
Leveraging Web-Services and Peer-to-Peer
Networks

Mike P. Papazoglou1, Bernd J. Krämer2, and Jian Yang1

1 INFOLAB — Tilburg University, PO Box 90153,
NL-5000 LE Tilburg, The Netherlands

{mikep,jian}@uvt.nl,
2 FernUniversität Hagen,
D-58084 Hagen, Germany

bernd.kraemer@fernuni-hagen.de

Abstract. Peer-oriented computing is an attempt to weave inter-
connected machines into the fabric of the Internet. Service-oriented com-
puting (exemplified by web-services), on the other hand, is an attempt
to provide a loosely coupled paradigm for distributed processing. In this
paper we present an event-notification based architecture and formal
framework towards unifying these two computing paradigms to provide
essential functions required for automating e-business applications and
facilitating service publication, discovery and exchange.

1 Introduction

A large number of enterprises nowadays is implementing a SOAP/WSDL/UDDI
layer on top of existing applications or components and is assembling applications
by consuming web-services. The manifestation of web-services for such applica-
tions is through widely accepted industry standards such as XML, SOAP, WSDL
(Web-Services Definition Language) and UDDI (Universal Description, Discov-
ery and Integration protocol). Interactions of web-services occur as SOAP calls
carrying XML data content and the service definitions of the web-services are
expressed using WSDL as the common (XML-based) standard. WSDL is used to
publish a web service in terms of its ports (addresses implementing this service),
port types (the abstract definition of operations and exchanges of messages), and
bindings (the concrete definition of which packaging and transportation protocols
such as SOAP are used to inter-connect two conversing end points). The UDDI
standard is a directory service that contains service publications and enables
web-service clients to locate candidate services and discover their details.

The characterization of the web-service operation is the classic client/server
model. The service provider (server) will register with the UDDI registry and the
requester (client) will contact the registry to discover the server location so that it
can interact with it. This is a straightforward approach to distributed computing
that provides the advantage that clients are coupled to the servers only via
a contract mechanism. Since this contract is fully described by using WSDL,
developers can construct clients using the contract information. All providers

J. Eder and M. Missikoff (Eds.): CAiSE 2003, LNCS 2681, pp. 485–501, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

486 M.P. Papazoglou, B.J. Krämer, and J. Yang

must make their services available by publishing their contract and advertising
their service.

Peer-to-Peer (P2P) computing is the sharing of computer resources and ser-
vices through direct communication between systems. Each functional unit in
the network, called a peer, is behaviourally similar and is logically capable of
both providing and consuming information. True P2P networks are vastly dis-
tributed and do not require a centralized directory for indexing purposes. When
a peer decides that data hosted on another peer is useful, it visits directly this
peer in order to obtain that data. The P2P network is usually fluctuating and
dynamic with peer neighbour relationships breaking and reforming as the load
or infrastructure stability changes.

When comparing P2P networks with web-services functionality, we observe
that peer-to-peer systems also leverage a service-oriented architecture but have
their own idiosyncrasies. Unlike web-services, the determination of who is a
provider, a requester or a registrar (of a resource) is much looser. Typically,
a peer is all three of the aforementioned roles. However, like web-services, peers
must also publish a resource (allowing it to be found and accessed by other peers)
with efficient precision for the other peers to be able to broadcast their needs and
receive meaningful responses. Publication and discovery are paramount for both
paradigms, however, the two approaches diverge on lookup services. Peers use
decentralized discovery while web-services use larger centralized directories such
as UDDI. Lastly, another similarity is that both web-services and P2P networks
have heavy emphasis on distributed computing and on using XML as a means
to describe information.

Fortunately, the standards and frameworks used to create web-services can
also be utilized to develop P2P applications. This is because both sets of archi-
tectures fundamentally coordinate interactions between loosely coupled systems.
Utilizing a common framework based on current web-service technologies would
enable P2P developers with elementary building blocks for building applications.
In fact, JXTA, the P2P framework initiated by Sun Microsystems [10], i s making
adjustments to its core platform to make peers interoperate with web-services
using protocols like SOAP and WSDL.

This paper examines key intersect points that enable web-services and P2P
networks to work together and in particular, looks at ways in which web-
services discovery can benefit from P2P decentralization. Our contribution con-
centrates on an architectural approach and formal framework towards unifying
web-services and P2P networks to provide essential functions required for au-
tomating e-business applications and facilitating service publication, discovery
and exchange.

2 Problems with Web-Service Directories

To open new markets and find new sources of supply enterprises use a common
service registry (UDDI) for identifying potential trading partners and for cata-
loguing their business functions and characteristics. UDDI specification provides

Leveraging Web-Services and Peer-to-Peer Networks 487

two main types of interfaces (APIs): one for describing services and registering
service entries in the directory and one for enquiring about service entries and
provider characteristics. This allows the services to be dynamically discovered
and composed into more complex (value-added) services.

It is expected that vertical sectors will have a variety of specialised UDDI di-
rectories that serve their community as a whole offering business functionality on
the Web. In fact some vertical e-marketplaces, such as semiconductors, travel in-
dustry, and automotive industry already provide to their members a unified view
of sets of UDDI-based products and services to enable them to transact business
using diverse mechanisms, such as web-services. And this is already happening
to a large extend. With these vertical e-marketplaces services can be published
and hosted throughout the e-marketplace network and used on demand. The
goal of web-services when used within the context of e-marketplaces is to enable
business solutions by composing and programming web-services, e.g., using the
Business Process Execution Language for Web Services (BPEL4WS) [3]. This
allows companies to conduct electronic business, by invoking web-services, with
all partners in a marketplace rather than with just the ones with whom they
have collaborative business agreements. Service offers are described in such a
way, e.g., WSDL over UDDI, that they allow automated discovery to take place
and offer request matching on functional and non-functional service capabilities.

One of the major problems with the centralized indexing scheme provided by
UDDI is that it does not scale well because the number and physical distribution
of the UDDI clients can quickly overwhelm this centralized configuration and can
lead to serious performance bottlenecks. Adding more servers or implementing
load-balancing strategies does not constitute a practical solution as they may
prove to be costly and disruptive. In contrast to UDDI, P2P networks content
is normally described and indexed locally to each peer and search queries are
propagated across the network. In this model no central index is required to
span the network.

One of the major points of intersection between P2P and web-service tech-
nologies involves bringing the decentralization aspect of P2P networks to the
central service discovery mechanisms of web-services provided by UDDI. It is
not difficult to envision a P2P network architecture that promotes a logically
decentralized arrangement of registered service descriptions and that also pro-
vides web-service descriptions much in the same way that UDDI does.

3 A Federated Architecture for P2P Web-Services

To enable the fusion of web services and P2P computing we can employ a fed-
eration of UDDI-enabled peer registries that operate in a decentralized fashio
rather than requiring each peer to publish their own service descriptors locally
or centrally (on the UDDI). Such federations may represent common interest
groups of peers that band together to ensure that they provide added-value syn-
dicated services to their customers. A peer (service) syndication seeks to promote

488 M.P. Papazoglou, B.J. Krämer, and J. Yang

in-demand services by offering sets of related services throughout the federation
rather than on a single UDDI location, see Figure 1.

Fig. 1. Conceptual architecture of the P2P service network.

Two of the key concepts in a peer service syndication are the notions of pub-
lication and subscription. Publications are simple XML documents that name,
describe and publish the existence of peers that act as service providers, while
subscriptions also name, describe and publish the service requirements of peers
that act as service requesters within a service syndication. Discovery within a
service syndication becomes an issue of matching service subscriptions against
service publications.

A peer syndication is formed for specific specialised areas of interest within
an e-marketplace, e.g., e-travel, finances, marketing and so on. Service providers
(peers) first publish their services on the e-marketplace UDDI and then they
may join a service syndication. When joining the P2P web-service network, a
peer first registers itself by publishing services it wishes to offer to other peers.
Secondly, it may subscribe to services that it is interested in from other peers
in the syndication. For each syndication a specific peer acts as super-peer by
providing directory services to the peer syndication, see Figure 1. The registry
of the super-peer contains among other things a syndication UDDI sub-directory.
Whenever a peer joins a syndication the syndication UDDI receives a mirror copy
its service publication from the e-marketplace UDDI.

The super-peer acts as an event-notification service that receives and stores
the publications and subscriptions of the entire peer-syndication. To achieve
this a super-peer manages a select set of meta-operations for peers, such as

Leveraging Web-Services and Peer-to-Peer Networks 489

joining/leaving the network, publishing service publications, and service sub-
scriptions.

Event-notification is a concept used for asynchronous coordination of dis-
tributed systems. The event notification service (super-peer) can carry out a
selection process (on the basis of subscription/publication matching) to deter-
mine which of the published notifications are of interest to which of its peers,
thus routing and delivering notification only to those peers that are interested.

To exemplify these points we introduce a service syndication scenario in the
domain of e-travelling based on specifications of the open travel agency (OTA)
[13]. OTA has specified a set of standard business processes, which use XML for
structured data messages, for searching for availability and booking a reservation
in the airline, hotel and car rental industry, as well as the purchase of travel
insurance in conjunction with these services.

Fig. 2. Sample publications in the e-travel service syndication.

Figure 2 illustrates possible publications made by airline associations, car
rental agencies, hotel corporations and leisure operators that have published
their services as part of an e-travel service syndication. For reasons of brevity
we show only six service peers in this figure. Each publication consists of three
parts: the peer’s (service provider’s) name, e.g., BudgetCarRental, its WSDL
portType name, e.g., CarRental, and the name of the operations contained in
it. WSDL portTypes contain the abstract definition of operations. All service
providers in the marketplace (and syndication) use standard (unique) names for
their port types and associated operations.

The goal of each super-peer is to send an update to its syndication to notify
all potential subscribers about new publications (registrations) and deletions

490 M.P. Papazoglou, B.J. Krämer, and J. Yang

of registrations it receives. When a super-peer receives a new publish/subscribe
event from a peer that wishes to join the network, e.g., BudgetCarRental, it per-
forms two kinds of matching operations. The first matching operation matches
the new peer’s publication against all subscriptions that are relevant to it. If,
for instance, BudgetCarRental has published information about CarRental rate
qualifiers (rq), and car class preferences (ccp) then it could be matched with the
subscriptions of the peers HappyTravelAgent and FlexiCarRental - assuming
that these have subscribed to such information. The second matching operation
matches all previous publications against the service subscriptions of this new
peer. If, for instance, BudgetCarRental has subscribed to information relating
to HotelBooking it can be matched with peers such as LeisureHotelGroup and
HappyTravelAgent assuming that these two peers have published the informa-
tion in which BudgetCarRental is interested. Whenever a match is detected,
the super-peer forwards the peer publication information such as the services
offered, their matching peers and their addresses to all the peers that have sub-
scribed to their services. As a consequence, each peer contains high-level service
descriptions as well as the addresses of the peers that have published information
(services) that this peer has subscribed to. In this way the new peer is informed
about existing peers whose publications match its subscription needs and can
thus establish its own peer group within the syndication.

Each peer within a service syndication knows only the identity of the peers in
its own syndication that match its own subscription needs. For instance, based on
its previously stated subscriptions BudgetCarRental would form a syndication
with peers such as LeisureHotelGroup and HappyTravelAgent. A peer can thus
form its own peer-acquaintance group (PAG) within the syndication dynamically.
Once peers have formed their own syndication they can work autonomously by
exchanging services and information with each other without having to rely to
their super-peer any more. Peers collaborate by propagating service requests to
peers within their PAG to which they subscribe (henceforth named acquainted
peers). Acquainted peers respond to a service request issued by a local peer in
their syndication by returning a high-level UDDI description of their service con-
tent such as their BusinessKey, Tmodel structure and bindindTemplate. After
receiving this information, the local peer invokes the get detail() operations
of the syndication UDDI API to retrieve more detailed information about the
service port-types, elements and bindings of the services offered by its acquainted
peers, see Figure 1.

The above P2P service network combines aspects of the directory services
P2P model exemplified by Napster [12] and the ”pure” P2P architecture exem-
plified by Gnutella and Freenet [9,6]. It follows a federated approach where a
relatively small number of super-peers provide directory services to peer groups
managed by a super-peer. The super-peer is used only for notification purposes
when peers attempt to locate or communicate with each other. Each peer in
the P2P service network builds up a (constantly changing) peer-group of other
peers and stores locally some minimal information about them. Whenever a peer

Leveraging Web-Services and Peer-to-Peer Networks 491

receives a request for service that it cannot fully satisfy it routes segments of it
to appropriate peers within its peer-group for execution.

4 Publish/Subscribe in the P2P Web-Services Network

The publish/subscribe mechanism used in this paper is a P2P communication
protocol that enables an exchange of asynchronous notifications between loosely
coupled peers in a P2P network of web-services. This mechanism is partially
based on an event notification scheme proposed for wide-area networks [2].

4.1 Service Publication and Subscription Matching

A peer publishes a set of WSDL port-types, each having a set of operations
characterizing the service it offers. For a given service syndication we assume that
the set of all possible port-type and operation names PN and OP, respectively,
are well-defined. All publications are maintained by a super-peer known to all
peers in the peer set P. The sets PN, OP, and P contain all permissible port
type, operation, and peer names, respectively.

Organizing and manipulating publication contexts. A port-type is a pair
(n, O) with n ∈ PN and O ⊆ OP and a publication can be expressed as a set
of port-types. The information about publications and their publishing peers
can be maintained in a matrix relating a set of peers with all their publications
known in a specific service syndication at a particular time. We call this matrix
a publication context. The peer names are represented by rows in the matrix,
while the port-types are represented by its columns. A cross in row p and column
(pt, O) indicates that peer p has published port-type (pt, O). Table 1 illustrates a
publication context for the port-types and peers used in the example in Figure 21.

Publication contexts and the matching of a peer’s subscription against a given
publication context can be modelled mathematically in terms of formal concept
analysis [8], which relies on the theory of ordered sets and complete lattices.
Formally, a publication context C := (P, P t, I) consists of a set P ⊆ P of peer
names, a publication, i.e., a set of port-types, Pt ⊆ {(n, O) | n ∈ PN∧O ⊆ OP},
and an incidence relation I ⊆ P × Pt. The fact that a peer p has published a
certain port-type (n, O) is expressed as (p, (n, O)) ∈ I.

For a set of peers in Q ⊆ P the expression:

[Q] := {pt ∈ Pt | (p, pt) ∈ I for all p ∈ Q} (1)

computes the set of port-types belonging to the peers in Q. For
instance, [LeisureHotelGroup] = {GolfCourseRes(cs,ca,cr,gt,rq,p),
HotelBk(hs,ha,rpr,rp,rq,rpf,mr,mc,ss,ds,hfs)}

A publication context can be extended or modified incrementally by means
of only a few operations provided by each super-peer as follows:
1 Due to space limitations, we henceforth represent in all tables and figures operations

corresponding to the constructs in Figure 2 by their initial letters only.

492 M.P. Papazoglou, B.J. Krämer, and J. Yang

Table 1. Example of a publication context for the travel syndication service depicted
in Fig. 2

A
ir

li
n
eB

k(
ai

,c
l,
p
,t

,i
d
,c

i,
cf

)
A

ir
li
n
eB

k(
ai

,c
l,
p
,t

,i
d
,c

i,
cf

,m
sr

,s
fa

,s
aa

)
C

ar
R

en
ta

l(
p
i,
rq

,c
cp

,c
a,

r,
c)

C
ar

R
en

ta
l(

p
i,
rq

,c
rp

,c
a,

r,
c,

tp
)

C
ar

R
en

ta
l(

p
i,
rq

,c
cp

,c
a,

r,
c,

tp
,c

m
p
,a

cp
,l
p
)

C
re

d
it

C
h
ec

k(
cc

e,
cc

c,
p
cp

)
G

ol
fC

ou
rs

eR
es

(c
s,

ca
,c

r,
gt

,r
q,

p
)

H
ot

el
B

k(
h
s,

h
a,

rp
r,

rp
,r

q,
rp

f,
m

r,
m

c)
H

ot
el

B
k(

h
s,

h
a,

rp
r,

rp
,r

q,
rp

f,
m

r,
m

c,
ss

,d
s,

h
fs

)
In

su
ra

n
ce

C
ov

(p
o,

p
t,

it
,o

q,
p
c)

AirlineTravel × × ×
BudgetCarRental ×
FlexiCarRental ×
GolfTeeTimes ×
HappyTravelAgent × × ×
LeisureHotelGroup × ×

void addPeer(peer p): The effect of this operation on a given publication con-
text (P, P t, I) is an extended context (P ∪ {p}, P t, I). The corresponding
matrix is extended by a new row labelled p, provided that a row labelled p
does not exist already.

void addPortType(peer p, portType pt): The current publication context
(P, P t, I) is extended to yield (P, P t ∪ {pt}, I ∪ {(p, pt)}) if p ∈ P , otherwise
it remains unchanged. If a row labelled p exists in the matrix, the matrix
will then be extended by a new column pt (if not already available) while
a cross is introduced at the intersection of row p and column pt (provided
that it does not exist).

void addOperation(peer p, portTypeName n, opName o): The effect of
this operation on the current context (P, P t, I) is a new context (P, P t′, I ′)
with Pt′ := Pt ∪ {(n, O ∪ {o}) | (n, O) ∈ Pt ∧ o /∈ O ∧ (p, (n, O)) ∈ I} and
I ′ := I ∪ {(p, (n, O ∪ {o})) | (n, O) ∈ Pt ∧ o /∈ O ∧ (p, (n, O)) ∈ I}. The
matrix is extended by a new column labelled n(o1, . . . , on, o) for the column
n(o1, . . . , on) related to row p, provided that o is different from o1, . . . , on.
In addition, a cross is introduced at the intersection of row p and the new
column n(o1, . . . , on, o).

void addPublication(peer p, portType pt): This operation is defined by
combining the operations addPeer(peer p) and addPortType(peer p,
portType pt).

void deletePeer(peer p): If p ∈ P of the current context (P, P t, I), the result
is the context (P − {p}, P t′, I ′) with Pt − {pt | (p, pt) ∈ I∧ � ∃(p′, pt) ∈
I with p �= p′} and I ′ := I − {(p, pt)}.

Leveraging Web-Services and Peer-to-Peer Networks 493

In the matrix we just delete row p and all columns pt that are related only
to p.

void deletePortType(peer p, portType pt): The intended meaning of this
operation is that peer p no longer publishes port-type pt. The modified contex
is defined by (P, P t′, I ′) with

Pt′ :=
{

Pt − {pt} if � ∃(p′, pt) ∈ Iwith p �= p′

otherwise Pt

and I ′ := I − (p, pt).
void deleteOperation(peer p, portTypeName n, opName o): The effect of

this operation is a context in which operation o is removed from port-type pt
published by peer p. More precisely, we obtain the new context (P, PT ′, I ′)
defined as follows: Pt′ := Pt−{(n, O) | (n, O) ∈ Pt∧o ∈ O∧ � ∃(p′, (n, O)) ∈
Iwith p �= p′} ∪ {(n, O − {o}) | (p, (n, O)) ∈ I ∧ o ∈ O} and I ′ := I −
{(p, (n, O)) | o ∈ O} ∪ {(p, (n, O − {o})) | (p, (n, O)) ∈ I ∧ o ∈ O} under
the condition that p exists and p is related to any port-type pt ∈ Pt that
contains operation o. Otherwise the context remains unchanged.
This operation has the following effect on the matrix. The column that is
labelled n(op1, . . . , o, . . . on) and has a cross at its intersection with row p is
removed. A new column labelled n(op1, . . . , on) is added and a new cross is
added in the newly inserted column n(op1, . . . , on).

Service searching and subscription. A search for services is typically trig-
gered by a requester indicating the port-type and the associated set of operations
that it is interested in. That is, a service request r = (n, {o1, . . . , on}) is a port-
type name and a set of operation names. A peer p matches a service request r
in a given publication context (P, P t, I) if p publishes a port-type (n, O) that
includes at least the operations contained in the request. Accordingly, we define
a function match(p, r) ≡ ∃(n, O) ∈ [{p}] such that {o1, . . . , on} ⊆ O (see Def-
inition 1 for the meaning of the symbol []). All publishing peers that satisfy
a request r form the peer-acquaintences acq(r) group of the peer that issues a
service request. Consequently, acq(r) := {p ∈ P | match(p, r)}.

In general, a peer seeks other peers that publish a coherent set of port-types
and not just a single port-type. Consequently, we extend the above definitions to
what we call a subscription. A subscription S is defined, just like a publication,
as a set of pairs (s, O)) with s ∈ PN and O ⊆ OP. We say that a peer p
matches a subscription S if it matches all requests in S, i.e., match(p, S) ≡ ∀r ∈
S : match(p, r). The peer-acquaintances acq(S) of a subscription S with respect
to a publication context (P, P t, I) and a subscription request r are defined as:

acq(S) :=
⋂
r∈S

acq(r). (2)

Table 2 shows simple examples of peer-subscriptions and their resulting peer-
acquaintances. This table shows that subscription 2 extends Subscription 1 by

494 M.P. Papazoglou, B.J. Krämer, and J. Yang

Table 2. Examples of peer-subscriptions and their acquaintances.

Example Subscription Acquaintances
Subscription1 {CarRental(rq,ccp,r,c} {BudgetCarRental,

FlexiCarRental }
Subscription2 {CarRental(rq,ccp,r,c,tp,cmp,acp} {FlexiCarRental}
Subscription3 {HotelBk(hs,ha,rpr,rp,rq,mr), {LeisureHotelGroup}

GolfCourseRes(cs,ca,rq,p)}
Subscription4 ∅ P
Subscription5 {CarRental(pi,ccp), HotelBk(hs,ha)} ∅
Subscription6 {AirlineBk() } {AirlineTravel,

HappyTravelAgent}

requesting additional operations to be matched. These additional operations
are found only in the CarRental port-type published by peer FlexiCarRental,
i.e., a subset of the acquaintances of subscription 1. We also observe that the
port-type of Subscription 2 is a subtype of the port-type of Subscription 1.
Therefore, we define a subtype relationship ”≤” between port-types pt = (n, O)
and pt′ = (n′, O′) with n, n′ ∈ PN and O, O′ ∈ OP that is induced by the
subset relationship among the operations as follows:

pt′ ≤ pt ≡ (O ⊆ O′ ∧ n = n′)

We also notice that an empty subscription like Subscription 4 is matched
by all peers, and Subscription 5 yields an empty set of acquaintances because
the requested combination of port-types is not supported by any peer in the
syndication. Subscription 6 is matched by all peers advertising the port-type
named AirlineBk as it contains no operations. This signifies that the subscriber
is obviously satisfied with any possible operation included in the requested port-
type.

The above considerations imply that subtyping relationships between logi-
cally associated port-types should be first introduced at the publication context
and then be used to match potential subscriptions. We can extend a given publi-
cation context (P, P t, I) to the context (P, P t, I), by taking all possible subtype
relationship between port-types carrying the same port-type name into account.
This is defined as:

Pt = Pt ∪ {(n, Q) | (n, O) ∈ Pt ∧ Q ⊆ O} (3)

and

I = I ∪ {(p, (n, Q)) | (p, (n, O)) ∈ I ∧ Q ⊆ O} (4)

In the matrix representation of a publication contexts this means to add: (1) all
necessary columns (n, Q) for each published port-type (n, O) such that (n, O) ≤
(n, Q) and (2) a cross at the intersection of row p with each new column (n, Q)
provided that a cross exists at the intersection of row p with column (n, O), for
each (n, O) ≤ (n, Q). Table 3 is the extended table constructed from Table 1 by
adding all appropriate port-type subtype relationships. Additional columns (not
all of which are shown) are marked in a light grey colour.

Leveraging Web-Services and Peer-to-Peer Networks 495

Table 3. Example of a supplemented publication context for the travel domain depicted
in Fig. 2.

A
ir

li
n
eB

k(
)

A
ir

li
n
eB

k(
ai

)
..
.

A
ir

li
n
eB

k(
ai

,c
l,
p
,t

,i
d
,c

i,
cf

)
A

ir
li
n
eB

k(
ai

,c
l,
p
,t

,i
d
,c

i,
cf

,m
sr

)
..
.

A
ir

li
n
eB

k(
ai

,c
l,
p
,t

,i
d
,c

i,
cf

,m
sr

,s
fa

,s
aa

)
C

ar
R

en
ta

l(
)

..
.

C
ar

R
en

ta
l(

p
i,
rq

,c
a,

r,
c)

C
ar

R
en

ta
l(

p
i,
rq

,c
cp

,c
a,

r,
c)

C
ar

R
en

ta
l(

p
i,
rq

,c
rp

,c
a,

r,
c)

C
ar

R
en

ta
l(

p
i,
rq

,c
a,

r,
c,

tp
)

C
ar

R
en

ta
l(

p
i,
rq

,c
rp

,c
a,

r,
c,

tp
)

C
ar

R
en

ta
l(

p
i,
rq

,c
cp

,c
a,

r,
c,

tp
)

..
.

C
ar

R
en

ta
l(

p
i,
rq

,c
cp

,c
a,

r,
c,

tp
,c

m
p
,a

cp
,l
p
)

..
.

AirlineTravel × × × × × × ×
BudgetCarRental × × × ×
FlexiCarRental × × × × × × × ×
GolfTeeTimes
HappyTravelAgent × × × × × × × × × ×
LeisureHotelGroup

We can simplify our definition of the acquaintances of a subscription S ⊆ Pt
by using the extended publication context and matrix (P, P t, I) as follows:

acq(S) = [S] := {p ∈ P | (p, pt) ∈ I for all pt ∈ S}. (5)

where [S] determines the set of all peers that publish all port-types in S. We
shall henceforth always refer to the extended form of a publication context.

Subscriptions are maintained the same way as publications are maintained.
In addition, any change to a peer’s publication context must be automatically
mirrored against the set of known subscriptions which are maintained in a sub-
scriber’s table. Subscribers provide a call-back method that is invoked from the
super-peer to inform them when they are affected from any changes that invali-
date or extend a subscription that they made. A subscription is invalidated, for
instance, if:

– an operation that a subscriber requested from a port-type is deleted from
that port-type,

– the peer to which the subscription was bound is deleted, or
– a port-type that is a subtype of a requested port-type is deleted.

A subscription is extended if a new subtype of a subscribed port-type is added
or a new operation is added to a super-type of requested port-type such that the
extended port-type now matches the requested port-type.

Structural organisation of publications and subscriptions. The acquain-
tances of a subscription can be computed by traversing the extended matrix and

496 M.P. Papazoglou, B.J. Krämer, and J. Yang

selecting all the peers that satisfy a subscription. A more elegant way to organize
publication contexts and subscriptions and determine matching acquaintances
is by means of a concept lattice C(P, P t, I). This lattice is derived automat-
ically from a given publication context (P, P t, I) using an efficient algorithm
described in [7]. This algorithm relies on the notion of a formal concept of a
context (P, P t, I), which is defined as a pair (Q, T) with Q ⊆ P, T ⊆ Pt, [Q] = T
and [T] = Q (see definition 1 and peer-publish-all-relations, respectively.). Q is
called the extent and T is the intent of the concept (Q, T). If two concepts such
as (Q1, T1) and (Q2, T2) are two concepts of a given context, then (Q1, T1) is
called a subconcept of (Q2, T2) if Q1 ⊆ Q2 or, equivalently, if T2 ⊆ T1.

Figure 3 illustrates the concept lattice of the complete sample publication
in Table 1. This figure includes all missing port-types and operations found in
Figure 2. The super-peer organises the publication space around this type of
concept lattice and stores it in its own local registry.

Fig. 3. Concept lattice including subtype relationships among published services.

There are two types of labels attached to the nodes in this publication lat-
tice: port-types and peer names (shaded rectangles). Each node represents a
formal concept relating its extent, i.e., a set of peer names, with its intent, i.e.,
a set of port-types published by all peers in its extent. All port-types reachable
via upwards paths from a node in the lattice determine the node’s intent. For
instance, the intent of node 10 is the sum of the port-types listed in nodes 1,
3, 4, 6, and 7. Conversely, all peers reachable downwards from a node in the
lattice form the extent of that node. The peers in the extent of a given node
are those peers that have published the port-types associated with its intent.
Consider, for instance, node 6: the port-types CarRental(),CarRental(pi),
. . . , CarRental(pi,rq,cq,r,c,tp), which form the intent of node 6, are pub-

Leveraging Web-Services and Peer-to-Peer Networks 497

lished by the peers associated with node 9 and 10, i.e, FlexiCarRental and
HappyTravelAgent, which form its intent. The top node of the lattice repre-
sents the concept relates all the peers in a given publication context with the
port-types they all share in common (in our example there are none therefore
the concept is (P, ∅)). The bottom node of the lattice relates the sum of all port-
types in a publication context with those peers that publish this sum (in our
example there are none, therefore the concept associated with the bottom node
is (∅, P t)).

The collection of subscriptions in a syndication are organised in a similar
fashion in a subscription lattice. In this way we can use a uniform mechanism to
determine subscription/publication matches and which subscribers are affected
by a change to the publication lattice.

4.2 Peer Group Formation

A peer group is formed by applying the match function on a peer’s subscription
against a publication context C. Suppose that the very first subscription of the
peer BudgetCarRental is: S := {CarRental(tp), HotelBooking(hs, .., mc))}. A
matched-subscription lattice for BudgetCarRental’s subscription, shown in Fig-
ure 4, is generated by matching subscription S against the complete publication
lattice of the super-peer, shown in Figure 3. The matched-subscription lattice is a
true subset of the extended publication lattice stored at the super-peer and indi-
cates the peers and matching concepts that conform to BudgetCarRental’s sub-
scription. This figure shows that BudgetCarRental’s subscription has resulted
in forming a lattice with the peeers: HappyTravelAgent, LeisureHotelGroup
and FlexiCarRental. In this matched subscription lattice LeisureHotelGroup
provides the additional hotel functionality requested but not the car rental func-
tionality, FlexiCarRental provides the additional car rental functionality re-
quested but not the hotel functionality, while HappyTravelAgent provides both
requested functionalities. In the first instance when a peer has made its initial
subscription, the matched-subscription lattice is stored locally at this peer’s site
and its forms its local subscription lattice. This local subscription lattice can
be used in the future to locate relevant peer acquaintances when attempting to
process a service request without having to resort to the super-peer any more.
A local subscription lattice grows as a peer gets notified of new subscriptions.

A peer’s publication lattice is thus fluctuating with peer relationships break-
ing and reforming dynamically based on the peer’s interests and the number of
peers entering or leaving its group as a result of this.

Whenever a service request is posed at a local peer, its set of subscriptions
needs to be evaluated to determine whether it can support this new request. In
case that execution of the new request is not fully supported locally, then a new
subscription (for this peer) reflecting the missing information will be generated
from the service request and will be sent to the super-peer.

When a peer decides to leave the P2P network, a notification will be sent
from the super-peer to all relevant peers, which in turn will update their lo-

498 M.P. Papazoglou, B.J. Krämer, and J. Yang

Fig. 4. A matched-subscription lattice for BudgetCarRental

cal subscription lattices. This happens in accordance with the lattice updating
operations defined in the previous subsection.

5 Service Request Processing

When a service request arrives, the local peer will use its local subscription lattice
as a point of reference to resolve a set of acquainted peers in its PAG to which
the request should be routed. The response to a request includes descriptions
of the service content that the acquainted peers provide in connection to the
sub-request they receive.

To understand how service requests are processed assume that
BudgetCarRental that has formed a PAG with peers HappyTravelAgent,
LeisureHotelGroup and FlexiCarRental. Further assume that this peer needs
to handle a sub-request that requires hotel booking functionality, e.g., search
for a particular type of hotel that is not supported locally. After receiving this
request BudgetCarRental determines (on the basis of its local subscription
lattice, shown in Figure 4) that its acquainted peers HappyTravelAgent and
LeisureHotelGroup can handle this type of request. Subsequently, the peer
BudgetCarRental requests technical information about its two acquainted peers
from the UDDI using the get Detail operations of the UDDI enquiry API.
The get Detail operations are used to retrieve technical details such as access
information required to invoke a service. This technical information describes
the format input messages should be sent in, what protocols are appropriate,
what security is required, and what form of a response will result after sending
input messages. More specifically, the get ServiceDetail, get bindingDetail,
and get tModelDetail functions of the UDDI API are invoked to retrieve the
above technical details that are required to interact with a service endpoint.

Now assume that after receiving this technical information the local peer
BudgetCarRental has decided to invoke one (or both) of its two acquainted

Leveraging Web-Services and Peer-to-Peer Networks 499

peers HappyTravelAgent and LeisureHotelGroup. Also assume that the service
requester is interested in hotels within 5 kms North West of Schiphol airport.
This request can be expressed as shown in Figure 5 on the basis of the stan-
dard Hotel Search Request message provided by the OTA specifications for hotel
industry messages (see section-5 of OTA 2001 Message specifications). This mes-
sage provides the ability to search for a list of hotel properties that meet certain
criteria, and supply information in return that is related to the specific request.
Geographic data, such as proximity to a specific location, landmark, attraction
or destination point, could also be used to constrain the summary response to a
limited number of hotels.

Fig. 5. Sample service request.

In Figure 5 the statement < HotelSearchRQ > identifies the request as
targeting hotel property data. This statement may have one to many < Ho-
telSearchCriterion > child elements that identify a single search criterion by
means of criteria types. A < MatchType > attribute indicates whether the match
to a string value must be exact or only partial. The < ImportanceType > at-
tribute is used to allow the responding web-service implementation to search
for appropriate hotels and respond to preference criteria in the order of impor-
tance to the service client. This construct indicates whether the input criterion is
mandatory, of high, medium or low priority. The < HotelSearchValue > element
is a required child element of < HotelSearchCriterion > that contains the values
expected by the Type attribute.

The response to the request in Figure 5 returns a list of hotel properties that
meet the criteria of the request. A sample response to the request of Figure 5 is
found in Figure 6.

6 Related Work

Recent work in content-based search include content-addressable networks –
where the content of queries is used to efficiently route messages to the most
relevant peers – such as CAN [14], Chord [4], and Pastry [5] as well as some
variations of publish/subscribe networks [11]. These content-based P2P networks
place emphasis on discovery of content rather than on a logical organization of
the information space and on establishing relationships between constructs in

500 M.P. Papazoglou, B.J. Krämer, and J. Yang

<?xml version="1.0" encoding="UTF-8"?>
<OTA_HotelSearchRS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="OTA_HotelSearchRS.xsd" xmlns="http://www.opentravel.org/OTA">
<Success/>

<HotelSearchRecord HotelName="Hilton Hotel" Relevance="100">
<HotelReference ChainCode="HH" BrandCode=".." HotelCode=".."/>
<LocationDescription> 3.5 kms NW of Schiphol Airport</LocationDescription>
<SearchValueMatch Match="true">Deluxe</SearchValueMatch>
<MarketingText>Pool, Spa, and Health Club on premises</MarketingText>

</HotelSearchRecord>
...

<TotalReturns> 5 </TotalReturns>
</OTA_HotelSearchRS>

Fig. 6. Sample service response.

the publication space. A major difference between our approach and these ac-
tivities is that our approach structures the publication and subscription space
in concepts lattices that logically organize the publication/publication content
by establishing semantic links and relationships between content concepts such
as port-type and operation names.

On the industrial research side, work that comes closer to the research re-
ported herein is Sun Microsystem’s Project Juxtapose (http://www.jxta.org) –
usually referred to as JXTA [15]. JXTA is not based on a publish/subscribe
and event notification scheme. Its search peers act as hubs and can register
with other hubs as information providers to field queries from other peers based
on arbitrary content description registrations. JXTA tends to centralize regis-
tration/subscription information and control in hubs, whereas in our approach
peers register only high-level information about themselves, such as their name,
address and names of the service elements they are willing to share with other
peers, with a super-peer. Moreover, unlike JXTA peers do not use the super-peer
to locate each other or communicate with one another. Instead, each peer builds
up a (constantly changing) peer-group of other peers and stores some minimal
information about them.

7 Summary

In this paper we highlighted key intersect points that enable using service-
oriented and peer-to-peer-computing technologies together and presented an ar-
chitectural approach and formal framework towards unifying them.

We introduced a federation of UDDI-enabled peer registries, which operate
in a decentralized fashion, rather than requiring each peer to publish their own
service descriptors locally or centrally (on the UDDI). Federations are collec-
tions of behaviourally similar cooperating peers that provide a common set of
circumstances and that band together to ensure that they provide added-value
syndicated-services to their customers. Peer federations use a publish/subscribe
model that enables the loosely coupled exchange of asynchronous notifications

Leveraging Web-Services and Peer-to-Peer Networks 501

and an efficient mechanism based on concept-lattices to match notifications to
subscribers and route notifications from publishers to interested subscribers.

There are several advantages that the publish/subscribe model for P2P net-
works of web-services offers. These include simplicity and ease of use, openness,
extensibility, scalability, and semantic-based request routing.

References

1. S. Botros and S. Waterhouse, “Search in JXTA and other Distributed Networks,”
Proc. 2001 Int’l Conf. Peer-to-Peer Computing, 2001;
available online at http://people.jxta.org/stevew/BotrosWaterhouse2001.pdf.

2. A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and Evaluation of a Wide-Area
Event Notification Service”, in ACM Trans on Computer Systems, Vol. 19, No. 3,
pp. 332–383, 2001.

3. Curbera, F., Goland, Y., Klein, J., Leyman, F., Roller, D., Thatte, S., and Weer-
awarana, S., “Business Process Execution Language for Web Services(BPEL4WS)
1.0,” August 2002, available at http://www.ibm.com/developerworks/library/ws-
bpel.

4. F. Dabek, et. al. “Building Peer-to-Peer Systems with Chord, a Distributed Lookup
Service”, http://pdos.lcs.mit.edu/chord2001.

5. P. Druschel and A. Rowstron “Pastry: Scalable Distributed Object Location and
Routing for Large Scale Peer-to-Peer Systems”, ACM SIGCOMM, 2001.

6. Freenet Home Page. http://freenet.sourceforge.com
7. Algorithmen zur formalen Begriffsanalyse. In: B. Ganter, R. Wille, and K.E. Wolff

(eds), Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim, 1987, pp.
241–254

8. B. Ganter, R. Wille. Formal Concept Analysis. Springer 1999
9. Gnutella Development Home Page. http://gnutella.wego.com

10. L. Gong. “Project JXTA: A Technology Overview”, available at
http://www.jxta.org/project/www/white papers.html.

11. D. Heimbigner “Adapting Publish/Subscribe Middleware to Achieve Gnutella-like
Functionality”, ACM Symposium on Advanced Computing (SAC), 2001.

12. www.napster.com, 2001.
13. Open Travel Alliance (OTA), “Document 2001C Specifications”, available at

http://www.opentravel.org, 2001.
14. S. Ratnasamy, et. al. “A Scalable Content Addressable Network”, ACM SIG-

COMM, 2001.
15. S. R. Waterhouse, D. M. Doolin, G. Kan and Y. Faybishenko, “JXTA Search: a

Distributed Search Framework for Peer-to-Peer Networks” in IEEE Internet Com-
puting, vol. 6, pp. 68–73, 2002.

	Introduction
	Problems with Web-Service Directories
	A Federated Architecture for P2P Web-Services
	Publish/Subscribe in the P2P Web-Services Network
	Service Publication and Subscription Matching
	Peer Group Formation

	Service Request Processing
	Related Work
	Summary

