
Fast Maintenance of Rectilinear Centers

Sergei Bespamyatnikh1 and Michael Segal2

1 Department of Computer Science, University of British Columbia,
Vancouver V6T 1Z4, Canada

besp@cs.ubc.ca, http://www.cs.ubc.ca/spider/besp
2 Department of Communication Systems Engineering,

Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
segal@cs.bgu.ac.il, http://www.cs.bgu.ac.il/˜segal

Abstract. We address the problem of dynamic maintenance of 2-centers in the plane
under rectilinear metric. We present two algorithms for the continuous and discrete ver-
sions of the problem. We show that rectilinear 2-centers can be maintained in O(log2 n)
time. We give an algorithm for semi-dynamic (either insertions only or deletions only)
maintenance of the discrete 2-centers in O(log n log m) amortized time where n is the
number of customer points and m is the number of possible locations of centers.

1 Introduction

Given two sets S, C of points in the plane of size n and m, respectively we wish
to maintain dynamically (under insertions and/or deletions of points of S)

1. Rectilinear 2-center: two squares that cover S such that the radius of
maximal square is minimized.

2. Discrete Rectilinear 2-center: two squares that cover S centered at
points of C such that the radius of maximal square is minimized.

We also consider the generalization of problem 2 for the case of rectangles,
where one wants to minimize the largest perimeter. There are several results for
the static version of the problems above. A linear time algorithm for the planar
rectilinear 2-center problem is given by Drezner [4]. The O(n log n) time solution
for the discrete rectilinear 2-center was given by Bespamyatnikh and Segal [3]
and the optimality of their algorithm has been shown by Segal [6]. To our best
knowledge nothing has been done regarding the dynamic version of the rectilinear
2-center problem. Bespamyatnikh and Segal [3] considered also a dynamic version
of the discrete rectilinear 2-center. They have been able to achieve an O(log n)
update time, though the actual query time is only O(m log n(log n + log m)).

For the dynamic rectilinear 2-center problem we present a scheme which al-
lows us to maintain an optimal solution under insertions and deletions of points
of S in O(log2 n) time (both update and query), after O(n log n) preprocessing
time. For the semi-dynamic discrete rectilinear 2-center problem we give an al-
gorithm for maintaining the optimal pair of squares under insertions only (resp.
deletions only) of points of S in amortized O(log n log m) time (both update and
query), after O(n log n) preprocessing time. Our solution for the semi-dynamic

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 633–639, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

634 S. Bespamyatnikh and M. Segal

l8

l7

l6
l4

l3l5

q

r

l1

l2 D

C

A

B

Fig. 1. Subdivision of the bounding box into the ranges.

discrete rectilinear 2-center improves the best previous result by almost linear
factor, thus providing first sublinear semi-dynamic algorithm for dynamic main-
tenance of the discrete rectilinear 2-center.

2 Dynamic Rectilinear 2-Center

Denote by |pq| the L∞ distance between two points p, q in the plane. We observe
as in [2] that two pairs of the diagonal vertices of the bounding box of S play
a crucial role in defining two minimal squares that cover S. More precisely,
let us consider a pair of diagonal vertices A and C of the bounding box of S
in Figure 1. For the vertex A we find the farthest neighbor point p′ ∈ S (in
L∞ metric) among the points that are closer to A than to C. We repeat the
similar procedure for vertex C, obtaining point p′′. It can be done efficiently
by constructing a rectilinear bisector l4qrl3 and dividing the obtained regions
into the wedges, see Figure 1. The main property of such subdivision is that the
largest distance from a point pi ∈ W (W is a wedge) to corresponding vertex
(A or C) is either x- or y-distance between pi and the corresponding vertex.
For example, consider the diagonal vertex C in Figure 1 and associated with C
wedges: l4ql6, l6qrl1, l1rl2, l2rl3 (we should consider all these wedges since it may
happen that points q and r will be inside of the bounding box of S). We can use
the orthogonal range tree data structure [1] in order to find the required largest
distance. For the case of wedge l1rl2, only the y-coordinate of any point of S
lying in this wedge determines the distance from this point to C. We construct
a range tree T in the new system of coordinates corresponding to the directions
of l1 and l2. The main structure of T is a balanced binary tree according to the
”x”-coordinate of points. Each node v of this tree corresponds to the balanced
binary tree (secondary tree) according to the ”y”-coordinate of points whose ”x”-
coordinate belongs to the subtree rooted at v. We augment this data structure
by keeping an additional value for each node w in the secondary data structures
as the minimal value of the actual x-coordinates of the points corresponding to

Fast Maintenance of Rectilinear Centers 635

the nodes in the subtree rooted at w. In order to find the farthest l∞ neighbor of
C in the wedge l1pl2, we perform a query on t by taking this wedge as a range.
At most O(log2 n) nodes of the secondary data structure are taken into account
and we collect all the minimal x-values that are kept in these nodes. A point
that has a minimal x-coordinate is a farthest neighbor of C in the wedge l1pl2.

We apply the similar technique for the remaining wedges. The entire update
and query procedure takes O(log2 n) time after initial O(n log n) time for the
construction of the orthogonal range trees. In this way we can compute points
p′ and p′′. Let δ1 be the maximal value between |Ap′| and |Cp′′|. Using the same
searching farthest neighbor technique for a different pair of diagonal vertices B
and D, we obtain points q′, q′′ ∈ S such that |Bq′| = maxq∈S,|Bq|≤|Dq| |Bq| and
|Dq′′| = maxq∈S,|Dq|<|Bq| |Dq|. Let δ2 = max (|Bq′|, |Dq′′|). Finally, the smallest
value between δ1 and δ2 defines the size of the squares and their position in the
optimal solution of the rectilinear 2-center problem.

3 Dynamic Discrete Rectilinear 2-Center

(a) (b) (c)

a
b

c
d

Fig. 2. Different configurations of bounding boxes defined by two optimal discrete
squares.

First, we consider an optimal solution for the static discrete rectilinear 2-
center problem. Let s1 and s2 be two optimal discrete squares centered at points
of C that cover S. Consider the bounding boxes B1 and B2 of points covered by
s1 and s2, respectively. Three different configurations of B1 and B2 are possible,
see Figure 2. (In fact, in our analysis a few more different configurations appear,
but they are symmetrically opposite to the configurations described below). De-
note by bb(S) the bounding box of S. We call a point of S a determinator if it
lies on one of the edges of bb(S). Normally, bb(S) has four determinator points
r, l, t, b ∈ S that lie onto the right, left, top and bottom sides of bb(S), respec-
tively. Configuration (a) is characterized by fact that each one of the bounding
boxes B1 and B2 has two opposite determinators on its sides, e.g., r and l lie on
the edges of B1 while b and t lie on the edges of B2. In configurations (b) and
(c), each one of the bounding boxes B1 and B2 has two adjacent determinators
on its sides, e.g., l and b lie on the edges of B1 while r and t lie on the edges of

636 S. Bespamyatnikh and M. Segal

B2. The main difference between these two configurations is that in case (b) B1
and B2 are totally disjoint, while in case (c) B1 and B2 intersect.

For each configuration we find an optimal pair of discrete squares as follows.
First, we consider case (a). We show that one of the squares s1 and s2 con-
tains three determinators. Without loss of generality we assume that the width
of the bounding box of S is greater or equal to its height. Suppose that B1
contains left and right determinators. Then s1 contains either upper or lower
(or both) determinator. Therefore we may assume that B1 and B2 are totally
disjoint; moreover, one of them contains three determinators. This case can be
solved easily by applying a binary search on the sorted list of x-coordinates (y-
coordinates) of the points of S. Each step of the binary search splits the points
of S into two subsets S1, S2 ⊂ S. For each subset Si, we compute its bounding
box Bi, i = 1, 2 (we can assume that one of the bounding boxes contains three
determinators).

Now, we need to find two smallest discrete squares s1 and s2 that cover B1
and B2, respectively. Consider the bounding box B1 and its center c1. Without
loss of generality the width of B1 is greater or equal to its height. Our goal
is to find the closest L∞ neighbor point q ∈ C to the vertical segment A1A2
(note that that is defined as follows. A1A2 passes through center c1, the ray
emanating from left-bottom corner of B1 in direction to A2 makes 45◦, and A1
lies on (−45◦)-ray from left-top corner of B1, (see Figure 3). This point q will
define the center of the discrete square s1. We can find q using orthogonal range
trees by the similar technique described in the previous section. We divide the
search region into the wedges as shown in the Figure 3, such that the smallest
distance from a point qi ∈ W (W is a wedge) to A1A2 is either x- or y-distance
(depending on the wedge) between qi and A1A2.

After we found the locations and sizes of s1 and s2 we guide a binary search
in order to get an optimal size for the squares for this configuration. Notice
that the configuration (b) can be solved by the same method by applying two
binary searches on the points (according to x- and y-coordinates) of S. In each
step of a binary search we obtain disjoint boxes B1 and B2. We find a minimal
discrete square that covers Bi, i = 1, 2 using orthogonal range trees. The total
time required for case(b) (and case(a)) is O(log n log m).

The case (c) is most interesting and it can be solved using the following
approach. The bounding boxes B1 and B2 form two orthogonal corners with four
points a, b, c, d ∈ S, see Figure 2(c). The additional property is that B1 ∩B2 6= ∅.
We conclude that the points a, b form a single link in the upper-left staircase
chain of the points of S and the points c, d form a single link in the lower-right
staircase chain of the points of S. These two chains correspond the maximal
upper-left (north-west) and lower-right (south-east) points of S (similar to set
of maxima of S and set of minima of S, Chapter 4 [5]). Each pair of corners:
one from the upper-left staircase and one from the lower-right staircase define
a configuration with two discrete squares that cover S. For each corner on the
upper-left staircase we find the best corresponding corner (in terms of the largest

Fast Maintenance of Rectilinear Centers 637

B1

A2

A1

c1

Fig. 3. Regions for point q ∈ C.

size of two obtained squares) on the lower-right staircase and put a pointer
between them, see Figure 4.

Fig. 4. Pointers between staircases.

We perform the similar operation for the corners in the lower-right staircase.
Thus, we have a collection of at most 2n pointers. It may happen that two or
more pointers refer to the same corner; in this case we store only one pointer that
defines the best two discrete squares. In fact, we keep the sizes of squares in the
heap (as an appropriate pointer with associated size of square). Notice that, for
a particular corner c as a source, we can find its pointer in O(log n log m) using a
binary search with orthogonal range trees. For fixed c, the bounding box B1 (and
B2) has three fixed sides. B1 changes monotonically when we traverse corners
on the opposite staircase. Therefore the size of the discrete square covering B1
changes monotonically and we can apply binary search. For any corner on the

638 S. Bespamyatnikh and M. Segal

opposite staircase, the discrete square containing B1 can be obtained in O(log m)
time using range trees. The binary search finds two corners c′ and c′′ such that
corresponding sizes s′

1, s
′
2 and s′′

1 , s′′
2 of the squares satisfy the following property:

s′
1 ≤ s′

2 and s′′
1 ≥ s′′

2 . The total time for finding a pointer is O(log n log m).
Consider the insertion of a new customer point p. If p lies between two stair-

cases, then it does not make any change to the staircases and our current solution
(case (c)). Suppose that p is above left staircase (the case of right staircase is
symmetric), see Figure 5. First, we update the staircase. We find the sequence
of corners that are no longer valid. Otherwise, we update a corresponding stair-
case, remove non-valid pointers and compute two new pointers from the corners
defined by the new inserted point and its neighbors in the staircase. If only in-
sertions are allowed (or deletions) the total number of changes in the staircases
is O(n) and, therefore, we achieve an amortized O(log n log m) time for updates
and queries.

p

t1 t2

t3

t4

t5

Fig. 5. Insertion of point p. Corners t2, t3, t4 and their pointers are deleted and two
corners t1 and t5 with pointers are inserted.

Theorem 1. Rectilinear 2-centers can be maintained in amortized
O(log n log m) time in semi-dynamic data structure of linear size.

4 Future Work

In the extended version of this paper we also show how to maintain an (1 + ε)-

approximated solution for the discrete two-center problem in O

(
1
ε
log (n + m)

)

time by supporting both deletions and insertions. We also show how to solve
efficiently the discrete two-center rectangular problem. A possible future direc-
tions for research are containing the extension of the results obtained in this
paper to higher dimensions, making algorithms fully dynamic and considering
the Euclidean metric.

Fast Maintenance of Rectilinear Centers 639

References

1. M. de Berg, M. van Kreveld, M. Overmars, O. Schwartzkopf Computational Ge-
ometry, Algorithms and Applications, Springer-Verlag, 1997.

2. S. Bespamyatnikh and D. Kirkpatrick, “Rectilinear 2-center problems”, in Proc.
of 11th Can. Conf. Comp. Geom., pp. 68–71, 1999.

3. S. Bespamyatnikh and M. Segal, “Rectilinear static and dynamic discrete 2-center
problems”, in Int. Jour. of Math. Algorithms, to appear.

4. Z. Drezner, “On the rectangular p-center problem”, Naval Res. Logist. Q., 34, pp.
229–234, 1987.

5. F. P. Preparata and M. I. Shamos, “Computational Geometry: An Introduction”,
Springer-Verlag, 1990.

6. M. Segal, “Lower bounds for covering problems”, manuscript, 1999.

	Introduction
	Dynamic Rectilinear 2-Center
	Dynamic Discrete Rectilinear 2-Center
	Future Work

