
J. Eder and M. Missikoff (Eds.): CAiSE 2003, LNCS 2681, pp. 468–484, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Management Applications of the Web Service
Offerings Language (WSOL)

Vladimir Tosic, Bernard Pagurek, Kruti Patel, Babak Esfandiari, and Wei Ma

Department of Systems and Computer Engineering, Carleton University,
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

{vladimir, bernie, kpatel, babak, weima} @ sce.carleton.ca

Abstract. We discuss possible Web Service Management (WSM) and Web
Service Composition Management (WSCM) applications of the Web Service
Offerings Language (WSOL) and how the language supports these applications.
WSOL is a novel language for the formal specification of classes of service,
various constraints (functional constraints, Quality of Service – QoS, and access
rights), and management statements (subscription and pay-per-use prices,
monetary penalties, and management responsibilities) for Web Services. De-
scribing a Web Service in WSOL, in addition to the Web Services Description
Language (WSDL), enables monitoring, metering, and management of Web
Services. Metering of QoS metrics and evaluation of constraints can be the re-
sponsibility of the provider Web Service, the consumer, and/or one or more
mutually trusted third parties (SOAP intermediaries or probes). Further, ma-
nipulation of classes of service (switching, deactivation/reactivation, and dy-
namic creation) can be used for dynamic (i.e., run-time) adaptation and man-
agement of Web Service compositions.

1   Introduction

The World Wide Web Consortium (W3C) defines a Web Service as “a software ap-
plication identified by a URI, whose interfaces and binding are capable of being de-
fined, described and discovered by XML artifacts and supports direct interactions with
other software applications using XML based messages via Internet-based protocols”
[1]. Here, URI means ‘Uniform Resource Identifier’ and XML means ‘Extensible
Markup Language’. The three main Web Service technologies are the SOAP protocol
for XML messaging, the WSDL (Web Service Description Language) language, and
the UDDI (Universal Description, Discovery, and Integration) directory.

When SOAP, WSDL, and UDDI were first published, we examined them to see
how they support management activities. It was easy to conclude that these technolo-
gies needed significant additions to better support the management of Web Services
and Web Service compositions. In particular, WSDL does not support specification of
various constraints, management statements, classes of service, Service Level Agree-
ments (SLAs) and other contracts between Web Services. Explicit, precise, and unam-



Management Applications of the Web Service Offerings Language (WSOL)         469

biguous specification of such information is crucial for management activities [2, 3,
4]. Therefore, we have decided to develop our own XML language for this purpose
and named this language the ‘Web Service Offerings Language (WSOL)’.

WSOL can be used for several purposes. For example, it can be used for selecting
Web Services that are best for particular circumstances [2]. However, we are particu-
larly interested in applications in the Web Service Management (WSM) and the
Web Service Composition Management (WSCM). WSM is the management of a
particular Web Service or a group of Web Services within the same domain of man-
agement responsibility. On the other hand, WSCM is the management of Web Service
compositions (a.k.a. orchestrations, choreographies, flows, networks). While there are
important differences between WSM and WSCM [5], WSOL supports both WSM and
WSCM. In this paper, we discuss possible WSM and WSCM applications of WSOL
and how the language supports these applications.

In this section, we have introduced the general area of our research. In the next, we
describe the main constructs and concepts of WSOL. In Section 3, we discuss applica-
tions of WSOL in the management of Web Services and how the language supports
these applications. In Section 4, we examine how manipulation of WSOL service
offerings can be used for dynamic adaptation and management of Web Service com-
positions. A brief overview of some recent related works is presented in Section 5. We
summarize the conclusions and directions for future work in Section 6.

2   The Web Service Offerings Language (WSOL)

WSOL is a language for the formal specification of classes of service, various con-
straints, and management statements for Web Services. It is an XML-based language
compatible with WSDL version 1.1. The syntax of WSOL is defined using XML
Schema. In this section, we describe the main characteristics of WSOL, emphasizing
those that are crucial for WSM and WSCM applications of WSOL.

The main categories of constructs in WSOL are:
1. service offerings,
2. constraints,
3. management statements,
4. reusability constructs, and
5. dynamic relationships between service offerings.

We summarize the main characteristics of these categories of constructs in the fol-
lowing five subsections. Precise syntax, illustrative examples, and discussion of the
WSOL language constructs are given in [6] and, partially, in [2].

To verify the WSOL syntax, we have developed a WSOL parser called ‘Premier’
[6]. Its implementation is based on the Apache Xerces XML Java parser. This parser
produces a DOM (Document Object Model) tree representation of WSOL files and
reports eventual syntax errors and some semantic errors. We have also designed Java
classes that will be the results of the compilation of WSOL files. We have not yet
finished a code generator that creates the designed Java classes from DOM trees pro-



470         V. Tosic et al.

duced by our WSOL parser. A prototype WSOL compiler would then be a combina-
tion of the ‘Premier’ WSOL parser and this code generator.

2.1   Classes of Service and Service Offerings

When described in WSOL, a provider (supplier) Web Service can offer multiple
classes of service to its consumers (requesters). By a ‘class of service‘ we mean a
discrete variation of the complete service and quality of service (QoS) provided by one
Web Service. Classes of service of one Web Service refer to the same functionality
(i.e., the WSDL description), but differ in constraints and management statements. For
example, they can differ in usage privileges, service priorities, response times guaran-
teed to consumers, verbosity of response information. The benefits of multiple classes
of service per one Web Service are advocated in detail in [7].

We define a ‘service offering’ in WSOL as a formal representation of a single
class of service of one Web Service. Consequently, a service offering is a combination
of formal representations of various constraints and management statements that de-
termine the corresponding class of service. It can also be viewed as one contract or
one SLA between the provider Web Service, the consumer, and eventual management
third parties. A Web Service can offer multiple service offerings to its consumers, but
a consumer can use only one of them at a time. WSOL service offerings are specified
separately from the WSDL description of the Web Service. This enables dynamic
creation, deactivation, and/or reactivation of service offerings without any modifica-
tion of the underlying WSDL file. Figure 1 shows an example WSOL service offering.
Descriptions of service offerings are usually long and complex, so we have shown in
Figure 1 only example parts that will be discussed later in this paper.

2.2   Constraints and Expressions

In WSOL, every constraint is a Boolean expression that states some condition to be
evaluated. The constraints can be evaluated before and/or after invocation of opera-
tions or at particular date/time instances. WSOL enables the formal specification of:
1. Functional constraints. These constraints define conditions that a functionally

correct operation invocation must satisfy. They usually check some characteristics
of message parts of the invoked operation. WSOL enables specification of pre-,
post-, and future-conditions, as well as invariants. The novel concept of a future-
condition [2], [5] is introduced to model conditions evaluated some time after the
provider finishes execution of the requested operation and sends results to the con-
sumer. It enables specification of operation effects that cannot be easily expressed
with post-conditions. An example is delivery confirmation for goods bought using
Web Services.

2. QoS (non-functional, extra-functional) constraints. These constraints describe
properties such as performance, reliability, and availability. They check whether the
monitored QoS metrics are within specified limits. They can be checked for a par-
ticular operation invocation or periodically, at specified times. For the specification



Management Applications of the Web Service Offerings Language (WSOL)         471

of QoS constraints, WSOL needs external ontologies of QoS metrics and measure-
ment units. We have summarized requirements for such ontologies in [8]. In our
current implementation of WSOL, we have simply assumed that ontologies of QoS
metrics are collections of names with information about appropriate data types and
measurement units. Similarly, ontologies of measurement units are simple collec-
tions of names without any additional information. A more appropriate definition of
ontologies of QoS metrics, measurement units, as well as monetary units for
price/penalty statements is planned for a future version of WSOL.

3. Access rights. An access right specifies conditions under which any consumer
using the current service offering has the right to invoke a particular operation. If
access is not explicitly allowed, it is forbidden. Access rights are used in WSOL for
service differentiation. On the other hand, specification of conditions under which a
particular consumer (or a class of consumers) may use a service offering and other
security issues are outside the scope of WSOL.

Fig. 1. Parts of an Example WSOL Service Offering

WSOL constraints are defined using the <constraint> element, which is independ-
ent of particular types of constraint. The type attribute of the <constraint> element
refers to the XML schema defining a particular type of constraint. We have defined
XML schemas for the above-mentioned types of constraint. Using the XML Schema
mechanisms, additional types of constraint can be defined. An example WSOL con-
straint, the QoS constraint ‘QoScons2’, is shown in Figure 1. This QoS constraint



472         V. Tosic et al.

contains a comparison of a measured QoS metric ‘ResponseTime’ and the constant
‘0.3 second’. It is evaluated for every operation of the ‘buyStockService’ Web Service.
The ‘measuredBy’ attribute states that the QoS metric is measured by the same entity
that evaluates this QoS constraint.

Boolean expressions in constraints can contain standard Boolean operators (AND,
OR, NOT, IMPLIES, EQUIVALENT), references to operation message parts of type
Boolean, and comparisons of arithmetic, string, date/time, or duration expressions.
WSOL also supports checking operation message parts that are arrays (of any data
type) using quantifiers ForAll and Exists. Arithmetic expressions can contain standard
arithmetic operators (+, -, unary -, *, /, **), arithmetic constants, and references to
operation message parts of numeric data types. WSOL provides only basic built-in
support for string and date/time/duration expressions. In addition, it is possible to
perform external operation calls in any expression. Here, ‘external’ means ‘outside the
Web Service for which the constraint is specified’. These external operations can be
implemented by other Web Services or they can be implemented by the management
entities evaluating the given constraint. In the latter case, although these external op-
erations are described with WSDL, they are invoked using internal mechanisms, with-
out any SOAP call.

2.3   Management Statements

A WSOL statement is any construct, other than a constraint, that states some impor-
tant management information about the represented class of service. WSOL enables
formal specification of several management statements:
1. subscription price statements,
2. pay-per-use price statements,
3. monetary penalty statements, and
4. management responsibility statements.
In addition, WSOL has the general <statement> element for the specification of addi-
tional statements. It is analogous to the general <constraint> element.

Price statements specify the price that a consumer using the particular service of-
fering has to pay for successful use of the Web Service. A service offering can contain
subscription price statements and/or pay-per-use price statements. A subscription
price statement specifies the monetary amount a consumer pays for using this service
offering during some period. A pay-per-use price statement states the monetary
amount a consumer pays for invoking particular operation. Penalty statements spec-
ify the monetary amount that the Web Service has to pay to a consumer if the con-
sumer invokes some operation and the Web Service does not fulfil all constraints in
the service offering. A management responsibility statement specifies what entity
has the responsibility for checking a particular constraint, a constraint group, or the
complete service offering. A management entity can be the provider Web Service, the
consumer, or an independent third party trusted by both the provider and the consumer
[9]. Figure 1 shows an example WSOL management responsibility statement, ‘Man-
gResp1’. In this example, the provider (supplier) Web Service evaluates the access



Management Applications of the Web Service Offerings Language (WSOL)         473

right ‘AccRght1’, the consumer evaluates the pre-condition ‘Precond3’, and a third
party evaluates the QoS constraint ‘QoScons2’.

2.4   Reusability Constructs and the Syntax of Service Offerings

The WSOL reusability constructs enable easier specification of new service offerings,
constraints, or management statements from existing ones. WSOL has a number of
reusability constructs:
1. constraint groups (CGs),
2. inclusion statements,
3. constraint group templates (CGTs),
4. template instantiation statements, and
5. declarations of external operation calls.

A constraint group (CG) is a named set of constraints and/or statements. Arbitrary
levels of nesting of CGs are allowed. When a new CG is defined and some of the
contained constraints, statements, and CGs have been already defined elsewhere, there
is no need to define them again. They can simply be included into the new containing
CG using the WSOL inclusion statements. On the other hand, new constraints,
statements, and CGs can also be defined inside a containing CG. A new CG can be
defined as an extension of an existing CG, inheriting all constraints, statements, and
nested CGs and defining some additional ones. A constraint group template (CGT)
is a parameterized CG. At the beginning of a CGT, one defines one or more abstract
CGT parameters, each of which has a name and a type. Definition of parameters is
followed by definition or inclusion of constraints, statements, and nested CGs in the
same way as for CGs. Constraints inside a CGT can contain expressions with CGT
parameters. A CGT is instantiated when concrete values are supplied for all CGT
parameters in a template instantiation statement. One CGT can be instantiated many
times with different parameter values. The result of every such instantiation is a new
CG. The concept of a CGT in WSOL is a very powerful specification mechanism.
Many classes of service contain constraints with the same structure, but with different
constant values. In our opinion, it is an even more important specification concept than
the extension (single inheritance) of CGs, CGTs, and service offerings. A declaration
of an external operation call is used to enable referencing results of the same exter-
nal operation call in several related constraints.

Syntactically, a WSOL service offering is similar to a CG. It is a set of defined or
included constraints, statements, and CGs (including instantiations of CGTs) that all
refer to the same Web Service. WSOL supports extension (single inheritance) of
service offerings, similarly to the extension of CGs and CGTs. However, service of-
ferings must not be nested. Another syntactic difference is that every service offering
has exactly one accounting party, specified in a special attribute, ‘accountingParty’, of
the <serviceOffering> element and not in management responsibility statements. The
accounting party is a special management party responsible for keeping track of the
use of the provider Web Service and management third parties, as well as what con-
straints were satisfied and what were not. While it is syntactically similar to a CG, a



474         V. Tosic et al.

service offering has special run-time characteristics. For example, consumers can
choose and use service offerings, not CGs. In addition, dynamic relationships can be
specified only for service offerings, not for CGs. Figure 1 shows an example WSOL
service offering. Its parts were discussed in subsections 2.2 and 2.3.

2.5   Dynamic Relationships between Service Offerings (SODRs)

Dynamic relationships between service offerings (a.k.a. service offerings dynamic
relationships – SODRs) are those that can change during run-time, e.g., after dy-
namic creation of a new class of service. For example, one SODR can state what class
of service could be an appropriate replacement if a particular constraint from some
other class of service cannot be met. Such relationships should not be built into defini-
tions of service offerings, to avoid frequent modification of these definitions. On the
other hand, static relationships between service offerings are those that are built into
definitions of service offerings and do not change during run-time. Two important
examples of such relationships are inheritance of service offerings and instantiation of
the same CGT with different parameter values. Both static and dynamic relationships
between service offerings are useful for easier selection and negotiation of service
offerings. In addition, dynamic relationships are very useful for dynamic adaptation of
Web Service compositions discussed in Section 4.

After researching several alternatives, we have decided to represent SODRs as tri-
ples <SO1, S, SO2> where:
1. SO1 is the used service offering,
2. S is the set of constraints and/or CGs from SO1 that are not satisfied (a CG is not

satisfied if at least one of its constraints or nested CGs is not satisfied); and
3. SO2 is the appropriate replacement service offering.

These triples are specified in a special XML format outside definitions of service
offerings (often in special files) to make their evolution independent from the evolu-
tion of other characteristics of a service offering. However, the XML format for the
specification of these triples is an integral part of the WSOL language. It is built upon
the WSOL concepts of a constraint and a CG, as well as WSOL solutions for naming
of constraints, CGs, and service offerings. We are also considering an extension of this
XML format so that S could also contain arbitrary WSOL Boolean expressions. This
would enable specification of complex relationships between the unsatisfied con-
straints and CGs, as well as using external operation calls.

3   Applications of WSOL for Web Service Management

In addition to the WSOL language, we are developing the corresponding management
infrastructure and management algorithms. Appropriate specification of management
information, such as WSOL constraints and management statements, is the key for
successful management activities. Functional constraints can help in determining
whether a Web Service behaves correctly. Consequently, they are useful in fault man-



Management Applications of the Web Service Offerings Language (WSOL)         475

Fig. 2. An example configuration of management third parties as SOAP intermediaries

Consumer
Web

Service
Provider

Web
Service

Accounting
party

QoS
metering

party

QoS constraint
evaluation

party

agement. Formal and precise specification of QoS constraints is the basis for moni-
toring and metering of QoS metrics. It prescribes which QoS metrics to monitor,
where and how to do this monitoring, how to eventually calculate aggregate QoS met-
rics, what the expected values of QoS metrics are. Consequently, formal and precise
specification of QoS constraints is particularly useful in performance management.
Access rights limit access to operations and ports of a Web Service. While WSOL
access rights are used primarily for service differentiation, they could also be a part of
a comprehensive security management solution for Web Services. Statements about
prices and monetary penalties are invaluable in accounting management. WSOL
service offerings are precise and complete enough to serve as simple contracts or
SLAs for Web Service monitoring, metering, control, accounting, and billing. Further,
dynamic (i.e., run-time) manipulation of service offerings, discussed in the next sec-
tion, is a useful tool for both Web Service Management (WSM) and Web Service
Composition Management (WSCM).

Figure 2 shows an example configuration of management third parties as SOAP in-
termediaries. In this example, only QoS constraints are evaluated and distinction is
made between the accounting party, the QoS metering party, and the QoS constraint
evaluation party. When a consumer submits a request for executing a provider’s op-
eration, the management third parties are organized as SOAP intermediaries for the
request, as well as the eventual response message. The request from the consumer to
the provider first goes through the accounting party, which logs that the request has
been made. The request is then forwarded to the QoS metering party, which performs
necessary activities. For example, for metering response time the QoS metering party
logs the time that will be considered as the beginning time of the operation invocation.
Next, the request message is forwarded to the provider Web Service, which performs
the requested operation and sends the response message. The response message first
goes through the QoS metering party. In the response time measurement example, the
QoS metering party logs the time that will be considered as the ending time of the
operation invocation and subtracts from it the logged beginning time. The information
about the measured QoS metrics can be transferred to the QoS constraint evaluation
party along with the original response message from the provider. One way to piggy-
back this information is to use SOAP headers. The QoS constraint evaluation party
receives the response message and the information about the measured QoS metrics
and evaluates appropriate constraints. It forwards to the accounting party the response
message together with the information whether the evaluated constraints were satisfied



476         V. Tosic et al.

or not and appropriate details if some constraints were violated. The accounting party
logs the received management information, calculates prices and/or penalties to be
paid, and forwards the response message to the consumer. If some QoS constraints
were not satisfied, the accounting party notifies the provider with appropriate details.
This can help the provider to adapt its behavior to meet guarantees for future operation
requests.

Note that the discussed example is only one possible way to use WSOL for WSM.
There are other management scenarios that can be accommodated with WSOL. For
example, some QoS metrics, such as availability, can be measured using probing in-
stead of message interception. WSOL supports this by modeling probing entities as
separate Web Services that provide results of their measurements through operations
of some agreed-upon interfaces. These operations can be invoked in appropriate QoS
constraints in WSOL service offerings, using the WSOL external operation call
mechanism. Further, to reduce overhead, some QoS constraints can be evaluated peri-
odically, either for randomly selected operation invocations (on average: 1 in n) or at
particular date/time instances. Also note that often there is no need to have a large
number of specialized third parties. The overhead can in the above example is reduced
when instead of three separate parties for accounting, QoS metering, and evaluation of
QoS constraints, only one third party with all these functions is used. It is also possible
to put all these functions into the provider Web Service, reducing the overhead further.
However, in such a case, the consumer has to trust the provider.

We have designed a WSOL management infrastructure supporting evaluation of
WSOL constraints, metering and calculation of used QoS metrics, and accounting of
executed operations and evaluated WSOL constraints. The design of this infrastructure
and, particularly, its proof-of-concept prototype implementation are based on exten-
sions of Apache Axis (Apache eXtensible Interaction System) [10], a popular open-
source SOAP engine. A SOAP engine is an application that receives, processes, and
sends SOAP messages. Axis has several good features that we found crucial for our
WSOL management infrastructure. Here we emphasize the two most important. First,
Axis has a modular, flexible, and extensible architecture based on configurable chains
of pluggable SOAP message processing components, called handlers. Such architec-
ture enables implementing our WSOL management infrastructure as a set of additional
handlers and handler chains plugged into Axis easily. Second, Axis defines a SOAP
message processing node that can be used for provider Web Services, consumer Web
Services, and SOAP intermediaries. Consequently, it can be used for all WSOL man-
agement parties.

The design and prototype implementation of our WSOL management infrastructure
will be discussed in detail in a forthcoming publication. Here we outline the main
concepts. An Axis handler [10] can process the input, the output, or the fault SOAP
message. It can alter the SOAP message—e.g., add/remove headers—or perform some
other message processing—e.g., measurement of QoS metrics. Consequently, we
implement metering and calculation of QoS metrics, evaluation of WSOL constraints,
and accounting inside specialized Axis handlers that we have developed. We have
designed these handlers so that a WSOL compiler can generate them automatically
from WSOL files. However, since our prototype WSOL compiler is not yet fully im-



Management Applications of the Web Service Offerings Language (WSOL)         477

Fig. 3. An Example Configuration of Handlers inside the Provider-side Axis SOAP Engine with
WSOL Management Infrastructure

req.

res.

op.
call

Axis SOAP Engine with WSOL Management Infrastructure

Pr
RTB

RTS

TL

TS

DS …

…

SOI AI

SOO AO QCESe

plemented, we have manually implemented some of these handlers in our prototype
WSOL management infrastructure.

The crucial Axis data structure passed between handlers is the message context
[10]. It contains information about the request message, the response message, and a
bag of properties. The message context properties determine how handlers process the
message and can be modified by handlers. We transport WSOL information between
WSOL-specific Axis handlers in special properties of the message context. For WSOL
information transported in SOAP headers between management parties, translation
between SOAP headers and Axis message context properties is provided. In addition
to the special message context properties, we have also developed data structures for
storing descriptions of WSOL constructs and the actual measured or computed data.
Examples of stored data are values of QoS metrics and the information whether a
constraint is satisfied or not. We use this data for accounting and for determining
whether dynamic adaptation, discussed in the next section, is needed.

An Axis chain [10] is an ordered, pipelined collection of handlers. There are tree
types of chain in Axis. A transport chain performs processing related to the transport
of SOAP messages. A global chain performs other processing applicable to all Web
Services. A service chain performs processing characteristic for a particular Web
Service. Since processing of WSOL constraints and management statements differs
between service offerings of the same Web Service, we could have introduced the
fourth type of chain – a ‘service offering chain’. For simplicity, we have put all
WSOL-related handlers into service chains, but added some program code deciding
what handlers are executed in particular cases.

In Figure 3, we have shown an example configuration of handlers inside the pro-
vider-side Axis SOAP engine extended with WSOL management infrastructure. The
example is analogous to the example in Figure 2, but in Figure 3 all shown modules
are parts of the provider Web Service. In other words, the provider Web Service
measures response time, evaluates a QoS constraint limiting response time, and per-
forms accounting. The Transport Listener (TL) component of Axis receives the re-
quest SOAP message and passes it to the standard Axis handler called Deserializer
(DS), which creates a message context instance used by other handlers. After Deseri-
alizer, several other standard Axis handlers are executed, not shown in Figure 3. The
first WSOL-specific handler in the input flow is Service Offering Input (SOI), which



478         V. Tosic et al.

performs processing characteristic for all service offerings. The next WSOL-specific
handler, Accounting Input (AI), records the request message. Then, the Response
Time Begin (RTB) handler stores into message context the start time for measuring
response time. After this handler, the standard Axis handler, Provider (Pr), is exe-
cuted. It dispatches the call to the Java object implementing the requested operation of
the Web Service. This Java object returns its results back to the Provider handler.
After Provider, the WSOL-specific handler Response Time Stop (RTS) stores into
message context the stop time for measuring response time, as well as the difference
between this stop time and the start time stored by RTB. The QoS constraint limiting
response time is evaluated in the WSOL-specific handler QoS Constraint Evaluation
(QCE). This handler stores its results into the message context. The Accounting Out-
put (AO) handler uses the information from the message context to calculate prices
and eventual penalties to be paid. The last WSOL-specific handler in the output flow
is Service Offering Output (SOO), which performs characteristic for all service offer-
ings. After this handler, some standard Axis handlers, not shown in Figure 3, are exe-
cuted. The last of these handlers is Serializer (Se), which packs information from the
message context instance into SOAP. The Transport Sender (TS) component of Axis
sends the response SOAP message to the consumer. The information about the meas-
ured response time, the evaluated constraint, and eventual prices or penalties to be
paid is in the SOAP header.

While the evaluation of periodic constraints differs from the example illustrated in
Figure 3, it is also supported by our WSOL management infrastructure. Timer, a spe-
cial active object in our infrastructure, initiates evaluation of periodic constraints and
measurement or calculation of periodic QoS metrics. The processing is done in one or
more modules, similar to Axis handlers. The results of such evaluation, measurement,
or calculation can be stored locally for future processing. They can also be reported to
other management parties in a special notification SOAP message.

4   Applications of WSOL for Web Service Composition
Management

We are also investigating management and dynamic adaptation of Web Service com-
positions without breaking an existing relationship between a provider Web service
and its consumer. To achieve this goal we are exploring management and dynamic
adaptation mechanisms that are based on the manipulation of service offerings in
WSOL. Our dynamic adaptation mechanisms include switching between service of-
ferings, deactivation/reactivation of existing service offerings, and creation of new
service offerings. These mechanisms can be used between operation invocations that
are part of the same transactions or session. The crucial language support for these
mechanisms is the specification of dynamic relationships between service offerings
(SODRs), discussed in Subsection 2.6.

Dynamic switching between service offerings can be initiated by a provider Web
Service or its consumer. The consumer can initiate it to dynamically adapt the service



Management Applications of the Web Service Offerings Language (WSOL)         479

it receives without finding another Web service. The provider Web Services can initi-
ate it to gracefully upgrade or degrade its service and/or QoS in case of changes.

Deactivation and reactivation of service offerings is used by a Web service in
cases when changes in operational circumstances affect what service offerings it can
provide to consumers. When a change of circumstances occurs, a Web service can
dynamically and automatically deactivate service offerings that cannot be supported in
the new circumstances. The affected consumers are switched to an appropriate re-
placement service offering and notified about the change. If there is no appropriate
replacement service offering, an alternative provider Web Service has to be sought.
The deactivated service offering may be reactivated automatically at a later time after
another change of circumstances and, eventually, the consumers can be automatically
switched back to their original service offering and notified about the change.

Dynamic creation of new service offerings can be used when there has been a
change in the Web Services implementation (e.g., in case of dynamic version-
ing/evolution) or the execution environment. To some limited extent, it can also be
performed on demand of important consumers. It then becomes a substitute for nego-
tiation of a custom-made contract or SLA between Web Services. Note that dynamic
creation of new service offerings can be non-trivial and incur non-negligible overhead.
Therefore, we use it only in exceptional circumstances.

Deactivation, reactivation, and dynamic creation of service offerings can be fol-
lowed by appropriate deactivation, reactivation, or creation of SODRs.

Compared to finding alternative Web Services (i.e., rebinding of Web Service
compositions), these three dynamic adaptation mechanisms enable faster and simpler
adaptation and enhance robustness of the relationship between a Web Service and its
consumer. These capabilities are relatively simple and incur relatively low overhead,
while providing additional flexibility. (Dynamic composition of new service offerings
can be an exception for the previous statement.) However, compared to finding alter-
native Web Services, these dynamic adaptation mechanisms have limitations. Service
offerings of one Web Service differ only in constraints and management statements,
which might not be enough for adaptation. Further, appropriate alternative service
offerings cannot always be found or created. Therefore, manipulation of service of-
ferings is a complement to, and not a complete replacement for, finding alternative
Web Services. The first step in dynamic adaptation of a Web Service composition
should be to try to find a replacement service offering from the same Web Service. If
this is not possible, only the second step should be to try to find a replacement Web
Service and perform re-composition. In some cases, the used provider Web Service
can provision a temporary replacement service offering while the consumer searches
for another, more appropriate, Web Service.

We have integrated the support for these dynamic adaptation mechanisms into our
WSOL management infrastructure, discussed in the previous section. Hereafter, we
denote the parts of our WSOL management infrastructure that support dynamic adap-
tation mechanisms as ‘WSCM modules’. WSCM modules are usually parts of the
provider-side WSOL management infrastructure, but some can also be used in con-
sumers and third parties. While our WSCM modules are not based on the functionality
provided in Apache Axis, they use the same data structures as our extensions for ac-



480         V. Tosic et al.

counting of executed operations and evaluated WSOL constraints. These data struc-
tures store information such as which constraints or CGs were satisfied or unsatisfied.
This information is used in determining whether the provider Web Service should
switch a consumer to a more appropriate service offering and maybe even deactivate a
service offering that can no longer be fulfilled. In addition, data structures in our
WSCM modules store descriptions of SODRs and supplementary information, such as
what service offerings are active or deactivated and what consumers use particular
service offerings. This information is used in determining what service offering is the
best candidate for switching to and in handling of affected consumers.

We have designed algorithms for autonomous (i.e., without external intervention)
provider-side switching, deactivation, and reactivation of service offerings, and deac-
tivation and reactivation of SODRs. These algorithms are executed in a provider-side
WSOL management infrastructure when certain conditions are met. They use the data
structures mentioned above. Currently, we have only rudimentary support for dynamic
creation of service offerings and SODRs.

On the other hand, consumers can also initiate switching of service offerings and, in
theory, creation of service offerings. Further, it is useful to enable that selected exter-
nal WSCM entities (human administrators or specialized software) can have access to
our dynamic adaptation mechanisms. Therefore, we expose these mechanisms as op-
erations of the special ‘service offering management (SOM)’ port of every Web
Service. While we suggest that every WSOL-enabled Web Service provide the SOM
port, some or all Web Services of the same vendor (e.g., Web Services using the same
SOAP engine instance) can share the actual implementation of its operations. The
SOM port contains operations for switching, activation, deactivation, and creation of
service offerings and for activation, deactivation, and creation of SODRs. However, it
also contains some other operations that are crucial for WSOL-enabled Web Services.
One example is the operation that returns a WSOL file with descriptions of all service
offering available to a particular consumer. A similar operation returns a WSOL file
with descriptions of all relevant SODRs. Another example is the input-only operation
that a third-party accounting party uses to inform the provider Web Service about the
values of metered or calculated QoS metrics, evaluated WSOL constraints, and their
monetary consequences. Note again that only selected external entities are allowed
access to the majority of operations in the SOM port. We will discuss the SOM port in
detail in a forthcoming publication.

5   Related Work

Our work on WSOL draws from the considerable previous work on differentiated
classes of service and formal representation of various constraints in other areas (e.g.,
[11]). At the beginning of our research, there was no relevant work of this kind for
Web Services. In parallel with our research, several related works emerged.

The most important related works to WSOL are the two recent languages for for-
mal XML-based specification of custom-made SLAs for Web Service: the Web
Service Level Agreements (WSLA) [4, 9] from IBM and the HP work on the formal



Management Applications of the Web Service Offerings Language (WSOL)         481

specification of Web Service SLAs [3, 12]. The latter work seems to be part of the
HP’s Web Service Management Language (WSML). SLAs in these two languages
contain QoS constraints and management information. Both WSLA and WSML are
oriented towards management applications in inter-enterprise scenarios. It seems that
they assume existence of some measurement and management infrastructure at both
ends. This is a different assumption from the one that we have adopted for WSOL.
Further, these languages specify more detail for QoS constraints than WSOL and
specify custom-made SLAs, not classes of service. In these aspects, they are more
powerful than WSOL. It seems that this results in higher run-time overhead than the
overhead of the simpler WSOL. These languages are accompanied by appropriate
management infrastructures [9, 12]. These infrastructures are more powerful, but also
more complex, than the infrastructure we are developing for WSOL. Both WSLA and
WSML have some support for templates, but only at the level of an SLA, not its parts.
They do not have support for inheritance and the other reusability constructs present in
WSOL. Contrary to WSOL, these languages do not address formal specification of
functional constraints, access rights, and other constraints. To conclude, while both
WSLA and WSML are very good languages for their domain and purpose, they do not
address all the issues that WSOL does.

Another recent related work is WS-Policy [13] – a general framework for the
specification of policies for Web Services. A policy can be any property of a Web
Service or its parts, so it corresponds to WSOL concepts of a constraint and a man-
agement statement. WS-Policy is only a general framework, while the details of the
specification of particular categories of policies will be defined in specialized lan-
guages. The only such specialized language currently developed is WS-
SecurityPolicy. WS-PolicyAssertions can be used for the formal specification of func-
tional constraints, but the contained expressions can be specified in any language. It is
not clear whether and when some specialized languages for the specification of QoS
policies, prices/penalties, and other management issues will be developed. Another set
of issues is where, when, and how are WS-Policy policies monitored and evaluated.
WS-Policy has a number of good features, such as flexibility, extensibility, and reus-
ability. However, some of the advantages of WSOL are the explicit support for man-
agement applications, built-in support for various constraints and management state-
ments, unified representation of expressions, wider range of reusability constructs, and
specification of classes of service and relationships between them.

Further, the DAML-S (DAML-Services) [14] community works on semantic de-
scriptions of Web Services, including specification of some functional and some QoS
constraints. However, constraints in DAML-S are not currently specified in a precise,
formal, and detailed notation, as in WSOL. They are only placeholders for the future
description of rules. In addition, they are specified for a more comprehensive service
description, not for the actual control and management. These are two major differ-
ences between DAML-S and WSOL. While DAML-S has the concept of a service
profile, there is no concept of a class of service and no specification of dynamic rela-
tionships. Consequently, we find that WSOL has a clear advantage in Web Service
Management and Web Service Composition Management.



482         V. Tosic et al.

Apart from these recent works that partially address similar issues to WSOL, there
are several other resent works that recognize the importance of the formal specifica-
tion of various constraints, SLAs, and contracts for Web Services and special types of
Web Service (such as Grid Services and Semantic Web enabled Web Services). In [2],
we concluded that the unique characteristics of WSOL, compared to the recent related
works, are its expressive power, mechanisms for reduction of run-time overhead,
and support for management applications.

6   Conclusions and Future Work

WSOL supports management applications with:
1. the formal and unambiguous specification of various constraints, statements about

prices and monetary penalties, and management responsibility statements;
2. the possibility to specify management third parties in management responsibility

statements, in the ‘measuredBy’ attribute of QoS metrics, and in external operation
calls to management third parties that act as probes;

3. the explicit specification of accounting parties (specific management parties); and
4. the built-in format for the specification of dynamic relationships between service

offerings (SODRs).
WSOL can be used for both Web Service Management (WSM) and Web Service

Composition Management (WSCM). WSOL service offerings can serve as simple
contracts or SLAs for Web Service monitoring, metering, control, accounting, and
billing. They can be metered and evaluated by the provider Web Service, the con-
sumer, and/or one or more mutually trusted third parties (SOAP intermediaries or
probes). Manipulation of service offerings can be used as a lightweight complement
and addition to rebinding of Web Service compositions.

Several recent related works—WSLA, WSML, and WS-Policy—address issues
that partially overlap with WSOL. In some aspects, they are more powerful than
WSOL. However, WSOL also has its advantages, such as classes of service, SODRs,
reusability constructs, and relative simplicity and lightweightness. An integration of
WSLA, WSML, WS-Policy, and WSOL would benefit WSM and WSCM.

While WSOL can be improved in several ways, we consider the language relatively
complete and stable. We direct our research efforts mainly towards the further devel-
opment of the WSOL management infrastructure, its prototype implementation, and
the research of WSOL applications in WSCM. We have set up an experimental com-
puter network on which we run in parallel multiple Web Service compositions. In this
environment, we are experimenting with WSCM both with and without WSOL. For
example, in some experiments we compare switching of service offerings with re-
placing a deactivated Web Service with its equivalent found in a local UDDI direc-
tory. We want to gain more precise understanding of the management applicability
and boundaries of WSOL. We also trying to uncover and clarify the most important
issues for the future management-related research using WSOL. We will describe the
results of such experiments in a forthcoming publication, along with further details
about the WSOL management infrastructure and its prototype.



Management Applications of the Web Service Offerings Language (WSOL)         483

We have left some important areas for future work. One of them is discovery and
selection of WSOL service offerings. We have to address the integration of WSOL
into UDDI to enable discovery of WSOL service offerings. Further, we believe that
static and dynamic relationships between service offerings can be very useful for
comparing similar service offerings in the process of negotiation and selection. More
research in this area is needed. Another important area is security. WSOL could be
used with security technologies for Web Services. For example, different keys could
be used for encryption of the message body and various QoS measurements and con-
straint evaluation results, so that only relevant management parties would see them.

References

1. World Wide Web Consortium (W3C): Web Services Description Requirements. W3C
Working Draft 28 October 2002. On-line at: http://www.w3.org/TR/2002/WD-ws-desc-
reqs-20021028/ (2002)

2. Tosic, V., Pagurek, B., Patel, K.: WSOL – A Language for the Formal Specification of
Various Constraints and Classes of Service for Web Services. Res. Rep. OCIECE-02-06.
Ottawa-Carleton Institute for Electrical and Computer Engineering. Nov. 15, 2002. On-line
at: http://www.sce.carleton.ca/netmanage/papers/TosicEtAlResRepNov2002.pdf (2002)

3. Sahai, A., Durante, A., Machiraju, V.: Towards Automated SLA Management for Web
Services. Research Report HPL-2001-310 (R.1), Hewlett-Packard (HP) Laboratories Palo
Alto. July 26, 2002. On-line at: 
http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf (2002)

4. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management, Vol. 11, No
1 (Mar. 2003) Plenum Publishing (2003)

5. Tosic, V., Pagurek, B., Esfandiari, B., Patel, K., Ma, W.: Web Service Offerings Language
(WSOL) and Web Service Composition Management (WSCM). In Proc. of the OOWS’02
(Object-Oriented Web Services) workshop at OOPSLA 2002 (Seattle, USA, Nov. 2002)
On-line at: http://www.research.ibm.com/people/b/bth/OOWS2002/tosic.zip (2002)

6. Patel, K.: XML Grammar and Parser for the Web Service Offerings Language. M.A.Sc.
thesis, Carleton University, Ottawa, Canada. Jan. 30, 2003. On-line at: 
http://www.sce.carleton.ca/netmanage/papers/KrutiPatelThesisFinal.pdf (2003)

7. Tosic, V., Patel, K., Pagurek, B.: WSOL – Web Service Offerings Language. In Proc. of
the Workshop on Web Services, e-Business, and the Semantic Web at CAiSE’02 (Toronto,
Canada, May 2002). Lecture Notes in Computer Science (LNCS), No. 2512. Springer-
Verlag (2002) 57–67

8. Tosic, V., Esfandiari, B., Pagurek, B., Patel, K.: On Requirements for Ontologies in Man-
agement of Web Services. In Proc. of the Workshop on Web Services, e-Business, and the
Semantic Web at CAiSE’02 (Toronto, Canada, May 2002). Lecture Notes in Computer
Science (LNCS), No. 2512. Springer-Verlag (2002) 237–247

9. Dan, A., Franck, R., Keller, A., King, R., Ludwig, H.: Web Service Level Agreement
(WSLA) Language Specification. In Documentation for the Web Services Toolkit, Version
3.2.1. Aug. 9, 2002. International Business Machines Corporation (IBM) (2002)

http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028/
http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028/
http://www.sce.carleton.ca/netmanage/papers/TosicEtAlResRepNov2002.pdf
http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf
http://www.research.ibm.com/people/b/bth/OOWS2002/tosic.zip
http://www.sce.carleton.ca/netmanage/papers/KrutiPatelThesisFinal.pdf


484         V. Tosic et al.

10. The Axis Development Team: Axis Architecture Guide, Version 1.0. Apache Axis WWW
page. On-line at:
 http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/architecture-guide.html
(2003)

11. Beugnard, A., Jezequel, J.-M., Plouzeau, N., Watkins, D.: Making Components Contract
Aware. Computer, Vol. 32, No. 7 (July 1999) IEEE (1999) 38–45

12. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.: Automated SLA Moni-
toring for Web Services. In Proc. of the 13th IFIP/IEEE International Workshop on Dis-
tributed Systems: Operations and Management, DSOM 2002 (Montreal, Canada, Oct.
2002). Lecture Notes in Computer Science (LNCS), No. 2506. Springer-Verlag (2002) 28–
41

13. Hondo, M., Kaler, C. (eds.): Web Services Policy Framework (WS-Policy), Version 1.0.
Dec. 18, 2002. BEA/IBM/Microsoft/SAP. On-line at: 
ftp://www6.software.ibm.com/software/developer/library/ws-policy.pdf (2002)

14. The DAML Services Coalition: DAML-S: Semantic Markup for Web Services. WWW
page for DAML-S version 0.7. Oct. 2, 2002. On-line at: 
http://www.daml.org/services/daml-s/0.7/daml-s.html (2002) 

http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-axis/java/docs/architecture-guide.html
ftp://www6.software.ibm.com/software/developer/library/ws-policy.pdf
http://www.daml.org/services/daml-s/0.7/daml-s.html

	1   Introduction
	2   The Web Service Offerings Language (WSOL)
	2.1   Classes of Service and Service Offerings
	2.2   Constraints and Expressions
	2.3   Management Statements
	2.4   Reusability Constructs and the Syntax of Service Offerings
	2.5   Dynamic Relationships between Service Offerings (SODRs)

	3   Applications of WSOL for Web Service Management
	4   Applications of WSOL for Web Service Composition Management
	5   Related Work
	6   Conclusions and Future Work
	References

