CVC: A Cooperating Validity Checker

Aaron Stump, Clark W. Barrett, and David L. Dill

Computer Systems Laboratory, Stanford University
Stanford, CA 94305, USA
Phone: +1 650 725 3646, Fax: +1 650 725 6949
{stump,barrett,dill}@cs.stanford.edu

Abstract. Decision procedures for decidable logics and logical theo-
ries have proven to be useful tools in verification. This paper describes
the CVC (“Cooperating Validity Checker”) decision procedure. CVC
implements a framework for combining subsidiary decision procedures
for certain logical theories into a decision procedure for the theories’
union. Subsidiary decision procedures for theories of arrays, inductive
datatypes, and linear real arithmetic are currently implemented. Other
notable features of CVC are the incorporation of the high-performance
Chaff solver for propositional reasoning, and the ability to produce in-
dependently checkable proofs for valid formulas.

1 Introduction

Decision procedures for decidable logics and logical theories have been used suc-
cessfully in several approaches to verification. They play an important role in
verification based on interactive theorem provers (e.g., PVS [8]), where decid-
able subgoals that arise in proofs of system correctness can be automatically
discharged by decision procedures, thus reducing the burden on the user. They
have also been used in more automatic approaches to verification, where veri-
fication problems are reduced to validity checking problems, typically involving
very large formulas (e.g., [9]).

CVC is a high-performance system for checking validity of formulas in a rela-
tively rich decidable logic. Atomic formulas are applications of predicate symbols
like < and = to first-order terms like x + 2 x y and car(cons(x,L)). Formulas are
then the usual boolean combinations (built using AND, OR, NOT, etc.) of atomic
formulas. CVC’s language provides predicate and function symbols which are
convenient for modelling systems like hardware, protocols, and software. CVC
is implemented in around 150K lines of C++-.

CVC is the successor to the Stanford Validity Checker (SVC) [1]. In addition
to the ability to produce proofs and the incorporation of an efficient SAT solver,
CVC has many improvements over SVC. The codebase is much more robust and
extensible. The C++ Standard Template Library (STL) is used for efficient data
structures. Such seemingly minor features as the syntax for the input language
and the quality of the error messages have been greatly improved, resulting in a

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 500-504, 2002.
© Springer-Verlag Berlin Heidelberg 2002

CVC: A Cooperating Validity Checker 501

much more usable system. The following is an example of CVC input:

list : TYPE = DATATYPE cons (car : REAL, cdr : list), null END;
L1,L2 : list;

x,y : REAL;

P : [[REAL,REAL]— > BOOLEAN];

QUERY (x = 2%y — 1) AND (L1 = L2 WITH car :=x) =>
P(x +y,car(Ll)) => P(3xy—1,x);

The example first declares an inductive datatype of lists. Then it declares some
uninterpreted constants and an uninterpreted binary predicate P. It then queries
a formula, which in this case is valid. The WITH operator performs functional
updating of a data structure.

2 Cooperating Decision Procedures

Early work by Nelson and Oppen showed that under certain restrictions, inde-
pendent decision procedures for quantifier-free logical theories in classical first-
order logic with equality can be combined to obtain a decision procedure for
the union of the theories [7]. The most basic restriction is that the theories may
not share function and predicate symbols other than the equality symbol. The
union of the theories can contain terms like car(L) + 3 * x which have function
symbols from the signatures of more than one theory. A variant of the Nelson-
Oppen approach is implemented in CVC [2]. The subsidiary decision procedures
currently implemented are for the following theories.

Arrays: The theory of arrays implemented [10] has function symbols for reading
from a location 7 in an array a (syntax: a[i]) and functionally updating an array a
to contain a given value v at a given index ¢ (syntax: a WITH [i] := v). Arrays
are extensional, which leads to validity of non-trivial equalities between updated
arrays such as (assuming a is an array)

((a WITH [1] := 100) WITH [2] := 200) =
((a WITH [2] := 200) WITH [1] := 100).

Inductive Datatypes: CVC allows the user to declare inductive datatypes like
lists and trees. Inductive datatypes are determined by a set of constructors, like
cons and null, which construct members of the datatype out of some constituent
elements (possibly none at all); and selectors, like car and cdr, which retrieve
constituent elements from members of the datatype. Selectors are considered
partial functions, so car(null) is considered to be undefined. When a datatype
is declared, testers like cons? and null? are automatically added. c?(x) is true
iff x was constructed using constructor c. CVC’s language has special syntax for
tuples and records, which are special cases of inductive datatypes.

502 Aaron Stump et al.

Linear Real Arithmetic: The theory of linear real arithmetic has the usual
function symbols for addition, subtraction, and arithmetic negation, as well as for
multiplication and division by a constant. There are also the usual predicate sym-
bols for arithmetic comparison. CVC implements a version of Fourier-Motzkin
variable elimination to handle inequalities.

3 Proofs

CVC can optionally produce proofs for every formula it reports valid. The proofs
are represented using a variant of the Edinburgh Logical Framework (LF) [5],
extended with features for more conveniently representing multi-arity functions
like the tuple-forming operator and n-ary addition [12]. The proofs can be effi-
ciently checked by a proof checker called flea [11], which ships with CVC.

4 Chaff

Given the great advances that have been made in propositional SAT solving tools
in the last decade, much greater performance on problems with boolean structure
can be achieved by incorporating a modern SAT solver. CVC incorporates the
Chaff SAT solver [6] to do its propositional reasoning. The Chaff code is modified
to assert CVC literals (atomic formulas or their negations) in its search for a
satisfying assignment. When the rest of CVC discovers a contradiction, a conflict
clause is added to Chaff containing the relevant assertions. CVC determines
which assertions are relevant to the contradiction by reusing the infrastructure
that produces proofs in order to track assumptions [3]. This approach greatly
improves performance.

5 Performance

Figure 5 compares CVC and its predecessor SVC on benchmarks from processor
verification. Size is the size in kilobytes of the formula represented with maximal
sharing of common subexpressions in ASCII. Running times are in seconds on
an 850MHz PIII. CVC is faster than SVC on all but a handful of the examples.
All but the last three examples were part of SVC’s suite of benchmarks, and
hence are among the examples that SVC could be expected to perform best on.

6 Related Work

CVC is similar to the ICS system [1]. ICS implements a version of Shostak’s al-
gorithm for combining decision procedures, which is less general than the frame-
work implemented in CVC. Other features of CVC that distinguish it from ICS
are

— incorporation of a state-of-the-art SAT solver
— the ability to produce independently verifiable proofs

CVC: A Cooperating Validity Checker 503

test size (Kb)[SVC time|CVC time
fb_12_11 10 1.0 0.2
fb_5_12 11 4.2 0.3
fb_6_12 8 1.1 0.2
dlx-dmem 71 0.2 1.8
dlx-pc 87 0.2 0.9
dlx-regfile 71 0.2 3.8
pp-bloaddata-a 32 0.6 1.6
pp-bloaddata 31 8.8 4.1
pp-dmem?2 30 8.6 1.4
pp-invariant 29 0.3 0.2
ibm-full-5 350 16.1 2.3
ibm-full-10 370 15.0 2.3
bool_dIx2_aa 238/ > 10000 0.7

— support for arbitrary inductive datatypes
— implementation in C++ (ICS is written in Ocaml)

Other cooperating decision procedures include:

— Simplify at Compaq SRC (http://research.compaq.com/SRC/esc/
Simplify.html)

— STeP at Stanford (http://www-step.stanford.edu/)

— Vampyre at Berkeley (http://www-cad.eecs.berkeley.edu/ rupak/Vampyre/)

7 Final Remarks

A Linux executable together with basic examples and documentation is freely
available at http://verify.stanford.edu/CVC. We thank the anonymous re-
viewers for their comments. This work was supported under ARPA /Air Force
contract F33615-00-C-1693 and NSF grants CCR-9806889 and CCR-0121403.

References

1. C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories
with equality. In M. Srivas and A. Camilleri, editors, Formal Methods In Computer-
Aided Design, volume 1166 of LNCS, pages 187-201. Springer-Verlag, 1996. 500

2. C. Barrett, D. Dill, and A. Stump. A Framework for Cooperating Decision Pro-
cedures. In David McAllester, editor, 17th International Conference on Computer
Aided Deduction, volume 1831 of LNAI pages 79-97. Springer-Verlag, 2000. 501

3. C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order For-
mulas by Incremental Translation to SAT. In 14th International Conference on
Computer-Aided Verification, 2002. 502

4. J. Filliatre, S. Owre, H. Ruef}, and N. Shankar. ICS: integrated canonizer and
solver. In G. Berry, H. Comon, and A. Finkel, editors, 13th International Confer-
ence on Computer-Aided Verification, 2001. 502

504

5.

10.

11.

12.

Aaron Stump et al.

R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal
of the Association for Computing Machinery, 40(1):143-184, January 1993. 502
M. Moskewicz, C. Madigan, Y. Zhaod, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In 39th Design Automation Conference, 2001. 502

G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245-57, 1979. 501

S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System. In
D. Kapur, editor, 11th International Conference on Automated Deduction, volume
607 of LNAI, pages 748-752. Springer-Verlag, 1992. 500

J. Skakkebak, R. Jones, and D. Dill. Formal verification of out-of-order execution
using incremental flushing. In 10th International Conference on Computer Aided
Verification, 1998. 500

A. Stump, C. Barrett, D. Dill, and J. Levitt. A Decision Procedure for an Exten-
sional Theory of Arrays. In 16th IEEE Symposium on Logic in Computer Science,
pages 29-37. IEEE Computer Society, 2001. 501

A. Stump and D. Dill. Faster Proof Checking in the Edinburgh Logical Framework.
In 18th International Conference on Automated Deduction, 2002. 502

A. Stump and D. Dill. Producing Proofs from an Arithmetic Decision Procedure
in Elliptical LF. In 8rd International Workhsop on Logical Frameworks and Meta-
Languages, 2002. (acceptance pending). 502

	CVC: A Cooperating Validity Checker
	Introduction
	Cooperating Decision Procedures
	Proofs
	Chaff
	Performance
	Related Work
	Final Remarks

