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Abstract. We propose a deep study on tissue modelization and classi-
fication Techniques on T1-weighted MR images. Three approaches have
been taken into account to perform this validation study. Two of them are
based on Finite Gaussian Mixture (FGM) model. The first one consists
only in pure Gaussian distributions (FGM-EM). The second one uses a
different model for partial volume (PV) (FGM-GA). The third one is
based on a Hidden Markov Random Field (HMRF) model. All methods
have been tested on a Digital Brain Phantom image considered as the
ground truth. Noise and intensity non-uniformities have been added to
simulate real image conditions. Also the effect of an anisotropic filter is
considered. Results demonstrate that methods relying in both intensity
and spatial information are in general more robust to noise and inho-
mogeneities. However, in some cases there is no significant differences
between all presented methods.

1 Introduction

The study of many brain disorders requires an accurate tissue segmentation from
magnetic resonance (MR) images. Manual tracing of the three brain tissue types,
white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) in MR
images by an expert is too time consuming because most studies involve large
amounts of data. Automated and reliable tissue classification is complicated due
to different tissue intensities overlapping (partial volume effect, PVE), presence
of noise and intensity non-uniformities caused by the inhomogeneities in the
magnetic field of the MR scanner. Different approaches have been presented in
recently to deal with this key topic. There is a need to explicitly take into account
the pve but most used methods, as [1] only use a FGM representing three main
tissue types. In other cases [2] pve is added as normal Gaussian distribution. In
more evolved methods such as [3] mixing proportions are equally alike in PV
voxels resulting in a density function. Recently, other methods that consider the

T. Dohi and R. Kikinis (Eds.): MICCAI 2002, LNCS 2488, pp. 290–297, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Validation of Tissue Modelization and Classification Techniques 291

mixing proportions changing according to a MRF received an increasing interest
[4]. Finally, non-parametric techniques can be considered when no assumption
on the intensity distributions can be done [5]. Here we propose a detailed com-
parative study and validation of three different classification techniques, a fourth
technique using a statistical non-parametric method will be considered in a near
future. With this comparative study and taking into account the conditions of
our problem we will be able to propose the most suitable technique to solve the
classification problem.

2 Image Model

Theory behind voxel intensities is the same as the one used by Santago et al. in
[3]. In an ideal case, only three main tissues have to be considered: CSF, GM and
WM. But because of the finite resolution of an MR image the well-known partial
volume effect (PVE) appears. Voxel intensity (ν) is modeled as the weighted sum
of intensities of the tissues present in the voxel volume, plus an error term. It is
assumed that no particular combination of underlying tissues is more probable
than any other. If PVE is considered the probability density function ρν(ν) is
defined by:

ρν(ν) =
∑

t

Pr [t] ρνt
(νt), where t ∈ {csf, gm, wm, cg, cw, gw, cgw}, (1)

where Pr [t] is the probability of tissue t and ρνt
(νt) is the probability density

function of ν given tissue t and cg, cw, gw, cgw, respresnts the mixtures for
csf/gm, csf/wm, gm/wm and csf/gm/wm respectivetly. Because Pr [cgw] ρνcgw

(νcgw) and Pr [cw] ρνcw(νcw) are insignificant in ρν(ν), they will not be consid-
ered. ρν(ν) for single a tissue voxel and a mixed two-tissue (ab) voxel:
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and

ρνab
(νab) =

∫ 1

0

1
ση

√
2π

Exp

[−(ν − (αIa + (1 − α)Ib))2

2σ2
η

]
dα, (3)

with mean and variance given by:
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We can observe that PV function varies between a block function and a Gaussian
function depending on Ia (mean intensity of main tissue type a), Ib (mean in-
tensity of main tissue type b) and σ2

η (noise variance of main tissues), see Fig. 1.
This means that for certain cases (for larger ση’s, and when Ia and Ib are very
different) equation 3 can be replaced by a simple Gaussian. When validating
(see Fig. 2in section 6), this is a reasonable assumption, if the variance of the
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Fig. 1. Plot of Equation 3 with (a) varying ση (where Ia = 40, Ib = 60) and (b) varying
ση (where Ia = 40, Ib = 120)

Gaussian functions representing the tissue mixtures is considered independent of
ση. Then, MR image histogram can be modeled solely by Gaussian distributions
even for PV representation. As mentioned in [3], the continuous physical reality
ρν(ν) is approximated by the normalized image histogram (hi in Eq. 6). Finally,
we have to find the set of parameters that solves the minimization problem:

p = {Pr [i] , µj , σi} for i ∈ {csf, gm, wm, cg, cw, gw} and j ∈ {csf, gm, wm}
(5)

I∑
i=1

(hi −
∑

t

Pr [t] ρνj (i))
2 for t ∈ {csf, gm, wm, cg, cw, gw} (6)

The goal is to optimally classify an instance of ν, ν̃, in one of the possible
categories. It can be shown that the optimal classification of ν̃, in terms of the
probability error is the Bayes classification.

3 Method A: Pure Finite Gaussian Mixture Model

Here, the intensity histogram is modeled by 3, 4 or 5 Gaussian distributions.
We deal with the mixture-density parameter estimation problem (see Eq. 6). A
possible approach is to find the maximum of a mixture likelihood function. One
of the most used methods is the Expectation Maximization (EM) algorithm.
Here we follow the steps as explained by [6]. The following probabilistic model
as defined in Eq. 2 is assumed:

p(x|Θ) =
M∑
i=1

wipi(x|θi), (7)

where the parameters are Θ = (w1, . . . , wM , θ1, . . . , θM ) such that the sum of
all the weights (wi) is one and each pi is a density function parameterized by
θi. So it is assumed that there are M component densities mixed together with
M mixing coefficients P (wl). In the case of the univariate normal mixture, the
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maximum likelihood estimates for the next iteration step P (wl)(t+1) of the mix-
ture coefficients, µ

(t+1)
l of the mean and σ2

l
(t+1) of the variance are expressed as

follows:

P (wl)(t+1) =
1
N

N∑
i=1

p(wl|xi, Θ)(t) and µ
(t+1)
l =

∑N
i=1 xip(wl|xi, Θ)(t)∑N
i=1 p(wl|xi, Θ)(t)

(8)

σ
(t+1)
l =

∑N
i=1 p(wl|xi, Θ)(t)(xi − µ

(t)
l )(xi − µ

(t)
l )T∑N

i=1 p(wl|xi, Θ)(t)
(9)

where

p(wl|xi, Θ)(t) =
p(xi|wl, Θl)P (wl)(t)∑M

j=1 p(xi|wj , Θj)P (wj)(t)
(10)

These four equations are used for the numerical approximation of the parameters
of the mixture. Initial estimations of the parameters P (wl), µl and σl have to
be specified and only pure Gaussian distributions are considered.

4 Method B: Finite Gaussian Mixture Model Considering
a Partial Volume Model

In this case the main three tissue types are modeled by normal Gaussians (Eq. 2)
and both CSF/GM and GM/WM partial volumes are modeled by the PVE
presented in Eq. 3. PVE is numerically solve it with Newton’s method and a
genetic algorithm is used to find the mixture parameters as defined in 5. The
genetic algorithm used here is the same presented in [1]. Genes are composed
by the means of the three Gaussians (Eq. 2) µ1, µ2, µ3, by the noise variance ση

(considered the same for all tissues) and by a weight for either Gaussian or PV
distributions w1, w2, w3, w4, w5, where

∑5
i=1 wi = 1.

5 Method C: Hidden Markov Random Field Model

A hidden Markov random field (HMRF) model [4] is used to improve the clas-
sification by using spatial information. The importance of the HMRF model
derives from MRF theory, in which the spatial information in an image is en-
coded through contextual constraints of neighboring pixels. By imposing such
constraints it is expected that neighboring pixels will have the same class labels.
This is achieved by characterizing mutual influences among pixels using condi-
tional MRF distributions. A Pure Gaussian Mixture model will be used for the
HMRF method:

p(yi|xNi , θ) =
∑
l∈L

g(yi; θl)p(l|XNi), (11)

where θl = (µl, σl) and g(y; θl) is the guassian density function. This type
of HMRF is often referred to as the Gaussian hidden Markov random field
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(GHMRF) model. Note that finite mixture (FM) models is a particular case
of HMRF where p(l|XNi

) = wl (note Eq. 7). The HMRF-EM algorithm will be
used:

u
(t+1)
l =

∑
i∈S P (t)(l|yi)yi∑
i∈S P (t)(l|yi)

and
(

σ
(t+1)
l

)2

=
∑

i∈S P (t)(l|yi)(yi − µl)2∑
i∈S P (t)(l|yi)

, (12)

which are the same update equations as for the finite Gaussian mixture model
(Eq. 9), except for

P (t)(l|yi) =
g(t)(yi; θl) · P (t)(l|xNi

)
p(yi)

. (13)

P (t)(l|xNi) calculation involves the estimation of class labels, which are obtained
through MRF-MAP estimation. Means, variances and label map estimation by
EM algorithm is used to initialize the HMRF-EM algorithm.

6 Validation

Validation has been done using the digital brain phantom images [7]. Tissue
classification (CSF, GM, WM and mixtures of these) of these phantoms are
known a priori. This makes them suitable for segmentation algorithm assess-
ment. The Brainweb web-site [7] provides several simulated MRI acquisitions
of this phantom including RF non-uniformities and noise levels. It is possible
to split phantom histogram into specific ones for each pure tissue type and its
mixtures (see Fig. 2(a)). Note that three main tissues are pure Gaussians while
mixture densities look a bit like a Gaussian, but with a larger variance. Quan-
titative results of Brainweb segmentation using Bayes classificator are shown in
first row of table 4. The percentage of correctly classified voxles is computed
with respect to this reference data. Pixels of the background are not considered.
The overall percentage of the classification is calculated over all the voxels of the
brain. The percentage of different tissue type volumes is also calculated. Classi-
fication has been done on MR images containing 5, 7 and 9% noise and of 0 or
20% RF non-uniformity. We also considered the effect of an anisotropic diffusion
filter on the classification results. Test have been done in both filtered and not
filered images.

7 Results

All tests have been done on Brainweb images (image size is 181x217x181 and
isotropic voxel size of 1mm). Method A has been tested for 3, 4 and 5 Gaussians
(see A3, A4, A5 in table 4). Results show that using 5 Gaussian distributions
does not always yield better results and that the amount of PV is overestimated.
This is due to the fact that the assumption of using a normal distribution for a
PV is false in this cases (see Fig. 2(b)). The segmentation results of method B
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Fig. 2. (a) Segmentation from a Brainweb phantom with 5% noise and 0% RF, not
filtered. Dark area represents errors made when using only histogram data. (b) FGM-
EM technique, method A. (c) FGM-GA technique, method B

are not as good as expected since it models the PV more in line with physics. It
actually highly overestimates PV (Fig. 2(c)). Restrictions on PV wheights when
using genetic algorithm could probably improve final classifiaction. Method C
yields in the best results even if it doesn’t reach 100% correct classification. It
performs the less noisy classification (see Fig. 3). Most of the errors performed
by this method are locate in PV voxels. This can be easily explained: in a HMRF
model the neighborhood of a voxel is considered. If we look at the neighborhood
of a PV voxel its neighbours are mostly pure tissue voxels, in which case HMRF
model will assign a pure tissue label to the PV voxel. This behaviour tends to
eliminate PV voxels in label map (that’s reflected on table 1 where PV volumes
are the smallest). A possibility to solve this problem could be not to consider
neighborhood pixels in the partial volume regions. Another possibility could be
to adapt the way the clique potentials [4] are calculated, so that PV voxels are
no longer assigned to a low probability.

��� ��� ��� ��� ���

Fig. 3. Label map of image (a) with 7% noise found by different classification methods.
(b) BW segmentation. (c) Method A. (d) Method B. (e) Method C.

8 Discussion

As we have seen in section 6, if the validation is done solely on intensity im-
age spectra, the tissue classification can never be a 100% due to the noise (see
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Fig. 4. Percentages of correctly classified pixels for different images: %noise/%RF/
filtered. Brainweb histogram segmentation (BW), FGM-EM segmentation using 3, 4
and 5 Gaussian (A3, A4 and A5, respectively), FGM-GA segmentation (B), and HMRF
segmentation (C).

Table 1. The percentages of the volumes of the different tissue types.

Image csf wm gm gm-wm csf-gm

BW 11.8 34.7 36.8 10.5 6.17

5% noise, not filtered 13.0 26.5 36.1 12.8 11.6
7% noise, not filtered 16.6 26.0 33.3 13.9 10.1

A 7% noise, filtered 15.7 30.0 27.0 15.8 11.3
9% noise, not filtered 15.0 30.3 28.0 14.6 12.1
9% noise, filtered 19.2 15.9 31.7 27.2 6.00

5% noise, not filtered 7.62 24.3 26.8 23.2 18.3
7% noise, not filtered 6.88 25.2 27.3 19.0 21.9

B 7% noise, filtered 7.76 23.6 25.3 23.8 18.9
9% noise, not filtered 8.20 26.6 29.1 15.8 20.5
9% noise, filtered 5.96 25.1 26.1 18.8 24.2

5% noise, not filtered 12.1 28.7 47.2 7.07 9.441
7% noise, not filtered 15.7 31.0 44.1 2.91 6.21

C 7% noise, filtered 16.7 24.7 35.9 14.1 8.67
9% noise, not filtered 17.2 31.2 43.4 2.60 5.64
9% noise, filtered 19.6 24.3 36.9 13.8 5.39

Fig. 3). Actually, the less noise there is in the image the better the segmentation.
When the noise variance is small, the overlap between the histograms of every
tissue type and its mixtures is then also smaller. Results show (see Fig. 4) that
the application of an anisotropic diffusion filter improves the classification tech-
niques (2% mean error reduction for 5% of noise) and this improvement is more
significative when dealing with more noisy images (until 4% mean error reduc-
tion for 9% noise). However, this filtering have no so much impact on intensity
non-uniformities. We have seen also that FGM models (method A and B) are
solely histogram-based methods. They don’t consider any spatial information.
Such a limitation causes these methods to work efficiently only on images with
low level of noise. Unfortunately this is not often the case with MR images.
Actually, method C shown to be more suited for MR brain image modelling in
the sense that it has the ability to encode both statistical and spatial image
properties. When the three methods are compared, method C is by far the best,
not only because it scores the best in the percentage of correctly classified voxels
and it gives the best volume estimation of the main tissue types. But mostly
because the label map resulting from the classification hardly contains any noise
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(Fig. 2). However, it presents also some weak points. It tends to eliminate PV
and it approximates PV having a Gaussian distribution and that is not always
realistic. Finally, it takes prohibitive computation time (it could take up to 8
hours with 181x217x181 image dimension) since it has been implemented in 3D.
However, it would be very interesting to compare these methods with a statisti-
cal non-parametrical method such as the one we presented in[5] which is suposed
to be better since it is a supervised method and uses spatial information.

9 Conclusion

We have presented here a validation study of MR brain images classification tech-
niques. To perform this validation three different classification methods widely
used for this application have been presented. All tests have been done in a
ground truth image considering different noise and intensity non-uniformity lev-
els. Also the effect of an anisotropic filter has been also considered when com-
paring between filtered and not filtered images. Results have shown that the
techniques considering spatial information lead in better results when high noisy
images are considered and that the application of an anisotropic filter lead in
better a classification. However, it has been also demonstrated that in other
cases histogram-based techniques lead to comparable results.
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