4(a) illustrates an example with 6 packets
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Fig. 4. The FEC scheme of [29]

per window and two subsets, and we call this a 2:6 class of algorithm. The result
of the XOR operation for a set of packets is sent piggybacked in a packet of the
next window. Clearly we can use codecs of smaller transmission rate as in [12]
for saving in bandwidth. Note that burst errors of size at most equal to 2 packets
can be recovered, and efficiency in bandwidth is gained at expense of latency
to recover from losses. Furthermore, the scheme in Fig. 4(a) has the practically
same overhead as the simple XOR scheme first described, but can recover from
consecutive losses of size two. Another class of schemes can be obtained by merg-
ing two distinct k : n class of algorithms, such that all packets belong to at least
two different subsets and therefore are covered by two different XORs. Figure
4(b) illustrates an example where schemes 1:2 and 3:6 are overlapped. In this
case, all losses of size one in the larger window can be recovered. Furthermore,
complex loss patterns can also be protected. For example, if packets 2, 3, 4, and
5 were lost, they can all be recovered. The overhead of this mixed scheme is
clearly obtained by adding the overhead of the individual schemes.

In [29] the algorithm is applied in the real data obtained from measures and
the efficiency of different FEC-based algorithms are evaluated. The conclusions
show the importance of adapting to different networks conditions. (This issue
was also addressed by Bolot et al [11], in the context of the scheme of [12].)
Furthermore, in all the tests performed, the class of schemes that mixed two
windows provided better results than the class with a single window under the
same overhead.

Altman et al developed an analytical model to analyze the FEC scheme of [12]
and other related schemes. The loss process was modeled using a simple M/M/K
queue. The aim is to assess the tradeoffs between increased loss protection from
the FEC algorithm and the adverse impact from the resulting increase in the
network resources usage due to the redundancy added to the original stream.
The results show that the scheme studied may not always result in performance
gains, in particular if a non-negligible fraction of the flows implements the same
FEC scheme. It would be interesting to evaluate the performance of other FEC
approaches.

To conclude the subsection we refer to a recent proposed approach to mitigate
the effect of losses. As is evident from above, short term loss correlations have
an adverse effect on the efficiency of the recovery algorithms. One way to reduce
the possible correlations is to split the continuous stream sent from a source to a
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given destination into distinct paths. For instance, we could split a video stream
in two and sent the even packets in the sequence via one path and the odd
packets via another path to the destination. This is called path diversity [76].
In [6] it is assumed that the loss characteristics in a path can be represented
by a 2-state Markov chain (Gilbert model) and a Markov model was developed
to access the advantages of the approach. Clearly a number of tradeoffs exists,
depending on the loss characteristics of each path, if the different paths share or
not a set of links, etc.

3.3 Characterizing the Packet Loss Process and the Continuous
Media Traffic Stream

Packet losses is one of the main factors that influence the quality of the signal
received. Therefore, understanding and modeling the loss process is imperative
to analyze the performance of the loss recovery algorithms. In general, mea-
surements are obtained from losses seen by packet probes sent according to the
specific traffic under study (for instance at regular intervals of 20 msec), and
models are obtained to match the collected statistics. However, queueing models
with finite buffer have also been used.

Bolot [10] characterize the burstiness of packet losses by the conditional prob-
ability that a packet is lost given that a previous packet is also lost, and analyze
data from probes sent at constant intervals between several paths in the Inter-
net. A simple finite buffer single server queueing model (fed by two streams, one
representing the probes and the other representing the Internet traffic) was used
as the basis for interpreting the results obtained from the measures.

The most commonly used model for representing error bursts is a 2-state dis-
crete time Markov chain, usually called the Gilbert model. The Gilbert model
assumes that the size of consecutive losses is a geometric random variable. How-
ever, these models may not capture with accuracy the correlation structure of
the loss process. The work in [75] use a 2k-state Markov chain to model the
loss process, aimed at capturing temporal dependencies in the traces they col-
lected. They analyze the accuracy of the models against several traces collected
by sending probes at regular intervals. Salamatian and Vaton [61] propose the
use of Hidden Markov models (HMM) to model the loss sequence in the Inter-
net, due to their capability to represent dependencies in the observed process.
In an HMM each state can output a subset of symbols according to some distri-
bution. The states and transitions between states are not observable, but only
the output symbols. In [61] it is shown that HMM models are more appropri-
ate to represent the loss sequence than the 2k-state Markov chain model used
in [75], with less states. However, one disadvantage of the method is the cost
of estimating the Markov chain parameters. More recently, the authors of [43]
compare four models to represent the loss process in wireless channels, including
the 2k-state Markov model, a HMM with 5 states and a proposed On-Off model
where the holding times at each state are characterized by a mixture of geometric
phases which are determined by using the Baum-Welch algorithm. The conclu-
sion indicates that the extended On-Off model better captures first and second
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order statistics of the traces studied. A recent study done by Markopoulou et al
[51] evaluates the quality of voice in the Internet. In this work a methodology
is developed that takes into account delay and loss measurements for assessing
the quality of a call. The measures were obtained by sending regularly spaced
probes to measurement facilities in different cities. The results indicate the need
of carefully evaluating the CM traffic and properly designing the playout buffers.

Traffic characterization is one important topic for understanding the influence
of CM streams in the network resources. The topic is related to loss character-
ization and the main goals are to obtain concise descriptions of the flow under
study and to capture in the model relevant statistics of the flow. The objective is
to predict, with sufficient accuracy, the impact of the traffic generated by appli-
cations on the resources being utilized (both in the network and in the servers),
and evaluate the QoS perceived by the applications. The amount of work done
on traffic characterization is sufficient vast to deserve surveys and books on the
area [31,1,52,56]. Our interest in this chapter is to introduce a few issues on the
topic.

In order to build a model of the traffic load, the proper traffic descriptors that
capture important characteristics of the flows competing for resources have to
be chosen. Examples of traffic descriptors are: the mean traffic rate, the peak-to-
mean ratio, the autocovariance, the index of dispersion and the Hurst parameter.
The issue is to select a set of descriptors such that traces and models with
matching descriptors produce similar performance metrics.

A large number of models have been proposed in the literature. They include
models in which the autocorrelation function decays exponentially (for instance,
the Markovian models), and models in which the autocorrelation function decays
at a slower rate, that is, hyperbolically (in this case the corresponding stationary
process is called long-range dependent [56]). Although not possessing the long-
range dependence property Markov models are attractive due to several reasons.
First, they are mathematically tractable. Second, long-range correlations can be
approximately obtained from certain kind of models. Third, it may be argued
that long-range dependency is not a crucial property for some performance mea-
sures and Markov models can be used to accurately predict performance metrics
(e.g. see [38,37]). Usually, a traffic model is built (or evaluated) by matching the
descriptors calculated from the model against those obtained from measurement
data. For Markovian models it is not difficult to calculate first and second order
statistics [49].

As can be inferred from the above discussion, Markovian models are a useful
tool for the performance evaluation of CM applications. They can be used to
model the traffic stream, generate artificial loads, model the loss process and
evaluate techniques to efficiently transmit CM streams.

4 Resource Sharing Techniques

Conventional multimedia servers provide each client with a separate stream. As
a consequence, the resources available in the multimedia system, particularly
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network bandwidth, can be quickly exhausted. Consider, for instance, the sce-
narios 1 and 2 discussed in Sec. 2. To maintain 1500 concurrent streams live,
with a separate bandwidth allocated to each of them, it is necessary to sustain
a total bandwidth of 2,25 Gbps at the output channel of the multimedia server.
While technically feasible, this is quite expensive nowadays and prohibitive from
a commercial point of view.

A common approach for dealing with this problem is to allow several clients to
share a common stream. This is accomplished through mechanisms, here called
resource sharing techniques, which allow the clients to share streams and buffers.
The goal is to reduce the demand for network bandwidth, disk bandwidth, and
storage space. While providing the capability of stream sharing, these techniques
have also to provide QoS to the clients.

As is Sec. 3 client QoS is affected by the server characteristics, such as la-
tency and available disk bandwidth, and by the network characteristics, such as
bandwidth, loss, jitter, and end-to-end delay. The challenge is to provide very
short startup latency and jitter for all client requests and to be able to serve a
large number of users at minimum costs.

The bandwidth sharing mechanisms proposed in the literature fall into two
categories: client request oriented and periodic broadcast. Client request oriented
techniques are based on the transmission, by the server, of a CM stream in
response to multiple requests for its data blocks from the client. Periodic broad-
cast techniques are based on the periodic transmission by the server of the data
blocks.

Besides these sharing mechanisms, one can also use proxy servers to reduce
network load. Proxy servers are an orthogonal technique to bandwidth sharing
protocols, but one which is quite popular because it can be easily implemented
and can be managed at low costs.

We partition our presentation in three topics. We first describe client request
oriented techniques. Then, periodic broadcastmechanisms are presented, followed
by a discussion on proxy-based strategies.

4.1 Client Request Oriented Techniques

The simplest approach for allowing the sharing of bandwidth is to batch new
clients together whenever possible. This is called batching [2,20,21] and works as
follows. Upon the request of a new media stream si by an arriving client ck, a
batching window is initiated. Every new client that arrives within the bounds of
this window and requests the stream si is inserted in a waiting queue i.e., it is
batched together with the client ck. When the window expires, a single trans-
mission for the media stream si is initiated. This transmission is shared by all
clients, as in standard broadcast television. Batching policies reduce bandwidth
requirements at the expense of introducing an additional delay to the users (i.e.,
client startup latency increases).

Stream tapping [15], patching [13,40], and controlled multicast [32] were in-
troduced to avoid the latency problems of batching. They are very similar tech-
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niques. They can provide immediate service to the clients, while allowing clients
arriving at different instants to share a common stream.

In the basic patching scheme [40], the server maintains a queue with all pend-
ing requests. Whenever a server channel becomes available, the server admits all
the clients that requested a given video at once. These clients compose a new
batch. Assume, that this new batch of clients requested a CM stream si which
is already being served. Then, all clients in this new batch immediately join this
on-going multicast transmission of si and start buffering the arriving data. To
obtain the initial part of the stream si, which is called a patch because it is no
longer being multicasted, a new channel is opened with the multimedia server.
Data arriving through this secondary channel is immediately displayed. Once the
initial part of si (i.e., the patch) has been displayed, the client starts consuming
data from its internal buffer. Thus, in this approach, the clients are responsible
for maintaining enough buffer space to allow merging the patch portion of the
stream with its main part. They also have to be able to receive data in two
channels.

Stream tapping, optimal patching [13], and controlled multicast differ from
the basic patching scheme in the following way: they define an optimal patching
window wi for each CM stream si. This window is the minimum interval between
the initial instants of two successive complete transmissions of the same stream
si. The size of wi can improve the performance of patching. If wi is set too large,
most of the server channels are used to send patches. On the other hand, if wi is
too small no stream merging will occur. The patching window size is optimal if
it minimizes the requirements of server and network bandwidth. The algorithm
works as follows. Clients which requested the stream si prefetch data from an
on-going multicast transmission, if they arrive within wi units of time from the
beginning of the previous complete transmission. Otherwise, a new multicast
transmission of stream si is initiated. A mathematical model which captures the
relation between the patching window size and the required server bandwidth
is proposed in [13]. In [32] an expression for the optimal patching window is
obtained.

Figure 5 illustrates batching and patching techniques. In Fig. 5(a), three new
clients requesting the stream si arrive within the batching window. They are
served by the same multicast transmission of si. Figure 5(b) shows the patching
mechanism. We assume that the three requests arrive within a patching window.
The request r0 triggers the initial multicast transmission of stream si, r1 triggers
the transmission of the patch interval (t1 − t0) of si for r1, and r2 starts a
transmission of the (t2 − t0) missing interval of si for r2.

A study of the bandwidth required by optimal patching, stream tapping, and
controlled multicast is presented in [27]. It is assumed that the arrivals of client
requests are Poisson with mean rate equal to λi for stream si. The required
server bandwidth for delivery of stream si is given by [27] as: BOP,ST,CM =
(1 + w2

iNi/2)/(wi + 1/Ni), where Ni = λiTi, Ti is the total length of stream si
and wi is the patching window.
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Fig. 5. Batching and patching techniques.

The expression presented above is very similar to the results obtained in [13,
32]. The value of the optimal patching window can be obtained differentiating the
expression for BOP,ST,CM. It is equal to (

√
2Ni + 1−1)/Ni. The server bandwidth

for an optimal patching window is given by [32]: Boptimal window =
√
2Ni + 1−1.

A second approach to reduce server and network bandwidth requirements,
called Piggybacking, was introduced in [4,35,48]. The idea is to change dinami-
cally the display rates of on-going stream transmissions to allow one stream to
catch up and merge with the other. Suppose that stream si is currently being
transmitted to a client. If a new request for si arrives, then a new transmission
of si is started. At this point in time, the server slows down the data rate of
the first transmission and speeds up the data rate of the second transmission of
si. As soon as the two transmissions become identical, they can be merged and
one of the two channels can be released. One limitation of this technique is that
it requires a specialized hardware to support the change of the channel speed
dinamically.

In the hierarchical stream merging (HSM) techniques [7,25,27] clients that
request the same stream are hierarchically merged into groups. The client re-
ceives simultaneously two streams: the one triggered by its own request and a
second stream which was initiated by an earlier request from a client. With time,
the client is able to join the latter on-going multicast transmission and the de-
livery of the stream initiated by it can be aborted. The merged clients also start
listening on the next most recently initiated stream. Figure 6 shows a scenario
where four client requests arrive for stream s1 during the interval (t1, t3). The
server initiates a new multicast transmission of s1 for each new client. At time
t2, client c2, who is listening to the stream for c1, can join this on-going multicast
transmission. At time t3, client c4 joins the transmission of c3. Thus, after t3,
client c4 can listen to the multicast transmission initiated at t1. At t5, client c4
will be able to join the transmission started for client c1. Bandwidth skimming
(BS) [26] is similar to HSM. In this technique, policies are defined to reduce the
user bandwidth requirements to less than twice the stream playback rate.

In [27], an expression for the required bandwidth of a server operating with
the HSM and BS techniques was obtained. Suppose that the transmission rate
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needed by a client is equal to b units of the media playback rate (b = 2 for HSM
and b < 2 for bandwidth skimming) and that the request arrivals are Poisson
with mean rate equal to λi for stream si. The required server bandwidth for
delivery of stream si can be approximated by: BHSM,BS ≈ ηbln(Ni/ηb + 1),
where Ni is defined as above and ηb is the positive real constant that satisfies:
ηb[1− (ηb/(ηb + 1))b] = 1

(b) skyscraper broadcast(a) hierarchical stream merging
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Fig. 6. Hierarchical stream merging and skyscraper broadcasting

Most of the studies in the literature have evaluated the required server band-
width for the proposed sharing techniques. One key question is how the perfor-
mance of a multimedia system is affected when the server bandwidth is limited
by the equations previously presented. In a recent work [68] analytical models
for HSM, BS and patching techniques are proposed to evaluate two performance
metrics of a multimedia system: the mean time a client request is delayed if the
server is overloaded (it is called the mean client waiting time) and the fraction
of clients who renege if they are not served with low delay (it is called the balk-
ing rate). The models assumptions are: client request arrivals are Poisson, each
client requests the entire media stream and all media streams have the same
length and require the same playout rate. The model proposed to evaluate the
balking rate is a closed two-center queueing network with C clients (C is the
server bandwidth capacity in number of channels). The mean client waiting time
is obtained from a two-center queueing network model with K users (There are
one user per class and each class represents one stream.) Each user models the
first request for a stream si, the others requests that batch with the first are
not represented in the model. Results obtained from the analytical models show
that the client balking rate may be high and the mean client waiting time is
low when the required server bandwidth is defined as in the equations presented
above. Furthermore the two performance parameters are very sensitive to the
increase in the client load.

4.2 Periodic Broadcast Techniques

The idea behind periodic broadcast techniques is that each stream is divided into
segments that can then be simultaneously broadcast periodically on a set of k
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different channels. A channel c1 delivers only the first segment of a given stream
and the other (k−1) channels deliver the remainder of the stream. When a client
wants to watch a video, he must wait for the beginning of the first segment on
channel c1. A client has a schedule for tuning into each of the (k−1) channels to
receive the remaining segments of the video. The broadcasting schemes can be
classified into three categories [39]. The first group of periodic broadcast tech-
niques divides the stream into increasing sized segments and transmits them in
channels of the same bandwidth. Smaller segments are broadcast more frequently
than larger segments and the segments follow a size progression (l1, l2, ..., ln). In
the Pyramid Broadcasting (PB) protocol [70], the sizes of the segments follow
a geometric distribution and one channel is used to transmit different streams.
The transmission rate of the channels is high enough to provide on time delivery
of the stream. Thus, client bandwidth and storage requirements are also high.

To address the problem of high resource requirements at the client side, a
technique called Permutation-based Pyramid Broadcasting (PPB) was proposed
in [3]. The idea is to multiplex a channel into k subchannels of lower rate. In the
Skyscraper broadcast technique [41] each segment is continuously transmitted at
the video playback rate on one channel as shown in Fig. 6. The series of segments
sizes is 1,2,2,5,5,12,12,25,25,52,52,... with a largest segment size equal to W .
Figure 6 shows two client request arrival times: one just prior the third segment
and the other before the 18th segment broadcast on channel 1. The transmission
schedules of both clients are represented by the gray shaded segments. The
schedule is such that a client is able to continuous playout the stream receiving
data in no more than two channels. The required maximum client buffer space
is equal to the largest segment size.

For all techniques described above the required server bandwidth is equal
to the number of channels and is independent of the client request arrival rate.
Therefore, these periodic broadcast techniques are very bandwidth efficient when
the client request arrival rate is high. A dynamic skyscraper technique was pro-
posed in [24] to improve the performance of the skyscraper. It considered the
dynamic popularity of the videos and assumed lower client arrival rates. It dy-
namically changes the video that is broadcast on the channels. A set of segments
of a video are delivered in transmission clusters. Each cluster starts every W
slots on channel 1 and broadcasts a different video according to the client re-
quests. Client requests are scheduled to the next available transmission cluster
using a FIFO discipline, if there is no transmission cluster already been assigned
to the required video. A new segment size progression is proposed in [27] to
provide immediate service to client. Server bandwidth requirements for trans-
mitting a stream si considering Poisson arrivals with mean rate λi are given by
[27]: BDyn Sky = 2Uλi + (K − 2)/(1 + 1/λiWU), where U is the duration of a
unit-segment, W is the largest segment size and K is the number of segments in
the segment size progression.

Another group, the harmonic broadcast techniques, divide the video in equal
sized segments and transmit them into channels of decreasing bandwidth. The
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third group combines the approaches described above. They are a hybrid scheme
of pyramid and harmonic broadcasting.

4.3 Proxy Based Strategies

The use of proxies in the context of CM applications has several advantages.
Server and network bandwidth requirements can be reduced and the client
startup latency can be very low. In Sec. 4.1 and 4.2 the models to evaluate
the scalability of the bandwidth sharing techniques are based on the assump-
tion that client request arrivals are sequential (i.e., clients request a stream and
playout it from the beginning to the end). The required server bandwidth for
these techniques varies logarithmically with the client request arrivals (for stream
merging) and logarithmically with the inverse of the start-up delay (for periodic
broadcasting) [44]. In a recent work [44], tight lower bounds on the required
server bandwidth for multicast delivery techniques when the client request ar-
rivals are not sequential were derived. The results obtained suggested that for
non-sequential access the scalability of these techniques is not so high as for
sequential access. Thus, the use of proxies is a complementary strategy that can
reduce resource requirements and client latency of large scale CM applications.

Provisioning a multimedia application with proxy servers involves determin-
ing which content should be stored at each proxy. Several studies are based on
the storage of data accessed most frequently. Distinct approaches exist in the lit-
erature. One idea is to divide the compressed video in layers that can be cached
at the proxy. An alternative is to cache a portion of a video file at the proxy.
Recent work combines the use of proxies with bandwidth sharing mechanisms
such as periodic broadcast and client request oriented techniques. In the last
approach, not only the popularity of the video should be considered to decide
which portion of the stream have to be stored at the proxy. The data staged
at the proxy depends also on the mechanisms used to share the transmission
of data. In most of the bandwidth sharing mechanisms, the server delivers the
initial portion of a stream more frequently than the latter part. Therefore, the
storage of a prefix can reduce more significantly the transmission costs than the
storage of the suffix.
Caching of Video Layers. In a video layer encoding technique, the compressed
video stream is divided into layers: a base layer and enhancement layers. The
base layer contains essential low quality encoding information, while the en-
hancement layers provide optional information that can be used to improve the
video stream quality.

The approach used in [72] is to divide a video stream in two parts and to
store the bursts of the stream in a proxy. A cut-off rate Crate is defined, where
0 ≤ Crate ≤ Prate (Prate is the peak rate). The first part of the stream (the upper
part) exceeds the cut-off rate, and the remaider of the stream is the lower part.
The upper part is staged at a proxy server and the lower part is retrieved from
the server. The stream transmitted from the server to the clients approaches
to a CBR stream as Crate decreases. Two heuristic algorithms are presented to
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determine which video and what percentage of it has to be cached at the proxy.
The first stores hot videos i.e., popular videos, entirely at the proxy. The second
stores a portion of a video so as to minimize the bandwidth requirements on the
server-proxy path. Results shown that the second heuristic performs better than
the first.

Another approach is presented in [59]. A mechanism for caching video layers
is used in conjunction with a congestion control and a quality adaptation mecha-
nism. The number of video layers cached at the proxy is based on the popularity
of the video. The more popular is a video, the more layers are stored in the
proxy. Enhancement layers of cached streams are added according to a quality
adaptation mechanism [60]. One limitation of this approach is that it requires
the implementation of a congestion control and of a quality adaptation mecha-
nism in all the transmissions between clients and proxies and between proxies
and servers.
Partial Caching of the Video File. The scheme proposed in [66] is based on
the storage of the initial frames of a CM stream in a proxy cache. It is called
proxy prefix caching. It was motivated by the observation that the performance
of CM applications can be poor due to the delay, throughput and loss character-
istics of the Internet. As presented in Sec. 3 the use of buffers can reduce network
bandwidth requirements and allow the application to tolerate larger variations
in the network delay. However, the buffer size is limited by the maximum startup
latency a client can tolerate. Proxy prefix caching allows reducing client startup
latency, specially when buffering techniques are used. The scheme work as fol-
lows. When a client requests a stream, the proxy immediately delivers the prefix
to the client and asks the server to initiate the transmission of the remaining
frames of the stream. The proxy uses two buffers during the transmission of
stream si: the prefix buffer Bp and a temporary buffer Bt. Initially, frames are
delivered from the Bp buffer while frames coming from the server are stored in
the Bt buffer.
Caching with Bandwidth Sharing Techniques.When using a proxy server
in conjunction with scalable delivery mechanisms several issues have to be ad-
dressed. The data to be stored at each proxy depends on the relative cost of
streaming a video from the server and from the proxy, the number of proxies,
the client arrival rate and the path from the server to the proxy (unicast or
multicast enabled).

Most of the studies in the literature [23,58,16,36,71,5] define a system cost
function which depends on the fraction of the stream stored at the proxy (wi),
the bandwidth required for a stream (bi), the client arrival rate (λi) and the
length of the stream (Ti). The cost for delivering a stream si is given by
Ci(wi, bi, λi, Ti) = Bserver(wi, bi, λi, Ti) + Bproxy(wi, bi, λi, Ti) where Bserver is
the cost of the server-proxy required bandwidth and Bproxy is the cost of the
proxy-client required bandwidth. Then, an optimization problem is formulated.
The goal is to minimize the transmission costs subject to bounds on the total
storage and/or bandwidth available at the proxy. The solution of the problem
gives the proxy cache allocation that minimizes the aggregate transmission cost.
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The work of [71] combines proxy prefix caching with client request oriented
techniques for video delivery between the proxy and the client. It is assumed that
the transmission between the server and the proxy is unicast and the network
paths from the proxy to the clients are either multicast/broadcast or unicast.
Two scenarios are evaluated: (a) the proxy-client path is unicast and (b) the
proxy-client path is multicast. For the scenario (a) two transmission strategies
are proposed. In the first a batching technique is used to group the client re-
quest arrivals within a window wpi (equal to the length of the prefix stored at
the proxy). Each group of clients is served from the same unicast transmission
from the server to the proxy. The second is an improvement of the first. It is
similar to the patching technique used in the context of unicast. If a client re-
quest arrives at time t after the end of wpi , the proxy schedules a patch for the
transmission of the missing part from the server. The (Ti− t) (Ti is the length of
the stream si) remaining frames of the stream are delivered from the on-going
transmission of stream si. The client will receive data from at most two chan-
nels: the patch channel and the on-going transmission channel. For the scenario
(b), two transmission schemes are presented: the multicast patching technique
[13] implemented at the proxy and the multicast merging which is similar to the
stream merging technique [25]. A dynamic programming algorithm is used to
solve the optimization problem. Results show that the transmission costs when
a prefix cache is used are lower compared to caching the entire stream, and that
significant transmissions savings can be obtained with a small proxy size.

The work in [36] studies the use of proxy prefix caching with periodic broad-
cast techniques. The authors propose the use of patching to deliver the prefix
from the proxy to the client and periodic broadcast to deliver the remaining
frames (the suffix) from the server to the client. Clients will temporarily receive
both the prefix from the proxy and the suffix from the server. Therefore, the
number of channels a client needs is the sum of the channels to obtain the suffix
and the prefix. A slight modification in periodic broadcast and patching is intro-
duced such that the maximum number of simultaneous channels required by a
client is equal to two. Proxy buffer allocation is based on a three steps algorithm
aimed at minimizing server bandwidth in the path from the server to the proxy.
Results show that the optimal buffer allocation algorithm outperforms a scheme
where the proxy buffer is evenly divided among the streams without considering
the length of each stream.

In [5] the following scenarios are considered: (a) the bandwidth skimming
protocol is used in the server-proxy and proxy-client paths, (b) the server-proxy
path is unicast capable and the bandwidth skimming technique is used in the
proxy-client path, and (c) scenarios (a) and (b) combined to proxy prefix caching.
In the scenario (a) the proxy can store an arbitrary fraction of each stream si.
Streams are merged at the proxy and at the server using the closest target
bandwidth skimming protocol [25]. In the scenario (b) the server-proxy path
is unicast, thus only streams requested from the same proxy can be merged at
the server. Several results are obtained from a large set of system configuration
parameters. They show that the use of proxy servers is cost effective in the
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following cases: the server-proxy path is not multicast enabled or the client
arrival rate is low or the cost to deliver a stream from the proxy to the client is
very small when compared to the cost to deliver a stream from the server to the
client.

5 Conclusions

In this chapter we have surveyed several performance issues related to the design
of real time voice and video applications (such as voice transmission tools and
multimedia video servers). These include issues from continuous media retrieval
to transmission. Since the topic is too broad to be covered in one chapter we
trade deepness of exposition to broadness, in order to cover a wide range of
inter-related problems.

As can be seen in the material covered, an important aspect in the design of
multimedia servers is the storage strategy. We favor the use of the random I/O
technique due to its simplicity of implementation and comparable performance
with respect to other schemes. This technique is particularly attractive when
different types of data are placed in the server, for instance mixture of voice,
video, transparencies, photos, etc. Furthermore, the same technique can be easily
employed in proxies. To evaluate the performance of the technique, queueing
models constructed from real traffic streams traces can be used. It is clear the
importance of accurate traffic models to feed the overall server model.

A multimedia server should try to send the requested streams as smooth
as possible (or as close as possible to CBR traffic) to minimize the impact of
sudden rate changes in the network resource. Large buffers at the receiver imply
better smoothing, but at the expense of increasing latency to start displaying
a stream. The receiver playout buffer is also used to reduce the packet delay
variability imposed by the network and to help in the recovery process when
a packet loss occur. We have surveyed a few packet recovery techniques, and
presented the main tradeoffs such as error correction capability and increase in
the transmission rate, efficiency versus latency, etc. Modeling the loss process
is an important problem and many issues remain open. Although some of the
conclusions in the chapter were drawn based on the study of voice traffic the
issues are not different for video traffic.

Due to the high speed of modern disk systems, presently the bottleneck to
delivery the continuous media stream to clients is mainly at the local network
where the server is attached, and not at the storage server. Therefore, an is-
sue that has drawn attention in recent years is the development of algorithms
to conserve bandwidth, when a large number of clients submit requests to the
server. Since multicast is still far from been widely deployed, we favor schemes
that use unicast transmission from the storage server to proxy servers. Between
the proxy and the clients multicast is more likely to be feasible, and therefore
multicast-based techniques to reduce bandwidth requirements are most likely to
be useful in the path from the proxy to the clients.
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To conclude, we stress the importance of developing multimedia applica-
tions and perform tests on prototypes, collect statistics, develop models based
on the data obtained. Modeling tools are an important part of the evaluation
process, and this includes not only simulation but analytical tools, traffic gen-
erators, etc. Several tools and prototypes have been developed in recent years.
Our own tools include: video servers, implementing different storage techniques;
voice transmission tool implementing FEC recovery mechanisms; distributed
whiteboard (with multicast library), TANGRAM-II that includes a modeling
environment with analytical as well as simulation solvers, traffic modeling envi-
ronment and traffic generator and analyzer. (Most of the tools can be download
from www.land.ufrj.br and/or www.dcc.ufmg.br.)
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