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Abstract. We investigate the problem of using past performance in-
formation to select an algorithm for a given classification problem. We
present three ranking methods for that purpose: average ranks, success
rate ratios and significant wins. We also analyze the problem of evalu-
ating and comparing these methods. The evaluation technique used is
based on a leave-one-out procedure. On each iteration, the method gen-
erates a ranking using the results obtained by the algorithms on the
training datasets. This ranking is then evaluated by calculating its dis-
tance from the ideal ranking built using the performance information on
the test dataset. The distance measure adopted here, average correlation,
is based on Spearman’s rank correlation coefficient. To compare ranking
methods, a combination of Friedman’s test and Dunn’s multiple com-
parison procedure is adopted. When applied to the methods presented
here, these tests indicate that the success rate ratios and average ranks
methods perform better than significant wins.
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1 Introduction

The selection of the most adequate algorithm for a new problem is a difficult
task. This is an important issue, because many different classification algorithms
are available. These algorithms originate from different areas like Statistics, Ma-
chine Learning and Neural Networks and their performance may vary consid-
erably [12]. Recent interest in combination of methods like bagging, boosting,
stacking and cascading has resulted in many new additional methods. We could
reduce the problem of algorithm selection to the problem of algorithm perfor-
mance comparison by trying all the algorithms on the problem at hand. In
practice this is not feasible in many situations, because there are too many al-
gorithms to try out, some of which may be quite slow., especially with large
amounts of data, as it is common in Data Mining. An alternative solution would
be to try to identify the single best algorithm, which could be used in all situa-
tions. However, the No Free Lunch (NFL) theorem [19] states that if algorithm
A outperforms algorithm B on some cost functions, then there must exist exactly
as many other functions where B outperforms A.
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All this implies that, according to the problem at hand, specific recommenda-
tion should be given concerning which algorithm(s) should be used or tried out.
Brachman et al. [3] describe algorithm selection as an exploratory process, highly
dependent on the analyst’s knowledge of the algorithms and of the problem do-
main, thus something which lies somewhere on the border between engineering
and art.

As it is usually difficult to identify a single best algorithm reliably, we believe
that a good alternative is to provide a ranking. In this paper we are concerned
with ranking methods. These methods use experimental results obtained by a
set of algorithms on a set of datasets to generate an ordering of those algorithms.
The ranking generated can be used to select one or more suitable algorithms for
a new, previously unseen problem. In such a situation, only the top algorithm,
i.e. the algorithm expected to achieve the best performance, may be tried out
or, depending on the available resources, the tests may be extended to the first
few algorithms in the ranking.

Considering the NFL theorem we cannot expect that a single best ranking of
algorithms could be found and be valid for all datasets. We address this issue by
dividing the process into two distinct phases. In the first one, we identify a subset
of relevant datasets that should be taken into account later. In the second phase,
we proceed to construct a ranking on the basis of the datasets identified. In this
paper we restrict our attention to the second phase only. Whatever method we
use to identify the relevant datasets, we still need to resolve the issue concerning
which ranking method is the best one.

Our aim is to examine three ranking methods and evaluate their ability to
generate rankings which are consistent with the actual performance information
of the algorithms on an unseen dataset. We also investigate the issue whether
there are significant differences between them, and, if there are, which method
is preferable to the others.

2 Ranking Methods

The ranking methods presented here are: average ranks (AR), success rate ratios
(SRR) and significant wins (SW). The first method, AR, uses, as the name
suggests, individual rankings to derive an overall ranking. The next method,
SRR, ranks algorithms according to the relative advantage/disadvantage they
have over the other algorithms. A parallel can be established between the ratios
underlying SRR and performance scatter plots that have been used in some
empirical studies to compare pairs of algorithms [14]. Finally, SW is based on
pairwise comparisons of the algorithms using statistical tests. This kind of tests
is often used in comparative studies of classification algorithms.

Before presenting the ranking methods, we describe the experimental set-
ting. We have used three decision tree classifiers, C5.0, C5.0 with boosting [15]
and Ltree, which is a decision tree which can introduce oblique decision sur-
faces [9]. We have also used an instance based classifier, TiMBL [6], a lin-
ear discriminant and a naive bayes classifier [12]. We will refer to these algo-
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rithms as c5, c5boost, ltree, timbl, discrim and nbayes, respectively. We
ran these algorithms on 16 datasets. Seven of those (australian, diabetes,
german, heart, letter, segment and vehicle) are from the StatLog repository1

and the rest (balance-scale, breast-cancer-wisconsin, glass, hepatitis,
house-votes-84, ionosphere, iris, waveform and wine) are from the UCI
repository2 [2]. The error rate was estimated using 10-fold cross-validation.

2.1 Average Ranks Ranking Method

This is a simple ranking method, inspired by Friedman’s M statistic [13]. For
each dataset we order the algorithms according to the measured error rates3

and assign ranks accordingly. The best algorithm will be assigned rank 1, the
runner-up, 2, and so on. Let ri

j be the rank of algorithm j on dataset i. We
calculate the average rank for each algorithm r̄j =

(∑
i r

i
j

)
/n, where n is the

number of datasets. The final ranking is obtained by ordering the average ranks
and assigning ranks to the algorithms accordingly. The average ranks based
on all the datasets considered in this study and the corresponding ranking are
presented in Table 1.

Table 1. Rankings generated by the three methods on the basis of their accuracy
on all datasets

AR SRR SW

Algorithm (j) r̄j Rank SRRj Rank pwj Rank

c5 3.9 4 1.017 4 0.225 4

ltree 2.2 1 1.068 2 0.425 2

timbl 5.4 6 0.899 6 0.063 6

discrim 2.9 3 1.039 3 0.388 3

nbayes 4.1 5 0.969 5 0.188 5

c5boost 2.6 2 1.073 1 0.438 1

2.2 Success Rate Ratios Ranking Method

As the name suggests this method employs ratios of success rates between pairs
of algorithms. We start by creating a success rate ratio table for each of the
datasets. Each slot of this table is filled with SRRi

j,k =
(
1− ERi

j

)
/
(
1− ERi

k

)
,

where ERi
j is the measured error rate of algorithm j on dataset i. For example,

1 See http://www.liacc.up.pt/ML/statlog/.
2 Some preparation was necessary in some cases, so some of the datasets may not be
exactly the same as the ones used in other experimental work.

3 The measured error rate refers to the average of the error rates on all the folds of
the cross-validation procedure.
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on the australian dataset, the error rates of timbl and discrim are 19.13% and
14.06%, respectively, so SRRaustralian

timbl,discrim = (1 − 0.1913)/(1− 0.1406) = 0.941,
indicating that discrim has advantage over timbl on this dataset. Next,

we calculate a pairwise mean success rate ratio, SRRj,k =
(∑

i SRRi
j,k

)
/n, for

each pair of algorithms j and k, where n is the number of datasets. This is an
estimate of the general advantage/disadvantage of algorithm j over algorithm k.
Finally, we derive the overall mean success rate ratio for each algorithm, SRRj =
(
∑

k SRRj,k) /(m − 1) where m is the number of algorithms (Table 1). The
ranking is derived directly from this measure. In the current setting, the ranking
obtained is quite similar to the one generated with AR, except for c5boost and
ltree, which have swapped positions.

2.3 Significant Wins Ranking Method

This method builds a ranking on the basis of results of pairwise hypothesis
tests concerning the performance of pairs of algorithms. We start by testing the
significance of the differences in performance between each pair of algorithms.
This is done for all datasets. In this study we have used paired t tests with a
significance level of 5%. We have opted for this significance level because we
wanted the test to be relatively sensitive to differences but, at the same time,
as reliable as possible. A little less than 2/3 (138/240) of the hypothesis tests
carried out detected a significant difference. We denote the fact that algorithm j
is significantly better than algorithm k on dataset i as ERi

j � ERi
k. Then,

we construct a win table for each of the datasets as follows. The value of each
cell, W i

j,k, indicates whether algorithm j wins over algorithm k on dataset i at
a given significance level and is determined in the following way:

W i
j,k =


1 iff ERi

j � ERi
k

−1 iff ERi
k � ERi

j

0 otherwise
(1)

Note that W i
j,k = −W i

k,j by definition. Next, we calculate the pairwise es-
timate of the probability of winning for each pair of algorithms, pwj,k. This is
calculated by dividing the number of datasets where algorithm j is significantly
better than algorithm k by the number of datasets, n. This value estimates the
probability that algorithm j is significantly better than algorithm k. For in-
stance, ltree is significantly better than c5 on 5 out of the 16 datasets used in
this study, thus pwltree,c5 = 5/16 = 0.313. Finally, we calculate the overall esti-
mate of the probability of winning for each algorithm, pwj = (

∑
k pwj,k) /(m−1)

where m is the number of algorithms (Table 1). The values obtained are used as
a basis for constructing the overall ranking. In our example, pwc5boost = 0.438,
which is the largest one and, thus, c5boost appears first in the ranking, closely
followed by ltree, as happened in the ranking generated with SRR.
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3 Evaluation

Having considered three ranking methods, we would like to know whether their
performances differ, and, if they do, which is the best one. For that purpose
we use a leave-one-out procedure. For each dataset (test dataset), we do the
following:

1. Build a recommended ranking by applying the ranking method under evalu-
ation to all but the test dataset (training datasets).

2. Build an ideal ranking for the test dataset.
3. Calculate the distance between the two rankings using an appropriate mea-

sure.

The score of each of the ranking methods is expressed in terms of the mean
distance.

The ideal ranking represents the correct ordering of the algorithms on a test
dataset, and it is constructed on the basis of their performance (measured error
rate) on that dataset. Therefore, the distance between the recommended ranking
and the ideal ranking for some dataset is a measure of the quality of the former
and thus also of the ranking method that generated it.

Creating an ideal ranking is not a simple task, however. Given that only a
sample of the population is known, rather than the whole population, we can only
estimate the error rate of algorithms. These estimates have confidence intervals
which may overlap. Therefore, the ideal ranking obtained simply by ordering
the estimates may often be quite meaningless. For instance, Table 2 shows one
ranking for the glass dataset, where c5 and ltree are ranked in 2nd and 3rd,
respectively. The performance of these algorithms on this dataset is, however,
not significantly different, according to a paired t test at a 5% significance level.
Thus, we would not consider a ranking where the position of c5 and ltree is
interchanged worse than the one we show. In such a situation, these algorithms
often swap positions in different folds of the N -fold cross-validation procedure
(Table 2). Therefore, we use N orderings to represent an ideal ordering.

To calculate the distance between the recommended ranking and each of the
N orderings that represent the ideal ranking, we use Spearman’s rank correla-
tion coefficient [13]. The score of the recommended ranking is expressed as the
average of the N correlation coefficients. This measure is referred here as average
correlation, C̄.

To illustrate this performance measure, we evaluate the ranking recommended
by SW for the glass dataset, focusing on the first fold (Table 2). Note that c5
and c5boost share the first place in the ordering obtained in this fold, so they
are both assigned rank 1+2

2 = 1.5, following the method in [13]. A similar sit-
uation occurs with c5 and nbayes in the recommended ranking4. To calculate
Spearman’s rank correlation coefficient we first calculate D2 =

∑
D2

i , where Di

is the difference between the recommended and the ideal rank for algorithm i.
The correlation coefficient is rs = 1− 6D2

n3−n , where n is the number of datasets.
4 The same reasoning is applied when more than two algorithms are tied.
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In our example, D2 = 17.5 and rs = 0.5, where n is the number of algorithms.
These calculations are repeated for all the folds, permitting to calculate the score
of the recommended ranking, C̄, as the average of the individual coefficients.

Table 2. Some steps in the calculation of the correlation coefficient between
recommended and ideal ranking for the glass dataset

Average Fold 1 Fold 5

Algorithm (i) Rec. rank ER (%) rank ER (%) rank D2
i ER (%) rank D2

i

c5 4.5 29.9 2 28.6 1.5 9 47.6 3.5 1

ltree 1 31.8 3 31.8 3 4 42.9 2 1

timbl 6 45.2 5 50.0 5 1 52.4 5 1

discrim 3 36.9 4 36.4 4 1 47.6 3.5 0.25

nbayes 4.5 48.7 6 59.1 6 2.25 71.4 6 2.25

c5boost 2 23.8 1 28.6 1.5 0.25 23.8 1 1

Table 3 presents the results of the evaluation of the three ranking methods
presented earlier. These results indicate that AR is the best method as the mean
C̄ has the highest value (0.426). It is followed by SRR (0.411) and SW (0.387).
However, when looking at the standard deviations, the differences do not seem
to be too significant. A comparison using an appropriate statistical test needs
to be carried out. It is described in the next section.

4 Comparison

To test whether the ranking methods have significantly different performance
we have used a distribution-free hypothesis test on the difference between more
than two population means, Friedman’s test [13]. This hypothesis test was used
because we have no information about the distribution of the correlation coeffi-
cient in the population of datasets, the number of samples is larger than 2 and
also because the samples are related, i.e. for each ranking method the correlation
coefficients are calculated for the same part of each dataset. According to Neave
and Worthington [13] not many methods can compete with Friedman’s test with
regard to both power and ease of computation.

Here, the hypotheses are:

Ho: There is no difference in the mean average correlation coefficients
for the three ranking methods.
H1: There are some differences in the mean average correlation coeffi-
cients for the three ranking methods.

We will use results for fold 1 on datasets australian and ionosphere to illus-
trate how this test is applied (Table 4). First, we rank the correlation coefficients
of all the ranking methods for each fold on each dataset. We thus obtain Rd,f

j ,
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Table 3. Average correlation scores for the three ranking methods

Test dataset AR SRR SW

australian 0.417 0.503 0.494

balance-scale 0.514 0.440 0.651

breast-cancer-wisconsin 0.146 0.123 0.123

diabetes 0.330 0.421 0.421

german 0.460 0.403 0.403

glass 0.573 0.573 0.413

heart 0.324 0.339 0.339

hepatitis 0.051 0.049 0.049

house-votes-84 0.339 0.307 0.307

ionosphere 0.326 0.326 0.120

iris 0.270 0.167 0.167

letter 0.086 0.086 -0.086

segment 0.804 0.853 0.804

vehicle 0.800 0.731 0.731

waveform 0.714 0.663 0.663

wine 0.621 0.587 0.587

Mean C̄ 0.426 0.411 0.387

StdDv 0.235 0.235 0.262

representing the rank of the correlation obtained by ranking method j on fold f
of dataset d, when compared to the corresponding correlations obtained by the
other methods. Next, we calculate the mean rank for each method, R̄j , and
the overall mean rank across all methods, R̄. As each method is ranked from
1 to k, where k is the number of methods being compared (3 in the present
case), we know that R̄ = k+1

2 = 2. Then we calculate the sum of the squared
differences between the mean rank for each method and the overall mean rank,
S =

∑k
j=1(R̄j − R̄). Finally, we calculate Friedman’s statistic, M = 12nS

k(k+1) ,
where n is the number of points being compared, which in this case is the total
number of folds. In this simple example where n = 2, S = 0.5 and M = 1. The
critical region for this test has the form M ≥ critical value, where the critical
value is obtained from the appropriate table, given the number of methods (k)
and the number of points (n).

Table 4. Some steps in the application of Friedman’s test and Dunn’s Multiple
Comparison procedure on folds 1 of the australian and ionosphere datasets

australian ionosphere

Method (j) rs Raustralian,1
j rs Rionosphere,1

j R̄j

�
R̄j − R̄

�2 P
d,f Rd,f

j

SW 0.357 2 -0.371 3 2.5 0.25 5

SRR 0.314 3 -0.086 1 2 0 4

AR 0.371 1 -0.214 2 1.5 0.25 3
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Dealing with Ties. When applying this test ties may occur, meaning that two
ranking methods have the same correlation coefficient on a given fold of a given
dataset. In that case, the average rank value is assigned to all the methods
involved, as explained earlier for Spearman’s correlation coefficient. When the
number of ties is significant, the M statistic must be corrected [13]. First, we
calculate Friedman’s statistic as before, M . Then, for each fold of each dataset,
we calculate t∗ = t3− t, where t is the number of methods contributing to a tie.
Next, we obtain T by adding up all t∗’s. The correction factor is C = 1− T

n(k3−k)

where k and n are the number of methods and the number of points, as before.
The modified statistic is M∗ = M/C. The critical values for M∗ are the same
as for M . More details can be found in [13,16].

Results. With the full set of results available, R̄AR = 1.950, R̄SRR = 1.872 and
R̄SW = 2.178. Given that the number of ties is high (55%), the statistic is ap-
propriately corrected, yielding M∗ = 13.39. The critical value for the number
of methods being compared (k = 3) and the number of points in each (n =
#datasets∗#folds = 160) is 9.210 for a significance level of 1%5. AsM∗ > 9.210,
we are 99% confident that there are some differences in the C̄ scores for the three
ranking methods, contrary to what could be expected.

Which Method is Better? Naturally, we must now determine which methods
are different from one another. To answer this question we use Dunn’s multiple
comparison technique [13]. Using this method we test p = 1

2k(k− 1) hypotheses
of the form:

H(i,j)
o : There is no difference in the mean average correlation coefficients

between methods i and j.
H(i,j)

1 : There is some difference in the mean average correlation coeffi-
cients between methods i and j.

We use again the results for fold 1 on datasets australian and ionosphere
to illustrate how this procedure is applied (Table 4). First, we calculate the
rank sums for each method. Then we calculate Ti,j = Di,j/stdev for each pair
of ranking methods, where Di,j is the difference in the rank sums of meth-

ods i and j, and. stdev =
√

nk(k+1)
6 . As before, k is the number of methods

and n is the number of points in each. In our simple example, where n = 2
and k = 3, stdev = 2, DSRR,AR = DSW,SRR = 1 and DSW,AR = 2, and then
|TSW,SRR| = |TSRR,AR| = 0.5 and |TSW,AR| = 1.

The values of |Ti,j |, which follow a normal distribution, are used to reject
or accept the corresponding null hypothesis at an appropriate confidence level.
As we are doing multiple comparisons, we have to carry out the Bonferroni
adjustment to the chosen overall significance level. Neave and Worthington [13]
suggest a rather high overall significance level (between 10% and 25%) so that we
5 We have used the critical value for n = ∞, which does not affect the result of the
test.
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could detect any differences at all. The use of high significance levels naturally
carries the risk of obtaining false significant differences. However, the risk is
somewhat reduced thanks to the previous application of the Friedman’s test,
which concluded that there exist differences in the methods compared. Here we
use an overall significance level of 25%. Applying the Bonferroni adjustment,
we obtain α = overall α/k (k − 1) = 4.17% where k = 3, as before. Consulting
the appropriate table we obtain the corresponding critical value, z = 1.731. If
|Ti,j | ≥ z then the methods i and j are significantly different.

Given that three methods are being compared, the number of hypothe-
ses being tested is, p = 3. We obtain |TSRR,SW| = 1.76, |TAR,SW| = 3.19 and
|TSRR,AR| = 1.42. As |TSRR,SW| > 1.731 and |TAR,SW| > 1.731, we conclude that
both SRR and AR are significantly better than SW.

5 Discussion

Considering the variance of the obtained C̄ scores, the conclusion that the
SRR and AR are both significantly better than SW is somewhat surprising.

We have observed that the three methods generated quite similar rankings
with the performance information on all the datasets used (Table 1). However,
if we compare the rankings generated using the leave-one-out procedure, we
observe that the number of differently assigned ranks is not negligible. In a total
of 96 assigned ranks, there are 33 differences between AR and SRR, 8 between
SRR and SW, and 27 between SW and AR.

Next, we analyze the ranking methods according to how well they exploit
the available information and present some considerations concerning sensitivity
and robustness.

Exploitation of Information. The aggregation methods underlying both SRR
and AR exploit to some degree the magnitude of the difference in performance
of the algorithms. The ratios used by the method SRR indicate not only which
algorithm performs better, but also exploit the magnitude of the difference.
To a smaller extent, the difference in ranks used in the AR method, does the
same thing. However, in SW, the method is restricted to whether the algorithms
have different performance or not, therefore exploiting no information about the
magnitude of the difference. Therefore, it seems that methods that exploit more
information generate better rankings.

Sensitivity to the Significance of Differences. One potential drawback of the AR
method is that it is based on rankings which may be quite meaningless. Two
algorithms j and k may have different error rates, thus being assigned different
ranks, despite the fact that the error rates may differ only slightly. If we were to
conduct a significance test on the difference of two averages, it could show they
are not significantly different.

With the SRR method the ratio of the success rates of two algorithms which
are not significantly different is close to 1, thus, we expect that this problem
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has small impact. The same problem should not happen with SW, although the
statistical tests on which it is based are liable to commit errors [7].

The results obtained indicate that none of the methods seem to be influenced
by this problem. However, it should be noted that the C̄ measure used to evaluate
the ranking methods equally does not take the significance of the differences into
account, although, as was shown in [17], the problem does not seem to affect the
overall outcome.

Robustness. Taking the magnitude of the difference in performance of two al-
gorithms into account makes SRR liable to be affected by outliers, i.e. datasets
where the algorithms have unusual error rates. We, thus, expect this method to
be sensitive to small differences in the pool of the training datasets. Consider,
for example, algorithm ltree on the glass dataset. The error rate obtained by
ltree is higher than usual. As expected, the inclusion of this dataset affects the
rankings generated by the method, namely, the relative positions of ltree and
c5boost are swapped.

This sensitivity does not seem to significantly affect the rankings generated,
however. We observe that identical rankings were generated by SRR in 13 exper-
iments of the leave-one-out procedure. In the remaining 3, the positions of two
algorithms (ltree and c5boost) were interchanged. Contrary to what could
be expected, the other two methods show an apparently less stable behavior:
AR has 4 variations on 4 datasets and SW has 13 across 5 datasets.

6 Related Work

The interest in the problem of algorithm selection based on past performance
is growing6. Most recent approaches exploited Meta-knowledge concerning the
performance of algorithms. This knowledge can be either theoretical or of ex-
perimental origin, or a mixture of both. The rules described by Brodley [5]
captured the knowledge of experts concerning the applicability of certain clas-
sification algorithms. Most often, the meta-knowledge is of experimental ori-
gin [1,4,10,11,18]. In the analysis of the results of project StatLog [12], the ob-
jective of the meta-knowledge is to capture certain relationships between the
measured dataset characteristics (such as the number of attributes and cases,
skew, etc.) and the performance of the algorithms. This knowledge was obtained
by meta-learning on past performance information of the algorithms. In [4] the
meta-learning algorithm used was c4.5. In [10] several meta-learning algorithms
were used and evaluated, including rule models generated with c4.5, IBL, regres-
sion and piecewise linear models. In [11] the authors used IBL and in [18], an
ILP framework was applied.

6 Recently, an ESPRIT project, METAL, involving several research groups and com-
panies has started (http://www.cs.bris.ac.uk/∼cgc/METAL).
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7 Conclusions and Future Work

We have presented three methods to generate rankings of classification algo-
rithms based on their past performance. We have also evaluated and compared
them. Unexpectedly, the statistical tests have shown that the methods have dif-
ferent performance and that SRR and AR are better than SW.

The evaluation of the scores obtained does not allow us to conclude that
the ranking methods produce satisfactory results. One possibility is to use the
statistical properties of Spearman’s correlation coefficient to assess the quality
of those results. This issue should be further investigated.

The algorithms and datasets used in this study were selected according to no
particular criterion. We expect that, in particular, the small number of datasets
used has contributed to the sensitivity to outliers observed. We are planning to
extend this work to other datasets and algorithms.

Several improvements can be made to the ranking methods presented. In
particular paired t tests, which are used in SW, have been shown to be inadequate
for pairwise comparisons of classification algorithms [7].

Also, the evaluation measure needs further investigation. One important issue
is the difference in importance between higher and lower ranks into account,
which is addressed by the Average Weighted Correlation measure [16,17].

The fact that some particular classification algorithm is generally better than
another on a given dataset, does not guarantee that the same relationship holds
on a new dataset in question. Hence datasets need to be characterized and some
metric adopted when generalizing from past results to new situations. One possi-
bility is to use an instance based/nearest neighbor metric to determine a subset
of relevant datasets that should be taken into account, following the approach
described in [10]. This opinion is consistent with the NFL theorem [19] which
implies that there may be subsets of all possible applications where the the same
ranking of algorithms holds.

In the work presented here, we have concentrated on accuracy. Recently we
have extended this study to two criteria — accuracy and time — with rather
promising results [16]. Other important evaluation criteria that could be consid-
ered are the simplicity of its use [12] and also some knowledge-related criteria,
like novelty, usefulness and understandability [8].
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