
Application of the Multi-level Parallelism
(MLP) Software to a Finite Element

Groundwater Program Using Iterative Solvers
with Comparison to MPI

Fred Tracy

Engineer Research and Development Center
Information Technology Laboratory

Major Shared Resource Center
Vicksburg, MS, USA 39180

Abstract. The purpose of this paper is to give the results of the perfor-
mance evaluation of the Multi-Level Parallelism (MLP) software versus
MPI using the groundwater program FEMWATER on a remediation of
a military site where iterative solvers are employed to solve the system
of nonlinear equations. A one-to-one correspondence in functionality be-
tween MPI and MLP was maintained for all parallel operations so the
performance comparisons would be consistent. An unstructured mesh
application is one of the most difficult parallel applications, so this rep-
resents a good test. In this study, MLP did better in general on 64 PEs
or less, but MPI proved more scalable as it did as good or better when
using 128 PEs.

1 Introduction

Users of large shared-memory architectures on high performance computers are
often challenged to find a method of parallel programming that is both efficient
and easy to use. On shared-memory machines with large numbers of processors,
the question of the ”best” parallel method for a given problem is a difficult
one. Recently, the Message Passing Interface (MPI) has been combined with
OpenMP threads to make a dual-level or mixed-mode parallel programming
paradigm [1]. While OpenMP is rather simple to apply to an existing code, it has
inherent limitations with respect to efficient parallelization for larger numbers
of processors. If programmed properly, MPI can create codes that scale to very
large numbers of processors, but it is typically rather difficult to implement.

The Multi-Level Parallelism (MLP) software [2] utilizes a new method that
takes advantage of large shared-memory SGI architectures, and excellent per-
formance on NASA Ames applications has been reported [3]. An independent
evaluation of MLP [4] gave inconclusive results on the performance of MLP and
the NASA Ames computational fluid dynamics code Overflow because the MPI
version and the MLP version of Overflow that were used in the evaluation had
different algorithms for partitioning the work. Therefore, a more detailed study
is warranted.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 725–735, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



726 F. Tracy

1.1 Purpose

The purpose of this paper is to give the results of the performance evaluation
of MLP versus MPI using the groundwater program FEMWATER [5] on a re-
mediation of a military site [6] where iterative solvers are employed to solve
the system of nonlinear equations. A one-to-one correspondence in functional-
ity between MPI and MLP was maintained for all parallel operations so the
performance comparisons would be consistent. This was done, for instance, by
replacing a call to an MPI reduction routine to get the global maximum value
by a call to an equivalent MLP subroutine (described below). Another example
also described below is the updating of ghost nodes where an equivalent subrou-
tine was written in MLP. An unstructured mesh application is one of the most
difficult parallel applications, so this represents a good test.

1.2 The MLP Parallel Programming Paradigm

Using MLP, the problem is explicitly partitioned among processing elements
(PEs) as in MPI. However, rather than using sends, receives, broadcasts, reduc-
tions, etc., as in MPI, MLP communicates data among PEs by using shared
variables as in OpenMP. As in MPI, combining OpenMP threads with forked
processes is very natural with MLP, which, in fact, is indicated in its name.

2 Description of the Application

Figure 1 illustrates a typical top view of a 3-D finite element mesh for a reme-
diation study. Several layers are used to model the soil layers underneath this
surface. The mesh used for this comparison has 102,996 nodes and 187,902 3-D
prism elements. The number of PEs used in this study starts at eight and is re-
peatedly doubled to 16, 32, 64, and 128 with the number of elements also being
doubled each time the number of PEs is doubled.

3 Flow Equations

Pressure head in FEMWATER is modeled by applying conservation of mass to
obtain,

ρ

ρ0
F

∂h

∂t
= � ·

[
K ·

(
�h +

ρ

ρ0
� z

)]
+

Nss∑
m=1

ρ∗
m

ρ0
Qmδ (r − rm) , (1)

h =
p

ρ0g
, (2)

F = n
dS

dh
+ Sα′ + θβ′ , (3)



Application of the Multi-level Parallelism (MLP) Software 727

Base Perimeter

Municipal Wells

Plume Perimeter

Irrigation Ditch

Fig. 1. This figure illustrates a typical top view of a 3-D finite mesh for a remediation
study. Several layers are used to model the soil layers underneath the surface. The
mesh used for this comparison has 102,996 nodes and 187,902 3-D prism elements

α′ = ρ0gα , (4)

β′ = ρ0gβ . (5)

where α is the compressibility of the soil medium, β is the compressibility of
water, δ is the Dirac delta function, g is the acceleration due to gravity, h is the
pressure head, K is the hydraulic conductivity tensor, n is the porosity, Nss is
the number of source/sink nodes for flow, Qm is the quantity of flow at the mth

source/sink node, p is the pressure, r is a vector from the origin to an (x, y, z)
point in space, ρ is the density with contaminant, ρ0 is the density without
contaminant, ρ∗

m is the density of the mth source/sink, rm is the location of the
mth source/sink node, S is the saturation, t is the time, and θ is the moisture
content.

The Galerkin finite element method is then applied to obtain

Mn+1 (
hn+1 − hn)

+ �tKn+1hn+1 = �tQ
′n . (6)

for the (n + 1)th time-step. Here M is the mass matrix, K is the stiffness
matrix, and Q′ is a collection of flow type terms for the right-hand side, and �t



728 F. Tracy

is the time increment. Equation (6) is the resulting system of nonlinear equations
that is solved, where both M and K are symmetric.

4 Parallel Paradigm

The finite element mesh is first partitioned using METIS [7]. The ghost cells as
illustrated in Fig. 2 are updated using either MPI or MLP. Border elements are
kept by both PEs and owned by the PE that owns the first node of the element.

PE 0

PE 1

Border Elements

Ghost Nodes for PE 1

Ghost Nodes for PE 0

Fig. 2. The ghost cells are updated using either MPI or MLP. Border elements are
kept by both PEs and owned by the PE that owns the first node of the element

5 Solvers Tested

Equation (6) is solved using a Picard iteration resulting in a symmetric, positive-
definite linear system of equations of the typical form,

Ax = b . (7)

The first solver tested consists of a forward relaxation step described by

xnew = xold + ω (D + L)−1
(
b − Axold

)
0 < ω ≤ 2 , (8)

followed by a backward relaxation step,

xnew = xold + ω (D + U)−1
(
b − Axold

)
0 < ω ≤ 2 . (9)

where D is the diagonal of A, L is the lower part of A, U is the upper part
of A, and ω is the relaxation factor. In the parallel version, the owned nodes
do the relaxation in parallel with matrix elements in L (forward step) and U
(backward step) set to zeroes anywhere beyond the owned nodes and the ghost
nodes. The ghost nodes are updated after the forward step and again after the
backward step.



Application of the Multi-level Parallelism (MLP) Software 729

The second solver tested is a conjugate gradient solver with diagonal and
incomplete LU preconditioners. The ILU preconditioner [8] is of the form,

Ã = (D + ωL)D−1 (D + ωU) 0 ≤ ω ≤ 1 , (10)

It was implemented to minimize communication by setting to zero all terms
in L and U that were beyond owned and ghost nodes of the PE. Note that with
ω = 0, the preconditioner becomes D.

6 MLP and MPI Programming Details

The MLP and MPI programming details will now be presented in detail.

6.1 Initialization

While MPI is an extensive library, MLP has relatively few routines. Therefore,
more is required when using MLP to set up. With MLP, rather than using sends,
receives, broadcasts, reductions, etc., as in MPI, shared variables are used to
communicate information as in OpenMP. The computer code given below shows
the setup process as was done in FEMWATER.

MLP Setup Process for FEMWATER

implicit real * 8 (a-h, o-z)
parameter (ighnmx = 6113, npmx = 16)
dimension bufv8(ighnmx, npmx), bufs8(npmx), ibufs(npmx)
common / mlp_dat / ipt1, ipt2, ipt3
dimension numcpu(npmx)
c Establish pointers.
pointer (ipt1, bufv8)
pointer (ipt2, bufs8)
pointer (ipt3, ibufs)
integer * 8 isizes(3), ipoint(3), numvar

c Get memory and link with pointers.
numvar = 3
isizes(1) = ighnmx * npmx * 8
isizes(2) = npmx * 8
isizes(3) = npmx * 4
call mlp_getmem (numvar, isizes, ipoint)
ipt1 = ipoint(1)
ipt2 = ipoint(2)
ipt3 = ipoint(3)
c Set the number of processes.
noproc = npmx
c Pin-to-node option.
npinit = 1



730 F. Tracy

c Choose one thread per process.
do i = 1, noproc
numcpu(i) = 1

end do
c Fork processes.
call mlp_forkit (noproc, myid, numcpu, npinit)

First, the general-purpose shared variables of bufv8, bufs8, and ibufs are
defined to keep a real vector for each PE, a real scalar for each PE, and an
integer scalar for each PE, respectively. The pointer variables are then used to
associate the value of the pointer to where the variable resides in memory as
determined by the call to mlp getmem. The pointers can be placed in a common
block, but the actual variables cannot, as their memory locations are already set
in mlp getmem.

In the example above, the number of processes is set to 16, and the number of
threads per process is set to 1 (OpenMP directives are not inserted). Note that it
is easy to set the number of threads to a different value for each process. Threads
can also migrate from their assigned node (the SGI O3K has four PEs per node),
but experience indicates that performance improves when using multiple threads
per process if the threads are pinned to their respective nodes as done by ipinit
= 1. The call to mlp forkit finishes the initialization process by forking the
processes.

6.2 Reduction

A typical reduction in FEMWATER using MPI is given by

Reduction Using MPI

call MPI_ALLREDUCE (res, resg, 1, MPI_REAL8, MPI_MAX,
& MPI_COMM_WORLD, ieror)

where the maximum value of res over all the PEs is placed into resg. The
program code given below shows how this is done using MLP.

Reduction Using MLP

c Put data in the shared variable.
bufs8(myid) = res
c Make sure all PEs are through.
call mlp_barrier (myid, noproc)
c Have all PEs compute the maximum value.
gmax = -1.0d30
do i = 1, noproc
gmax = dmax1 (bufs8(i), gmax)

end do
resg = gmax



Application of the Multi-level Parallelism (MLP) Software 731

Here, myid goes from 1 to 16, and each PE places its value of res into
the bufs8 variable. Adding the mlp barrier call ensures that all the PEs have
finished. Finally, the maximum value is manually computed and stored in resg.

6.3 Updating Ghost Nodes

Most of the communication in FEMWATER is done in the solver when updating
the ghost nodes. The send loop using MPI is as follows:

MPI Send Loop

do i = 1, noproc
num = nodgh(1, i)
if (num .ne. 0) then
jfn = num + 1
do j = 2, jfn
jloc = nodgh(j, i)
buff(j - 1) = v(jloc)

end do
itag = 100
call MPI_SEND (buff, num, MPI_REAL8, i - 1, itag,

& MPI_COMM_WORLD, ierror)
end if

end do

The store data loop using MLP is

MLP Store Data Loop

ibufs(myid) = 0
iplace = 0
do i = 1, noproc
num = nodgh(1, i)
if (num .ne. 0) then
ibufs(myid) = ibufs(myid) + 1
iplace = iplace + 1
bufv8(iplace, myid) = i
iplace = iplace + 1
bufv8(iplace, myid) = num
jfn = num + 1
do j = 2, jfn
iplace = iplace + 1
jloc = nodgh(j, i)
bufv8(iplace, myid) = v(jloc)

end do
end if

end do



732 F. Tracy

nodgh is an array that contains the number of nodes and the local node
numbers whose values are to be sent to different PEs. The MLP version stores
the number of messages in ibufs and the actual data of the messages in the
bufv8 array. The receive loop (actually done before the send loop) using MPI is
the following:

MPI Receive Loop

do i = 1, noproc
num = numngh(i)
if (num .ne. 0) then
itag = 100
nst = nstngh(i)
call MPI_IRECV (v(nst), num, MPI_REAL8, i - 1,

& itag, MPI_COMM_WORLD, ireq(i), ierror)
end if

end do

The wait loop for MPI to complete the ghost cell update is done by

MPI Wait Loop

do i = 1, noproc
if (numngh(i) .ne. 0) then
call MPI_WAIT (ireq(i), istat, ierror)

end if
end do

numgh is the number of ghost cells to be updated from the various PEs, and
nst is where the ghost cells start in the local v vector. Finally, the retrieve data
loop for MLP is the following:

MLP Retrieve Data Loop

do i = 1, noproc
nummes = ibufs(i)
if (nummes .ne. 0) then
iplace = 0
do k = 1, nummes
iplace = iplace + 1
idest = bufv8(iplace, i)
iplace = iplace + 1
num = bufv8(iplace, i)
if (idest .eq. myid) then
nst = nstngh(i)
do j = 1, num
v(j + nst - 1) = bufv8(iplace + j, i)

end do



Application of the Multi-level Parallelism (MLP) Software 733

end if
iplace = iplace + num

end do
end if

end do

Synchronization is achieved by placing a call to mlp barrier between the
store and retrieve loops.

7 Performance Results

Performance tests using both the MPI and MLP version of FEMWATER were
conducted on the SGI Origin 3800 located at the U.S. Army Engineer Research
and Development Center (ERDC) Major Shared Resource Center (MSRC),
Vicksburg, MS, for the remediation test problem using three different iterative
solvers. Table 1 summarizes the results. The iterative linear solvers used were
(1) the relaxation solver with one linear iteration being a forward loop, a ghost
node update, a backward loop, and a second ghost node update, (2) a CG solver
with the diagonal preconditioner, and (3) a CG solver using the ILU precondi-
tioner with ω = 1. Five hundred nonlinear iterations with 20 linear iterations
each were done in each case. Both CG solves converged much quicker than the
relaxation solver, but since this is a performance test of MPI versus MLP, the
same number of linear iterations (10,000) was done in each case. In this series of
tests, no OpenMP directives were added. The original problem was first run with
8 PEs. Next, the number of PEs was doubled along with the number of elements
until 128 PE runs were done. These tests were run in a very busy production
environment on the O3K, so running times varied as much as 10%. The best
times from two runs in each case were used for Table 1.

8 Conclusions

The MLP results were generally better than the MPI results for PEs 8-64, and
the MPI results were as good or better when 128 PEs were used. The percentage
differences were always less than 10%, which means that no significant advantage
was achieved with either parallel paradigm. The number of source lines of code
(SLOC) not counting comments for the single subroutine that does the ghost
cell update is 35 for MPI and 52 for MLP, so each is rather simple to implement,
especially since the tedious work of determining where the data are to be sent and
received has already been done. However, the edge goes to MPI for simplicity.
More SLOC are required in the initialization and reduction for MLP, but the
MPI libraries are much more extensive and thus already have initialization and
reduction routines supplied.

For FEMWATER, a one-to-one correspondence implementation from MPI
to MLP does not yield much benefit. However, if the shared variables could be
used in a clever way to avoid all the partitioning and preparation, MLP still



734 F. Tracy

Table 1. FREMWATER running times (sec)

PEs 8 16 32 64 128

Nodes 102,996 197,409 386,235 763,887 1,519,191
Elements 187,902 375,804 751,608 1,503,216 3,006,432

Solver Relaxation Relaxation Relaxation Relaxation Relaxation
MPI 506 533 569 615 612
MLP 495 531 558 590 675

Solver CG CG CG CG CG
Preconditioner Diagonal Diagonal Diagonal Diagonal Diagonal
MPI 464 484 505 514 582
MLP 437 473 492 524 619

Solver CG CG CG CG CG
Preconditioner ILU ILU ILU ILU ILU
MPI 601 637 639 668 708
MLP 581 613 639 656 708

could have merit. Further research is needed here, as well as investigating the
use of multiple OpenMP threads for each process.

Acknowledgment. This work was supported in part by a grant of computer
time from the DoD High Performance Computing Modernization Program at
the ERDC MSRC.

References

1. Fahey, R, and Smith, J.: STWAVE: A Case Study in Dual-Level Parallelism. ERSC
MSRC Technical Report 01-28, Vicksburg, MS (2001)

2. Taft, J.R.: MLP Version 2.1 (computer program). Sienna Software, Inc., 1105 Ter-
minal Way, Ste 202, Reno, NV (2002)

3. Taft, J.R.: Overflow Gets Excellent Results on SGI Origin 2000. NAS News, Vol. 3,
No. 1, NASA Ames Research Center, Moffett Field, CA (1998)

4. Wornom, S.F., Tracy, F.T., Duffy, D.Q., and Alter, R.W.: A Performance Evaluation
of the Multi-Level Parallelism (MLP) Software with MPI and OpenMP. DoD HPC
Users Group Conference Proceedings, Austin, TX (2002)

5. Lin, H.J., Richards, D.R., Talbot, C.A., Yeh, G.T., Cheng, J.R., Cheng, H.P., and
Jones, N.L.: FEMWATER: A Three-Dimensional Finite Element Computer Model
for Simulating Density-Dependent Flow and Transport in Variably Saturated Me-
dia. Technical Report CHL-97-12, U.S. Army Engineer Research and Development
Center (ERDC), Vicksburg, MS (1997)



Application of the Multi-level Parallelism (MLP) Software 735

6. Tracy, F.T., Talbot, C.A., Holland, J.P., Turnbull, S.J., McGehee, T.L., and Donnell,
B.P.: The Application of the Parallelized Groundwater Model FEMWATER to a
Deep Mine Project and the Remediation of a Large Military Site. DoD HPC Users
Group Conference Proceedings, Monterey, CA (1999)

7. Karypis, G.: METIS (computer program).
http://www.users.cs.umn.edu/˜karypis/metis/, University of Minnesota, Min-
neapolis, MN (2002)

8. Dongara, J.J., Sorensen, D.C., and van der Vorst, H.A.: Numerical Linear Algebra
for High-Performance Computers, SIAM, Philadelphia (1998), 203

http://www.users.cs.umn.edu/~karypis/metis/

	Introduction
	Purpose
	The MLP Parallel Programming Paradigm

	Description of the Application
	Flow Equations
	Parallel Paradigm
	Solvers Tested
	MLP and MPI Programming Details
	Initialization
	Reduction
	Updating Ghost Nodes

	Performance Results
	Conclusions

