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Abstract. In this paper, we provide a parameterization of multinomial lattice random
walks which take cumulants into account. In the binomial and trinomial lattice cases, it
reduces to standard results. Additionally, we show that higher order cumulants may be
taken into account by using multinomial lattices with four or more branches. Finally,
we outline two synthesis methods which take advantage of the multinomial lattice
formulation. One is mean square optimal hedging in an incomplete market and the
other involves pricing under “implied volatility” and “implied kurtosis”.

1 Introduction

An important issue in pricing and hedging derivatives is the generality of the
model for the underlying asset (see e.g., [4,9,10,13]) and its computational
tractability. From this standpoint, modeling underlying asset dynamics on a
multinomial lattice is useful (see e.g., [5,6,12,14,16,17] and the books of [8,11])
due to the existence of efficient methodologies for solving hedging and pricing
problems. Moreover, multinomial lattice techniques allow one to price various
types of derivative when no analytical formula is available. This paper seeks to
provide a single parameterization for multinomial lattice random walks which
can take higher order cumulants into account, instead of only the mean and vari-
ance. Before proceeding, we mention that there is an extensive body of literature
on the subject of lattice techniques in derivative pricing and hedging, and we
hope that readers will excuse our blatant omission of much of that work.

2 Construction of Multinomial Lattices

We will present a general description of a random walk on a multinomial lattice.
Consider a stock market in the time interval t ∈ [0, T ], where traders are allowed
to purchase and sell at discrete times tn = nτ, n = 0, 1, . . . , N , where τ := T/N .
Let Sn denote the price of the stock at t = tn, and suppose that un and dn satisfy
un > dn > 0, then a multinomial tree with L branches at each node is given by

Sn+1 = uL−l
n dl−1

n Sn, l = 1, . . . L (1)
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where pl, l = 1, . . . L are the corresponding probabilities which satisfy p1 +
· · · + pL = 1. To make the multinomial tree recombine, we further assume that
un/dn = c for all n = 0, . . . , N −1 for some constant c (> 1). One can verify that
the process in (1) consists of a lattice (or a recombining multinomial tree), where
the stock may achieve n(L− 1)+1 possible prices at time t = tn, n = 0, . . . , N .
For example, in the case of un = u and dn = d for all n = 1, . . . , N −1, the price
of the stock at the k-th node from the top of the lattice is given by

S(k)
n = un(L−1)+1−kdk−1S0, k = 1, 2, . . . , n(L − 1) + 1. (2)

2.1 Parameterization for Multinomial Lattices with Cumulants

Let Xn be the log stock return between tn and tn+1 defined as

Xn := lnSn+1 − lnSn,

and assume that each Xn is independent. Notice that

lnSN = lnS0 +
N−1∑
n=0

Xn.

We will construct multinomial lattice random walks to model stock price dy-
namics in terms of (local) cumulants of Xn through suitable choices of the pa-
rameters, L, N , u, d and p1, . . . , pL. The m-th cumulant of Xn will be denoted
by

C (Xm
n ) .

Note that the cumulant C (Xm
n ) is a polynomial in the moments E (Xv

n) with
v ≤ m, where the first and second cumulants are the mean and variance of
Xn, respectively. The third and fourth cumulants are related to skewness and
(Fisher) kurtosis, and are given by

C
(
X3

n

)
= M (3)

n , C
(
X4

n

)
= M (4)

n − 3M (2)
n , (3)

where M
(m)
n is the m-th central moment given as

M (m)
n = E [(Xn − E (Xn))m] .

The cumulants have an additive property when independent random variables
are summed. For example, the m-th cumulant of

∑N−1
n=0 Xn is just the sum of

the m-th cumulants of Xn for n = 0, . . . , N − 1.
We will provide a parameterization of multinomial lattice random walks

which take cumulants into account. Let

un := exp
(

νn

L − 1
· τ

)
exp

(√
τ

α

)
, dn := exp

(
νn

L − 1
· τ

)
exp

(
−

√
τ

α

)
(4)
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where α > 0 is some constant. One can readily see that un/dn is constant for
all n = 0, . . . , N − 1 if α is fixed. With these choices for un and dn, Xn may be
computed as

Xn = lnSn+1 − lnSn = νnτ + (L − 2l + 1)
√

τ

α
.

Since we have not specified any variables in (4) yet (except τ (= T/N)), we have
L − 1 plus 2 unknown parameters, p1, . . . , pL−1 (where pL may be calculated
as pL = 1 − (p1 + · · · + pL−1), νn and α. We will use these parameters to take
advantage of additional information (i.e., cumulants).

Suppose that νnτ is the mean of Xn, i.e., the first cumulant (mean) of Xn is

C(Xn) = E (Xn) = νnτ. (5)

In this case,

L∑
l=1

pl(L − 2l + 1) = E (L − 2l + 1) = 0, (6)

must hold, where the expectation in (6) is taken with respect to l = 1, . . . , L.
With this mean value, the m-th central moment M

(m)
n is given by

M (m)
n = E [(Xn − νnτ)m] =

(√
τ

α

)m

E [(L − 2l + 1)m] , (7)

and the second through fourth cumulants are computed by C(X2
n) = M

(2)
n and

the formulas in (3).

Binomial Lattice Case: To illustrate the parameterization described above,
we first consider the case of L = 2, i.e., the binomial lattice case. Since there are
already two constraints for the probabilities p1 and p2, i.e.,

p1 + p2 = 1,
2∑

l=1

pl(L − 2l + 1) = p1 − p2 = 0,

we obtain p1 = p2 = 1/2. Suppose that the variance of Xn is given by σ2
nτ . This

condition restricts α = 1 and σn to be constant, i.e., σn = σ (n = 0, . . . , N − 1),
and we have the binomial lattice formula provided in [11] (see also the original
work of [5])

un = exp
(
νnτ + σ

√
τ
)
, dn = exp

(
νnτ − σ

√
τ
)
, p1 = p2 = 1/2. (8)



582 Y. Yamada and J.A. Primbs

Trinomial Lattice Case: In the case of a trinomial lattice, i.e., L = 3, we have
one more parameter p3, and this allows us to take local volatility information
into account, i.e., the second cumulant. Suppose that the second cumulant (i.e.,
variance) of Xn is given by σ2

nτ . In this case, we have

p1 + p2 + p3 = 1, 2p1 − 2p2 = 0, 4p1 + 4p2 = ασ2
n. (9)

where the second and third equations are obtained from (6) and (7), respectively.
By solving (9) with respect to p1, p2 and p3, we find

[p1, p2, p3] =
[
ασ2

n

8
, 1 − ασ2

n

4
,

ασ2
n

8

]
.

To guarantee that these probabilities are positive, α must satisfy 0 < α < 4/σ2
n.

If σn is constant, i.e., σn = σ (n = 0, . . . , N − 1), one may use α = 4/(3σ2),
which provides a trinomial lattice formula whose up, middle, and down rates
and corresponding probabilities are given by

u2
n = exp

(
νnτ + σ

√
3τ

)
, undn = exp (νnτ) , d2

n = exp
(
νnτ − σ

√
3τ

)
,

[p1, p2, p3] = [1/6, 2/3, 1/6].

This also corresponds to a well known finite difference scheme.
If σn is a function of (Sn, n), i.e., σn = σ(Sn, n), the above formula can be

modified by writing σn in terms of a nominal value σ̂ as

σn = (1 + δn)σ̂.

Let α be chosen as α = 4/(3σ̂2). Then the up, middle, and down probabilities
are given as

[p1, p2, p3] =
[
(1 + δn)2

6
, 1 − (1 + δn)2

3
,

(1 + δn)2

6

]
.

Note that the probabilities are positive as long as −√
3 − 1 < δn <

√
3 − 1.

Multinomial Lattice Case: Similarly, one can pose additional conditions
given by higher order cumulants by using four or more branches in a multino-
mial lattice. For example, if we have third cumulant information corresponding
to skewness, this imposes an additional constraint,

C
(
X3

n

)
=

(√
τ

α

)3

E [(L − 2l + 1)m] = snτ
(
σn

√
τ
)3

,

where snτ is the skewness of Xn. This condition can be taken into account if
four branches are used in the multinomial lattice, i.e., L = 4. If we solve four
linear equations for the probabilities p1, p2, p3, p4, we obtain

[p1, p2, p3, p4] =
1
16

×
[
−1 + ασ2

n

(
1 +

snτ
√

ασn

3

)
, 9 − ασ2

n

(
1 + snτ

√
ασn

)
,

9 + ασ2
n

(−1 + snτ
√

ασn

)
, −1 + ασ2

n

(
1 − snτ

√
ασn

3

)]
.
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If σn is constant, i.e., σn = σ (n = 0, . . . , N − 1), the choice α = 4/σ2 results in
the following formulas:

u3
n = exp

(
νnτ +

3σ

2
√

τ

)
, u2

ndn = exp
(
νnτ +

σ

2
√

τ
)

,

u2
ndn = exp

(
νnτ − σ

2
√

τ
)

, d3
n = exp

(
νnτ − 3σ

2
√

τ

)
,

[p1, p2, p3, p4] =
[
3 +

8
3
snτ, 5 − 2snτ, 5 + 2snτ, 3 − 8

3
snτ

]
.

If we additionally would like to match the 4th cumulant or “kurtosis”, we
should introduce a multinomial lattice with five branches, i.e., L = 5. Let κτ
denote the kurtosis of Xn, then we need

C
(
X4

n

)
=

τ2

α2 E

[
(6 − 2l)4

]
− 3

(
σn

√
τ
)4 = κnτ

(
σn

√
τ
)4

,

as an additional constraint. In this case, the probabilities p1, p2, p3, p4, p5 can
be calculated through the solution of five linear equations, and are given by

[p1, p2, p3, p4, p5] =
1
96

[
ασ2

n

(
−1 + snτ

√
ασn +

ασ2
n

4
(3 + κnτ)

)
,

ασ2
n

(
16 − 2snτ

√
ασn − ασ2

n(3 + κnτ)
)
,

2
3

{
64 + ασ2

n

(−20 + ασ2
n (3 + κnτ)

)}
,

ασ2
n

(
16+2snτ

√
ασn−ασ2

n(3+κnτ)
)
, ασ2

n

(
−1−snτ

√
ασn+

ασ2
n

4
(3+κnτ)

)]

To understand the effect of kurtosis, assume that sn = 0 and σn = σ (n =
0, . . . , N − 1), then we obtain

[p1, p2, p3, p4, p5] =
1
96

[
ασ2

(
−1 +

ασ2

4
(3 + κnτ)

)
,

ασ2 (
16 − ασ2(3 + κnτ)

)
,

2
3

{
64 + ασ2 (−20 + ασ2 (3 + κnτ)

)}
,

ασ2 (
16 − ασ2(3 + κnτ)

)
, ασ2

(
−1 +

ασ2

4
(3 + κnτ)

)]

In this case, all the probabilities are positive if

4
σ2(3 + κnτ)

< α <
16

σ2(3 + κnτ)
.

Furthermore, if we choose α = 4/σ2, then the above probabilities reduce to

[p1, p2, p3, p4, p5] =[
1
24

(2+κnτ) ,
1
6

(1−κnτ) ,
1
4

(2+κnτ) ,
1
6

(1−κnτ) ,
1
24

(2+κnτ)
]

. (10)
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The up-down rates corresponding to five branches can be calculated as

u4
n = exp

(
νnτ + 2σ

√
τ
)
, u3

ndn = exp
(
νnτ + σ

√
τ
)
, u2

nd2
n = exp (νnτ)

und3
n = exp

(
νnτ − σ

√
τ
)
, d4

n = exp
(
νnτ − 2σ

√
τ
)

We first notice that the probabilities are symmetric, i.e., p1 = p5 and p2 = p4.
In this formulation, p1, p3 and p5 increase with larger kurtosis. On the other
hand, p2 and p4 decrease if kurtosis increases. Therefore, this confirms that the
probability distribution of Xn becomes heavy tailed under positive kurtosis.

If skewness is not zero, the formulation in (10) becomes

[p1, p2, p3, p4, p5] =[
2 + κnτ + 2snτ

24
,

1 − κnτ − snτ

6
,

2 + κnτ

4
,
1 − κnτ + snτ

6
,
2 + κnτ − 2snτ

24

]

with the choice of α = 4/σ2. In this case, we readily see that the probabilities
are not symmetric if sn 6= 0. Moreover, positive (negative) skewness causes p1
and p4 to increase (decrease), and the corresponding probabilities p5 and p2 to
decrease (increase) by an equal amount.

2.2 Parameterization with Time-Dependent Distributions

In this section, we deal directly with the stock price distribution, rather than
characterizing it through cumulants. We will consider the case where the stock
price distribution is available at every time tn. Under this assumption, we show
that a multinomial lattice can be constructed as follows:

1. Generate a binomial lattice to match the distribution of the stock at every
time step.

2. Create a multinomial lattice based on the binomial lattice.

Let Pn(Sn) be the probability distribution of the stock at t = tn. Pn(Sn) may
be obtained from historical data.

We begin by using a binomial lattice to describe the stock dynamics. Consider
the stock prices arranged on a binomial lattice as shown in the left side of Table
1, where the price of the stock on the k-th node from the top of the lattice is
denoted by S

(k)
n . Furthermore, the probability of obtaining the price Sk

n at time
n is given by P

(k)
n = Pn(Sk

n) as shown in Table 1.
Let p

(k)
n denote the probability of moving from S

(k)
n to S

(k)
n+1 (this corresponds

to an “up” move). The probability for a corresponding “down” move from S
(k)
n

to S
(k+1)
n+1 is given by p

(k)
n,d = 1 − p

(k)
n . These probabilities are computed based

on the node probabilities P
(k)
n (k = 1, . . . , N, k = 1, . . . , n + 1) as follows:

Consider the node probabilities at the n-th period, P
(k)
n (k = 1, . . . , n + 1), and

the node probabilities at the (n + 1)-th period, P
(k)
n+1 (k = 1, . . . , n + 2), where



Construction of Multinomial Lattice Random Walks for Optimal Hedges 585

Table 1. Stock price and corresponding probability

· · · S
(1)
N−2 S

(1)
N−1 S

(1)
N

· · · S
(2)
N−2 S

(2)
N−1 S

(2)
N

· · · S
(3)
N−2 S

(3)
N−1 S

(3)
N

· · · S
(4)
N−2 S

(4)
N−1 S

(4)
N

. . . S
(5)
N−2 S

(5)
N−1 S

(5)
N

S
(6)
N−1 S

(6)
N

S
(7)
N

· · · P
(1)
N−2 P

(1)
N−1 P

(1)
N

· · · P
(2)
N−2 P

(2)
N−1 P

(2)
N

· · · P
(3)
N−2 P

(3)
N−1 P

(3)
N

· · · P
(4)
N−2 P

(4)
N−1 P

(4)
N

. . . P
(5)
N−2 P

(5)
N−1 P

(5)
N

P
(6)
N−1 P

(6)
N

P
(7)
N

n ∈ [0, N − 1]. Since p
(1)
n is the probability of obtaining S

(1)
n+1 given S

(1)
n , it may

be calculated as

p(1)
n = P

(1)
n+1/P (1)

n . (11)

Similarly, since the probability of obtaining S
(k)
n+1 given S

(k)
n satisfies

P
(k)
n+1 =

(
1 − p(k−1)

n

)
P (k−1)

n + p(k)
n P (k)

n

p
(k)
n may be calculated as

p(k)
n =

(
P

(k)
n+1 −

(
1 − p(k−1)

n

)
P (k−1)

n

)
/P (k)

n . (12)

Using (11) and (12), p
(k)
n may be computed for all n = 0, . . . , N − 1 and

k = 1, . . . , n + 1. This constructs a binomial lattice matching the stock price
distribution.

We may now construct a multinomial lattice based on the binomial lattice as
follows: Consider a two step binomial lattice, where we suppose that the up and
down rates, u and d, and probabilities p, p

(1)
1 , and p

(2)
1 are specified as shown in

the left side of Fig. 1. The right side of Fig. 1 is a trinomial tree, where the up,
middle, and down states are given by Su2, Sud and Sd2. If the up, middle, and
down probabilities of the tree are given by

pu = p · p
(1)
1 , pm = p · (1 − p

(1)
1 ) + (1 − p) · p

(1)
1 , pd = (1 − p) · (1 − p

(1)
1 )

then the binomial lattice and the trinomial tree will define the same random
walk as far as the initial state and final distributions are concerned, i.e., both
random walks have final distributions with identical statistical properties. More
generally, in a similar manner one may construct a multinomial lattice with L
branches at each node based on a multi-step binomial lattice.

3 Synthesis Methods

Once we have constructed a multinomial lattice, we may apply several techniques
for pricing and hedging derivatives. In this section, we demonstrate some of these
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d
p

m

p(1)
1

p
1
(2)

p

u
p

p

Sd

2

2

2

2Sd

Su

S

Su

Sd

Sud

Su

S Sud

Fig. 1. Trinomial lattice construction

techniques which are used with multinomial lattices. Since most of the following
ideas have been considered extensively in the literature, we merely provide a
brief outline of them in this paper.

3.1 Mean Square Optimal Hedges

Mean square optimal hedging is a trading strategy which constructs a portfolio
whose payoff approximates that of a derivative security as closely as possible in
the mean square error sense. Although we only deal with the case of a European
call option in this subsection, the same approach can be extended to other types
of options, including many exotics (such as barriers, compounds, and others)
and options with time optionality (such as Americans and Bermudans).

Let Bn denote the price of a (risk free) bond under the time dependent
interest rate rn where Bn satisfies

Bn = (1 + rn)Bn−1, n = 1, . . . , N. (13)

at discrete times tn = nτ, n = 0, 1, . . . , N . Also, let Cn, n = 0, 1, . . . , N denote
the value of a call option with strike price K, which pays

CN = (SN − K)+

at maturity t = T . Finally, we define a portfolio (δn, θn) ∈ <2 indexed by time
n = 0 . . . N , and let

Ωn := δnSn + θnBn, n = 0 . . . N (14)

be the value of the portfolio, where δn represents the number of shares of stock
and θn the number of bonds held by the trader during the time interval t ∈
[tn, tn+1). Finally, we assume that the portfolio is self-financing;

δn−1Sn + θn−1Bn = δnSn + θnBn, ∀n = 1 . . . N. (15)

We now introduce an optimal hedging strategy to minimize the mean square
of the difference between the final payoff of the call option and the value of the
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portfolio (i.e. CN − ΩN ), namely mean square optimal hedging (MSOH):

MSOH

∣∣∣∣∣
Minimize : E

[
(CN − ΩN )2

∣∣∣ S0, Ω0

]
Subject to : δn ∈ <, n = 0, . . . , N − 1, Ω0 ∈ <

(16)

To obtain the optimal hedging strategy δk ∈ <, k = 0, . . . , N − 1 and initial
portfolio wealth Ω0, dynamic programming (see e.g., [1]) may be applied once
probabilities for possible outcomes for the stock have been assigned. Note that
the MSOH problem can be solved very efficiently by dynamic programming if
the stock process is modeled on a lattice [7].

3.2 Volatility Smile and Implied Kurtosis

We next discuss pricing models which take the “volatility smile” into account.
There is a large body of literature which provides option pricing formulas for
smiley options by using binomial lattices, trinomial lattices, or finite difference
methods (see e.g., [6,8,14,16,17] and references therein). A common approach is
to use market option data to determine a corresponding local volatility function
or risk neutral probability distribution to match the volatility smile.

Another approach to modeling the local volatility function for smiley options
is to take advantage of the so-called implied kurtosis [3,15]. This approach simply
requires an estimate of implied kurtosis which can be extracted from the market
price of options. The relation between implied kurtosis and the volatility smile
is given by the following equation [3,15]:

σ(Sn, n) = σ

[
1 +

κτ

24

(
(K − Sn)2

σ2S2
nT

− 1
)]

(17)

where σ can be thought as a “true volatility” corresponding to the variance of
the stock price distribution at maturity, and κ is the (annualized) kurtosis of
the stock price distribution. Therefore, this formulation provides a connection
between implied volatility and a constant volatility with kurtosis.

Given the formula in (17), one can apply local volatility based pricing meth-
ods such as trinomial lattices or corresponding finite difference methods (see e.g.,
[8] and references therein). However it might be more suitable to use a multi-
nomial lattice to take kurtosis (or the fourth cumulant) into account. In this
case, one can directly construct a multinomial lattice with five branches as in
Subsection 2.1, with constant σ and κ, instead of using a trinomial lattice with
a local volatility function. A more sophisticated model can be developed by tak-
ing into consideration the time dependence of kurtosis, i.e., kn, which provides
a volatility surface curve. One can then apply standard risk neutral valuation
techniques for derivatives pricing.

4 Conclusion

In this paper, we provided a parameterization of multinomial lattice random
walks which take cumulants into account. In the binomial and trinomial lat-
tice cases, this parameterization reduced to standard formulas. We showed that
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higher order cumulants may be taken into account by using multinomial lat-
tices with four or more branches. Finally, we demonstrated two types of syn-
thesis methods which take advantage of multinomial lattices: mean square opti-
mal hedging in incomplete markets and valuation techniques which use implied
volatility or kurtosis.
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