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Abstract. Achieving peak performance from library subroutines usu-
ally requires extensive, machine-dependent tuning by hand. Automatic
tuning systems have emerged in response, and they typically operate, at
compile-time, by (1) generating a large number of possible implemen-
tations of a subroutine, and (2) selecting a fast implementation by an
exhaustive, empirical search. This paper applies statistical techniques
to exploit the large amount of performance data collected during the
search. First, we develop a heuristic for stopping an exhaustive compile-
time search early if a near-optimal implementation is found. Second, we
show how to construct run-time decision rules, based on run-time inputs,
for selecting from among a subset of the best implementations. We ap-
ply our methods to actual performance data collected by the PHiPAC
tuning system for matrix multiply on a variety of hardware platforms.

1 Introduction

Standard library interfaces have enabled the development of portable applica-
tions that can also achieve portable performance, provided that optimized li-
braries are available and affordable on all platforms of interest to users. Example
libraries in scientific applications include the Basic Linear Algebra Subroutines
(BLAS) [11,5], the Vector and Signal Image Processing Library API [12], and
the Message Passing Interface (MPI) for distributed parallel communications.

However, both construction and machine-specific hand-tuning of these li-
braries can be tedious and time-consuming tasks. Thus, several recent research
efforts are automating the process using the following two-step method. First,
rather than code particular routines by hand for each computing platform of
interest, these systems contain parameterized code generators that encapsulate
possible tuning strategies. Second, the systems tune for a particular platform by
searching, i.e., varying the generators’ parameters, benchmarking the resulting
routines, and selecting the fastest implementation.
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In this paper, we focus on the possible uses of performance data collected
during the search task.1 Specifically, we first justify the need for exhaustive
searches in Section 2, using actual data collected from an automatic tuning
system. However, users of such systems cannot always afford to perform these
searches. Therefore, we discuss a statistical model of the feedback data that
allows users to stop the search early based on meaningful information about
the search’s progress in Section 3. Of course, a single implementation is not
necessarily the fastest possible for all possible inputs. Thus, we discuss additional
performance modeling techniques in Section 4 that allow us to select at run-time
an implementation believed to perform best on a particular input. We apply
these techniques to data collected from the PHiPAC system (see Section 2)
which generates highly tuned matrix multiply implementations [1,2].

There are presently a number of other similar and important tuning sys-
tems. These include FFTW for discrete Fourier transforms [6], ATLAS [17] for
the BLAS, Sparsity [8] for sparse matrix-vector multiply, and SPIRAL [7,13] for
signal and image processing. Vadhiyar, et al. [14], explore automatically tuning
MPI collective operations. These systems employ a variety of sophisticated code
generators that use both the mathematical structure of the problems they solve
and the characteristics of the underlying machine to generate high performance
code. All match hand-tuned vendor libraries, when available, on a wide vari-
ety of platforms. Nevertheless, these systems also face the common problem of
how to reduce the lengthy search process. Each uses properties specific to their
code generators to prune the search spaces. Here, we present complementary
techniques for pruning the search spaces independently of the code generator.

The search task deserves attention not only because of its central role in
specialized tuning systems, but also because of its potential utility in compilers.
Researchers in the OCEANS project [10] are integrating such an empirical search
procedure into a general purpose compiler. Search-directed compilation should
be valuable when performance models fail to charaterize source code adequately.

2 The Case for Searching

In this section, we present data to motivate the need for search methods in
automated tuning systems, using PHiPAC as a case study. PHiPAC searches a
combinatorially large space defined by possible optimizations in building its im-
plementation. Among the most important optimizations are (1) register, L1, and
L2 cache tile sizes where non-square shapes are allowed, (2) loop unrolling, and
(3) a choice of six software pipelining strategies. To limit search time, machine
parameters (such as the number of registers available and cache sizes) are used to
restrict tile sizes. In spite of this and other pruning heuristics, searches generally
can take hours to weeks depending on the user-selectable thoroughness of the
search. Nevertheless, Figure 1 shows two examples in which the performance of
PHiPAC-generated routines compares well with (a) hand-tuned vendor libraries
and (b) “naive” C code (3-nested loops) compiled with full optimizations.
1 An extended version of this paper has appeared elsewhere [16].
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Fig. 1. Performance (Mflop/s) on a square matrix multiply benchmark for the Sun
Ultra 1/170 workstation (left) and a 300 MHz Pentium-II platform (right). The theo-
retical peaks are 333 Mflop/s and 300 Mflop/s, respectively.

Exhaustive searches are often necessary to find the very best implementa-
tions, although a partial search can find near-optimal implementations. In an
experiment we fixed a particular software pipelining strategy and explored the
space of possible register tile sizes on six different platforms. This space is three-
dimensional and we index it by integer triplets (m0, k0, n0).2 Using heuristics,
this space was pruned to contain between 500 and 2500 reasonable implementa-
tions per platform. Figure 2 (left) shows what fraction of implementations (y-
axis) achieved what fraction of machine peak (x-axis). On the IBM RS/6000, 5%
of the implementations achieved at least 90% of the machine peak. By contrast,
only 1.7% on a uniprocessor Cray T3E node, 4% on a Pentium-II, and 6.5% on
a Sun Ultra1/170 achieved more than 60% of machine peak. And on a majority
of the platforms, fewer than 1% of implemenations were within 5% of the best;
80% on the Cray T3E ran at less than 15% of machine peak. Two important
ideas emerge: (1) different machines can display widely different characteristics,
making generalization of search properties across them difficult, and (2) finding
the very best implementations is akin to finding a “needle in a haystack.”

The latter difficulty is illustrated in Figure 2 (right), which shows a 2-D slice
(k0 = 1) of the 3-D tile space on the Ultra. The plot is color coded from black=50
Mflop/s to white=270 Mflop/s. The lone white square at (m0 = 2, n0 = 8) was
the fastest. The black region to the upper-right was pruned (i.e., not searched)
based on the number of registers. We see that performance is not a smooth
function of algorithmic details, making accurate sampling and interpolation of
the space difficult. Like Figure 2 (left), this motivates an exhaustive search.

3 Early Stopping Criteria

Unfortunately, exhaustive searches can be demanding, requiring dedicated ma-
chine time for long periods. Thus, tuning systems prune the search spaces using
2 The specifics of why the space is three dimensional are, for the moment, unimportant.



120 R. Vuduc, J.W. Demmel, and J. Bilmes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−3

10
−2

10
−1

10
0

fraction of machine peak speed

fr
ac

tio
n 

of
 im

pl
em

en
ta

tio
ns

Cumulative Distribution of Performance over Implementations

Sun Ultra−I/170
Pentium II−300 
PowerPC 604e   
IBM RS/6000 590 
MIPS R10k/175  
Cray T3E Node  

50

100

150

200

250

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

m
0

n 0

k
0
 = 1

Fig. 2. (Left) The fraction of implementations (y-axis) attaining at least a given level
of peak machine speed (x-axis) on six platforms. (Right) A 2-D slice of the 3-D register
tile space on the Sun Ultra1/170 platform. The best implementation (m0 = 2, n0 = 8)
achieved 271 Mflop/s.

application-specific heuristics. We consider a complementary method for stop-
ping a search early based only on performance data gathered during the search.

More formally, suppose there are N possible implementations. When we gen-
erate implementation i, we measure its performance xi. Assume that each xi is
normalized to lie between 0 (slowest) and 1 (fastest). Define the space of im-
plementations as S = {x1, . . . , xN}. Let X be a random variable corresponding
to the value of an element drawn uniformly at random from S, and let n(x) be
the number of elements of S less than or equal to x. Then X has a cumulative
distribution function (cdf) F (x) = Pr[X ≤ x] = n(x)/N . At time t, where t is
between 1 and N inclusive, suppose we generate an implementation at random
without replacement. Let Xt be a random variable corresponding to the observed
performance. Letting Mt = max1≤i≤t Xi be the maximum observed performance
at t, we can ask about the chance that Mt is less than some threshold:

Pr[Mt ≤ 1 − ε] < α, (1)

where ε is the proximity to the best performance, and α is an upper-bound on
the probability that the observed maximum at time t is below 1 − ε. Note that

Pr[Mt ≤ x] = Pr[X1 ≤ x, X2 ≤ x, . . . , Xt ≤ x] = p1(x)p2(x) · · · pt(x) (2)

where, assuming no replacement,

pr(x) = Pr[Xr ≤ x|X1 ≤ x, . . . , Xr−1 ≤ x]

=
{

0 n(x) < r
n(x)−r+1
N−r+1 n(x) ≥ r

(3)

Since n(x) = N · F (x), we cannot know its true value since we do not know the
true distribution F (x). However we can use the t observed samples to approxi-
mate F (x) using, say, the empirical cdf (ecdf) F̂t(x) based on the t samples:

F̂t(x) = n̂t(x)/t (4)
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Fig. 3. Average stopping time (left), as a fraction of the total search space, and proxim-
ity to the best performance (right), as the difference between normalized performance
scores, on the 300 MHz Pentium-II class workstation as functions of the tolerance pa-
rameters ε (x-axis) and α (y-axis). Note that the values shown are mean plus standard
deviation, to give an approximate upper-bound on the average case.
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Fig. 4. Same as Figure 3 for a uniprocessor Cray T3E node.

where n̂t(x) is the number of observed samples less than or equal to x. We
rescale the samples so that the maximum is one, since we do not know the true
maximum.3 Other forms for equation (4) are opportunities for experimentation.

In summary, a user or library designer specifies the search tolerance param-
eters ε and α. Then at each time t, the automated search system builds the ecdf
in equation (4) to estimate (2). The search ends when equation (1) is satisfied.

We apply the above model to the register tile space data to the platforms
shown in Figure 2 (left). The results appear in Figures 3 and 4 for the Pentium
and Cray T3E platforms, respectively. The left plots show the average stopping
time plus the standard deviation as a function of ε and α; this gives a pessimistic
bound on the average value. The right plots show the average proximity of the

3 This was a reasonable approximation on actual data. We are developing theoretical
bounds on the quality of this approximation, which we expect will be close to the
known bounds on ecdf approximation due to Kolmogorov and Smirnov [3].
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implementation found to the best one (again, plus the standard deviation), as
a fraction. On the Pentium (Figure 3), setting ε = .05 and α = .1 we see
that the search ends after sampling less than a third of the full space (left
plot), having found an implementation within about 6.5% of the best (right
plot). On the Cray T3E (Figure 4) where the best is difficult to find, the same
tolerance values produce an implementation within about 8% of the best while
still requiring exploration of 80% of the search space. Thus, the model adapts
to the characteristics of the implementations and the underlying machine.

In prior work [1], we experimented with search methods including random,
ordered, best-first, simulated annealing. The OCEANS project [10] has also re-
ported on a quantitative comparison of these methods and others. In both, ran-
dom search was comparable to and easier to implement than the others. Our
technique adds user-interpretable bounds to the simple random method. Note
that if the user wishes to specify a maximum search time (e.g., “stop searching
after 3 hours”), the bounds could be computed and reported to the user.

4 Run-Time Selection Rules

The previous sections assume that a single, optimal implementation can be
found. For some applications, however, several implementations may be “op-
timal” depending on the input parameters. Thus, we may wish to build decision
rules to select an appropriate implementation based on the run-time inputs.

Formally, we want to solve the following problem. Suppose we are given (1)
a set of m “good” implementations of an algorithm, A = {a1, . . . , am} which all
give the same output when presented with the same input; (2) a set of samples
S0 = {s1, s2, . . . , sn} from the space S of all possible inputs (i.e., S0 ⊆ S), where
each si is a d-dimensional real vector; (3) the execution time T (a, s) of algorithm
a on input s, where a ∈ A and s ∈ S. Our goal is to find a decision function f(s)
that maps an input s to the best implementation in A, i.e., f : S → A. The idea is
to construct f(s) using the performance of the good implementations on a sample
of the inputs S0. We will refer to S0 as the training set. In geometric terms, we
would like to partition the input space by implementation. This would occur at
compile (or “build”) time. At run-time, the user calls a single routine which,
when given an input s, evaluates f(s) to select and execute an implementation.

There are a number of important issues. Among them is the cost and com-
plexity of building f . Another is the cost of evaluating f(s); this should be a
fraction of the cost of executing the best implementation. A third issue is how
to compare the prediction accuracy of different decision functions. One possible
metric is the average misclassification rate, or fraction of test samples mispre-
dicted (call it ∆miss). We always choose the test set S′ to exclude the training
data S0, that is, S′ ⊆ (S − S0). However, if the performance difference between
two implementations is small, a misprediction may still be acceptable. Thus, we
also use the average slow-down of the selected variant relative to the best, ∆err.

For example, consider the matrix multiply operation C = C + AB, where A,
B, and C are dense matrices of size M ×K, K ×N , and M ×N , respectively. In
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Fig. 6. Prediction results for the regression (left) and support-vector (right) methods.

PHiPAC, it is possible to generate different implementations tuned on different
matrix workloads. For instance, we could have three implementations, tuned for
matrix sizes that fit approximately within L1 cache, those that fit within L2, and
all larger sizes. The inputs to each are M , K, and N , making the input space S
three-dimensional. We will refer to this example in the following sections.

4.1 A Cost Minimization Method

Associate with each implementation a a weight function wθa
(s), parameter-

ized by θa, which returns a value between 0 and 1 for some input value s.
Our decision function selects the algorithm with the highest weight on input s,
f(s) = argmaxa∈A {wθa(s)}. Compute the weights so as to minimize the average
execution time over the training set, i.e., minimize

C(θa1 , . . . , θam
) =

∑
a∈A

∑
s∈S0

wθa
(s) · T (a, s). (5)
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Of the many possible choices for wθa
, we choose the softmax function [9],

wθa
(s) = exp

(
θT

a s + θa,0
)
/Z where θa has the same dimensions as s, θa,0 is

an additional parameter to estimate, and Z is a normalizing constant. It turns
out that the derivatives of the weights are easy to compute, so we can estimate θa

and θa,0 by minimizing equation (5) numerically using Newton’s method. A nice
property of the weight function is that f becomes cheap to evaluate at run-time.

4.2 Regression Models

Another natural idea is to postulate a parametric model for the running time of
each implementation. Then at run-time, we can choose the fastest implementa-
tion based on the execution time predicted by the models. This approach was
originally proposed by Brewer [4]. For matrix multiply on matrices of size N ×N ,
we might guess that the running time of implementation a will have the form

Ta(N) = β3N
3 + β2N

2 + β1N + β0. (6)

Given sample running times on some inputs S0, we can use standard regression
techniques to determine the βk coefficients. The decision function is just f(s) =
argmina∈ATa(s). An advantage of this approach is that the models, and thus
the accuracy of prediction as well as the cost of making a prediction, can be
as simple or as complicated as desired. Also, no assumptions are being made
about the geometry of the input space, as with our cost-minimization technique.
However, a difficult disadvantage is that it may not be easy to postulate an
accurate run-time model.

4.3 The Support Vector Method

Another approach is to view the problem as a statistical classification task. One
sophisticated and successful classification algorithm is known as the support
vector (SV) method [15]. In this method, each sample si ∈ S0 is given a label
li ∈ A to indicate which implementation was fastest for that input. The SV
method then computes a partitioning that attempts to maximize the minimum
distance between classes.4 The result is a decision function f(s). The SV method
is reasonably well-grounded theoretically and potentially much more accurate
than the previous two methods, and we include it in our discussion as a kind
of practical upper-bound on prediction accuracy. However, the time to compute
f(s) is a factor of |S0| greater than that of the other methods and is thus possibly
much more expensive to calculate at run-time.

4.4 Results with PHiPAC Data

We offer a brief comparison of the three methods on the matrix multiply example
described previously. The predictions of the three methods on a sample test set
4 Formally, this is the optimal margin criterion [15].



Statistical Models for Automatic Performance Tuning 125

Table 1. The three predictors on matrix multiply. “Best 5%” is the fraction of predicted
implementations whose execution times were within 5% of the best possible. “Worst
20%” and “50%” are the fraction less than 20% and 50% of optimal, respectively.

Best Worst
Method ∆miss ∆err 5% 20% 50%
Regression 34.5% 2.6% 90.7% 1.2% 0.4%
Cost-Min 31.6% 2.2% 94.5% 2.8% 1.2%
SVM 12.0% 1.5% 99.0% 0.4% 0%

are shown in Figures 5 (right) and 6. Qualitatively, we see that the boundaries of
the cost-based method are a poor fit to the data. The regression method captures
the boundaries roughly but does not correctly model one of the implementations
(upper-left of figure). The SV method appears to produce the best predictions.

Table 1 compares the accuracy of the three methods by the two metrics ∆miss

and ∆err; in addition we report the fraction of test points predicted within 5%
of the best possible, and the fraction predicted that were 20% and 50% below
optimal. These values are averaged over ten training and test sets. The values for
∆miss confirm the qualitative results shown in the figures. However, the methods
are largely comparable by the ∆err metric, showing that a high misclassification
rate did not necessarily lead to poor performance overall. Note that the worst
20% and 50% numbers show that the regression method made slightly better
mispredictions on average than the cost-minimization method. In addition, both
the regression and cost-minimization methods lead to reasonably fast predictors.
Prediction times were roughly equivalent to the execution time of a 3x3 matrix
multiply. By contrast, the prediction cost of the SVM is about a 64x64 matrix
multiply, which may prohibit its use when small sizes occur often.

However, this analysis is not intended to be definitive. For instance, we cannot
fairly report on specific training costs due to differences in the implementations in
our experimental setting. Also, matrix multiply is only one possible application.
Instead, our aim is simply to present the general framework and illustrate the
issues on actual data. Moreover, there are many possible models; our examples
offer a flavor for the role that statistical modeling of performance data can play.

5 Conclusions and Directions

While all of the existing automatic tuning systems implicitly follow the two-step
“generate-and-search” methodology, one aim of this study is to draw attention
to the process of searching itself as an interesting and challenging problem.

One challenge is pruning the enormous implementation spaces. Existing tun-
ing systems have shown the effectiveness of pruning these spaces using problem-
specific heuristics; our black-box pruning method for stopping the search process
early is a complementary technique. It has the nice properties of (1) incorporat-
ing performance feedback data, and (2) providing users with a meaningful way
(namely, via probabilistic thresholds) to control the search procedure.
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The other challenge is to find efficient ways to select implementations at
run-time when several known implementations are available. Our aim has been
to discuss a possible framework, using sampling and statistical classification,
for attacking this problem in the context of automatic tuning systems. This
connects high performance software engineering with statistical modeling ideas.
Other modeling techniques and applications remain to be explored.

Acknowledgements. We wish to thank Andrew Ng for his feedback on our
statistical methodology.
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