
Parallel Genetic Algorithm for a Flow-Shop Problem
with Multiprocessor Tasks

C. Oguz1, Yu-Fai Fung2, M. Fikret Ercan3, and X.T. Qi1

1 Dept. of Management, 2 Dept. of Electrical Eng., The Hong Kong Polytechnic, University,
Hong Kong SAR

{msceyda, eeyffung}@polyu.edu.hk
3 School of Electrical and Electronic Eng., Singapore Polytechnic, Singapore

mfercan@sp.edu.sg

Abstract. Machine scheduling problems belong to the most difficult deterministic
combinatorial optimization problems. Since most scheduling problems are NP-
hard, it is impossible to find the optimal schedule in reasonable time. In this paper,
we consider a flow-shop scheduling problem with multiprocessor tasks. A parallel
genetic algorithm using multithreaded programming technique is developed to ob-
tain a quick but good solution to the problem. The performance of the parallel ge-
netic algorithm under various conditions and parameters are studied and pre-
sented.

Keywords: Genetic algorithms, parallel architectures, parallel computing

1 Introduction

Multiprocessor task scheduling is one of the challenging problems in computer and
manufacturing processes. The general problem of multiprocessor task scheduling can be
stated as scheduling a set of independent and simultaneously available tasks onto a set of
parallel identical processors so that a given performance criterion is optimized. This type
of scheduling problems is known to be intractable even with the simplest assumption
[12]. An extensive survey on multiprocessor tasks scheduling can be found in [7]. This
survey reveals that a single-stage setting for the processor environment is assumed in
most of the multiprocessor task scheduling studies. Although this kind of assumption
may be meaningful for some problems, there are many other practical problems that
require jobs to go through more than one stage where each stage has several parallel
processors. This type of environment is known as flow-shops in scheduling theory [9].

In this paper, we consider a multiprocessor task (MPT) scheduling problem in a
flow-shop environment, which can be described formally as follows: There is a set J of
n independent and simultaneously available MPT s to be processed in a two-stage

flow-shop, where stage j consists of jm identical parallel processors)2,1(=j . Each

JMPTi ∈ should be processed on ijp identical processors simultaneously at stage j

without interruption for a period of ijT)2,1,...,2,1(== jandni . Hence, each

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 548−559, 2003.
 Springer-Verlag Berlin Heidelberg 2003

JMPTi ∈ is characterized by its processing time, ijT , and its processor requirement,

ijp)2,1,...,2,1(== jandni . All the processors are continuously available from

time 0 onwards and each processor can handle no more than one MPT at a time. Tasks
flow from stage 1 to stage 2 by utilizing any of the processors while satisfying the flow-
shop and the MPT constraints. The objective is to find an optimal schedule to mini-
mize the maximum completion time of all tasks.

The motivation for this problem comes from machine vision systems developed to
perform real-time image understanding [3,8]. These systems utilize multiple layers of
multiprocessor computing platforms where data have to pass through from one layer to
another. Algorithms on parallel identical processors of each layer process image data.
These systems can be analyzed from a scheduling perspective since they resemble the
multi-stage flow-shop environment with MPT s, where data represent the incoming
MPT s and algorithms applied, such as, feature detection, feature grouping, or object
recognition define their operations at respective stages. Another application where the
above MPT scheduling problem encountered is in diagnosable microprocessor systems
[11], where a number of processors must process a task to detect faults. Other applica-
tions arise when a task requires more than one processor, tool or workforce simultane-
ously (see for instance, power system transient stability computations [16]).

Despite many practical applications that may involve MPT s in multi-stage settings,
majority of research in this area has focused on MPT scheduling in a single-stage;
little attention has been given to MPT scheduling in multi-stage settings. Extensive sur-
veys on scheduling MPT s can be found in [7]. Another limitation of previous studies is
that they mainly addressed the computational complexity issues of the problems (see for
instance [2]). Most recently, Oguz et al. [14] provided approximation algorithms for the
MPT scheduling problems in a flow-shop environment.

In this paper, we combine two areas, namely scheduling and parallel computing by
parallel implementing a scheduling algorithm for real-time machine vision systems.
Since MPT scheduling is intractable even in its simplest forms [1,12], we focus on
efficient approximate algorithms to find a near optimal solution. We also concentrate on
the fact that the real-life problems, like machine vision systems, require a quick but a
good solution. It is thus of interest how a fast approximation algorithm could be devel-
oped for machine vision systems, which can be modeled as a MPT flow-shop scheduling
problem.

Considering the success of the genetic algorithms (GA) developed for scheduling
problems [4, 6, 15], we choose to use this local search method to provide a good solu-
tion to our problem. GAs are introduced by Holland [10]. A typical GA starts with an
initial population of possible solutions to the problem (chromosomes). Each chromo-
some is characterized by its fitness, which is determined by the associated value of the
objective function. The fittest chromosomes in the population (parents) will be selected
for the generation of new solutions (children). This generation will take place according
to a genetic operation, such as mutation (introducing of variations into the chromo-
somes) and crossover (taking the best features of each parent and mixing the remaining
features). Hence, the new chromosomes will be somewhat different than their parents. In
the new generation, the fitness of the children is evaluated in a similar fashion as their
parents, and the worst fitted chromosomes will die to maintain the desired population.
The birth and death processes will define the population size but usually it remains con-

549Parallel Genetic Algorithm for a Flow-Shop Problem with Multiprocessor Tasks

stant from one generation to the next. This procedure is repeated until a desired termina-
tion criterion is reached. The output of this simulated evolution process will be the best
chromosome in the final population, which can be a highly evolved solution to the prob-
lem.

Yet, excessive computation time in finding this highly evolved solution is a disadvan-
tage of the GAs [5]. Hence, we present a parallel GA (PGA) in this paper. However, the
benefit of the PGA is expected to be not only a speed-up in the computation time but
also a better solution, that is shorter makespan for the scheduling problem, compared to
a sequential GA)[5].

In the following section, we describe the design of the PGA. Next, the computational
study is presented. We then report and discuss the computational results. Conclusions
are given in the last section.

2 Parallel Genetic Algorithm

There are various kinds of implementation of PGAs that can be classified into three
categories: global, migration and diffusion. These categories are mainly based on the
structure of the population. The global PGA, often known as the worker/farmer model,
treats the whole population as a single unit. Each chromosome can mate with any other
chromosome in the entire population. The migration PGA, which is more similar to the
natural evolution than the global PGA, divides the whole population into several sub-
groups. A chromosome can only mate within the subgroup and migrations may happen
among the subgroups. The migration PGA is also called the coarse-grained model or
island model. The diffusion PGA regards each chromosome as a separate unit. One
chromosome can mate with another one in its neighborhood. The use of local neighbor
leads to a continuous diffusion of chromosomes over the whole population. The diffu-
sion PGA is also known as fine-grained, neighborhood, or cellular model.

In our PGA, the whole population is divided into G subgroups, each of which has s
chromosomes and is processed by a sequential sub-GA. The sub-GAs run concurrently
with some migrations among them. An epoch is the number of generations between two
occurrences of migration. The effects of the number of subgroups, the value of s , the
number of migrated chromosomes, and the length of an epoch on the performance of the
PGA are analyzed in Section 3.

2.1 Hardware and Software Environment

The PGAs can be implemented on various parallel computing hardware and software
environments, from networked PCs to mainframes. We implemented our PGA on SUN
servers with multithreaded programming. With the emergence of the shared memory
symmetric multiprocessor (SMP) computing systems, multithreaded programming pro-
vides the right programming paradigm to make maximum use of these new machines.
The PGA algorithm is based on running several sequential GAs (SGA). Multithreaded
programming is selected in the implementation so that each independent thread proc-
esses an SGA, since multithreading technique allows one program to execute multiple
tasks concurrently. In the following, we will use the terms thread and subgroup inter-
changeably.

550 C. Oguz et al.

2.2 The Sequential Genetic Algorithm

Here, we will briefly describe the structure of the SGAs used in our PGA.
Chromosome Design: We define a chromosome as a string of n2 bytes. The first

half of a chromosome is a permutation of n,...,2,1 representing the task list at stage 1.

Similarly, the second half of a chromosome is a permutation of n,...,2,1 , representing

the task list at stage 2. A chromosome is decoded to a schedule by assigning the first
unscheduled task in the task list to the machines at each stage.

Selection and Fitness: The fitness of chromosome kx , i.e. the probability of chromo-

some kx being selected to be a parent, is given by:

∑
=

−

−
=

popN

i
i

k
k

xff

xff
xF

1
max

max

))((

)(
)(,

where)(kxf is the makespan of the schedule decoded from kx , and maxf is the

maximum)(kxf in the current generation, and popN is the population size. We use the

well-known and commonly used roulette-wheel method as the selection operation [5].
Other selection methods, such as tournament selection, are also considered, but no im-
provement is observed from experimental results.

Crossover Operation: The crossover is an operation to generate two children chro-
mosomes from two parent chromosomes selected. Three crossover operators are consid-
ered in this study: the one-point crossover (c1), the two-point crossover (c2) and the
uniform crossover (c3). Since, in our study, a chromosome is composed of two parts,
how to apply the crossover to these two parts is a problem. In our computational experi-
ments, we find that it is better to crossover the two parts in the same position. The details
are as follows:

(1) One-point crossover. For two parents, 1x and 2x , a crossover position r ,

nr < , is randomly generated. The first r bits of the first child are the same as the first

r bits of the parent 1x , and the bits from 1+r to n of the first child are in the same

order as they are in parent 2x . The second half of the first child chromosome is gener-

ated in the same way. The child has the same absolute task sequence as parent 1x and

the same relative task sequence as parent 2x . Another child is generated with the same

absolute sequence as parent 2x and with the relative sequence as parent 1x . For exam-

ple, if)]6,4,3,5,2,1)(6,4,5,3,2,1[(1 =x ,)]6,5,3,1,4,2)(6,5,3,4,1,2[(2 =x and the

crossover position is 3, then the two children will be

)]6,3,4,5,2,1)(6,5,4,3,2,1[(1 =C ,)]6,3,5,1,4,2)(6,5,3,4,1,2[(2 =C .

(2) Two-point crossover. We randomly generate two positions r and s , sr < . One

child will have the same absolute sequence as 1x in the bits from 1 to r and from 1+s

to n , and other bits have the same relative sequence as 2x . Another child is generated

551Parallel Genetic Algorithm for a Flow-Shop Problem with Multiprocessor Tasks

correspondingly. For the above example, if 2=r and 4=s , then the two children will

be)]6,4,5,3,2,1)(6,4,5,3,2,1[(1 =C ,)]6,5,3,1,4,2)(6,5,4,3,1,2[(2 =C .

(3) Uniform crossover. Uniform crossover can be regarded as a multiple-point cross-
over. First a 0-1 string, called the mask string, is randomly generated. Then one child is

generated with the same absolute sequence as 1x where the corresponding mask string

bit is 1, and other bits have the same relative sequence as 2x . For the above example, if

the mask string is)1,1,0,1,1,0(, then)]6,4,3,5,2,1)(6,4,5,3,2,1[(1 =C ,

)]6,5,3,1,4,2)(6,5,4,3,1,2[(2 =C .

The crossover rate, that is, the probability of applying the crossover operator to the
parents, is often considered to be 1 in scheduling problems [4, 13]. We also found from
our computational study that the crossover rate of 1 is better.

Mutation Operation: The mutation operation modifies a chromosome. The arbitrary
two-bit exchange mechanism is applied in our algorithm. In the arbitrary two-bit ex-
change, two positions are randomly selected and exchanged. After each mutation opera-
tion, we compare the new chromosome with the original one. If the fitness of the new
chromosome is greater than that of the original, the new chromosome replaces the origi-
nal. Otherwise, the original chromosome is kept in the population. This procedure can be
regarded as a GA combined with a stochastic neighborhood search [6].

The mutation rate, that is the probability of the mutation to be applied to a chromo-
some, is reported to be large for scheduling problems. For instance, an initial mutation
rate of 0.8 is used in [15], which is decreased by 0.01% at each generation. In [13], it is
reported that the mutation rate of 1 is the best. A large mutation rate in scheduling prob-
lems may be due to the combinatorial character of the scheduling problems. Large muta-
tion rate might help the GA to search the neighborhood of a schedule. Based on our
computational study, we chose a mutation rate of 1.

Other Factors: The SGA uses a population size, which will be determined based on
computational results given in Sect. 3.1, and an elitist strategy for reproduction, which
is to remove the worst chromosome from the current population and include the best one
from the previous population. The termination criterion is set to a limited number of
generations, which is 500. While many researchers generate the initial population ran-
domly, others favor a good solution as the initial “seed”. In our problem, it is reasonable
to say that in an optimal schedule, if an MPT is processed early at stage 1, probably it
will be processed early at stage 2, too. Hence, the task sequence in two stages will be
almost identical. Therefore, we use a ratio of 3:1 for initial chromosomes with the same
task list in both stages and initial chromosomes with random task list.

2.3 Design of Migration

The design of migration concerns two aspects: the route of migration and the commu-
nication method among subgroups or threads. For the route of migration, we generate a

migration table),...,,(21 nrrr , which is a permutation of),...,2,1(n . According to the

migration table, the emigrants of a subgroup s will go to the destination subgroup sr .

Two kinds of migration routes are tested: fixed route and random route. In the fixed
route, the migration table of each epoch is defined as)1,,...,3,2(n . In the random route,

552 C. Oguz et al.

the migration routes are randomly generated for each epoch. Computational results show
that the random route is better and the details are presented in Section 3.2.

The communication method between the subgroups will influence the computation
time. One easy implementation is to synchronize all the threads for each epoch. In this
way, threads will pause after one epoch to wait for the completion of other threads.
When all threads have completed for an epoch, another independent thread (we use the
main thread to save computer resource) will be in charge of dealing with migration, and
then each thread continues. For example, in the fixed migration route, the main thread
will first save the emigrants of thread 1 in a buffer, and then copy the emigrants of thread

1+s to replace the emigrants of thread s , 1,...,2,1 −= ns . Finally it will copy the

emigrants in the buffer to replace the emigrants of thread n .
Another approach is the asynchronous method which is more complex but efficient.

For each thread, a buffer is allocated to hold the emigrants coming from a different sub-
group. A thread can place its emigrants in the buffer of the destination thread without
waiting for the destination thread to finish. After reading the emigrants in its buffer, a
thread can proceed with its next epoch. Since the buffer is a shared memory block,
which can be accessed by different threads, it must be protected by locks. The mutual
exclusion lock (mutex) is applied in our PGA. Each buffer has two mutex locks, namely
read-mutex-lock and write-mutex-lock, each of which can be locked only by one thread
at any time. Only by locking its own read-mutex-lock, a thread can read from its buffer.
Similarly, only by locking the write-mutex-lock of a buffer, a thread can write to the
buffer of the destination thread. The procedure of communication for a thread can be
explained by the following pseudo codes:

Pseudo code for migration of one thread.
// Procedure of writing emigration
Determine the destination thread from the migration table;
Lock the write-mutex-lock of the destination thread; (O1)
Copy the emigrants to the buffer of the destination thread; (O2)
Unlock read-mutex-lock of the destination thread; (O3)
// Procedure of reading immigration
Lock its own read-mutex-lock; (O4)
Read from its buffer the immigrants and replace the emigrants; (O5)
Unlock its own write-mutex-lock; (O6)

Vector (r,w,b) represents the state of the buffer, where 0=r (or 0=w) means the
read-mutex-lock (or write-mutex-lock) is unlocked, 1=r (or 1=w) means the read-
mutex-lock (write-mutex-lock) is locked, 0=b means the buffer is empty and

1=b means the buffer is full. The following example explains the state of the buffer
after each operation in the above code, where the symbol “?” represents an undetermined
state: Consider operation (O1) at state ?)?,,1(, which means that the read-mutex-lock is

locked, and the write-mutex-lock is undetermined. If 1=w , which means the buffer of
the destination thread cannot be written to, then operation (O1) is blocked to wait for w
to become 0 ; if 0=w (now b must be 0), then operation (O1) can continue. By
operation (O1), the thread locks the buffer of the destination thread and changes w to 1
and the state of the destination thread becomes)0,1,1(. Similarly, before operation

(O4), the state of a thread is undetermined and when (O4) finishes, it must become
)1,1,1(. For the destination thread, we have

)1,1,0()1,1,1(2)0,1,1()1(?)?,,1(⇒⇒⇒⇒⇒ . For the thread itself, we have

553Parallel Genetic Algorithm for a Flow-Shop Problem with Multiprocessor Tasks

)0,0,1()0,1,1(5)1,1,1()4(?)?,(?, ⇒⇒⇒⇒⇒ . The initial state of each thread

is)0,1,1(, i.e., the read-mutex-lock is locked and the write-mutex-lock is unlocked. To

avoid deadlock, a thread is not assigned as its own destination.

2.4 Property of SGA

Since each subgroup is processed with a sequential sub-GA, the final result of the PGA
will be affected from the application of different crossover operations. As mentioned in
Section 2.2, we consider three different crossover operations. By applying them to the
sub-GAs, we obtain three PGAs, denoted by PGA-c1, PGA-c2, PGA-c3, respectively. In
addition, we employ a combined structure of the sub-GAs such that the crossover opera-
tions for some sub-GAs are different from others. For example, half of the sub-GAs use
the one-point crossover and half of the sub-GAs use the two-point crossover, which is
denoted by PGA-c12. Similarly, we have PGA-c13 and PGA-c23. In PGA-c123, each of
the three crossover operations is used in one third of all the sub-GAs. The combined
structure simulates the natural evolution environment in which each subgroup evolves in
different conditions.

3 Experimental Results

The performance of the PGA under different hardware platforms and parameters are
studied. We focused on the properties of the parallel computation, including the speed-
up of computation time, the number of sub-groups, the migration and different crossover
operations. The program is coded in C++ and run on SUN servers. All the results are the
means of running 50 problems, where the number of machine is 16 for both stages.
Unless explicitly specified, the PGA is the PGA-c12 with random migration route and
has a migration size of two individuals. The number of epoch is 25 and the epoch length
is 20 generations, which means a total of 500 generations. The number of subgroups is
15 and the size of a subgroup is 16.

The speed-up ratio of computation time of the PGA under different hardware plat-
forms and processor workloads is reported. The speed-up ratio is defined as the ratio of
computation time with a single thread to computation time with multiple threads and
different workload. Experimental results show that the speed-up depends on the hard-
ware configuration and the workload of the computers. Hence, three different SUN serv-
ers, S1, S2 and S3, are tested. S1 is a SUN SPARCserver 1000E with 4 CPUs and the
CPU usage is less than 50% in normal conditions. The other two machines, S2 and S3,
are logically derived from a SUN Ultra Enterprise (UE 10000) server with 16 CPUs. S2
and S3 have 4 and 8 CPUs, respectively, while the CPU usage for both machines is al-
most 100% in normal conditions. We tested the problems with 50, 100, 150, 200 and
300 jobs and with different number of threads, G =1, 4, 8, 10, 15, 20, 30, and 60. In
each case, the population size of a subgroup is Gs /240= . Thus the total computation
requirements are identical for different number of threads. The speed-up ratios obtained
under different machines and conditions are listed in Tables 1, 2 and 3.

554 C. Oguz et al.

8

Table 1. Speed-up ratios for S1: 4 CPUs, not busy.

Threads 50 jobs 100 jobs 150 jobs 200 jobs 300 jobs
4 3.69 3.67 3.70 3.76 3.77
8 3.79 3.74 3.72 3.84 3.84

10 3.82 3.80 3.83 3.84 3.85
15 3.78 3.83 3.83 3.85 3.85
20 3.74 3.82 3.85 3.84 3.86
30 3.72 3.80 3.83 3.83 3.85
60 3.72 3.68 3.69 3.73 3.75

Table 2. Speed-up ratios for S1: 4 CPUs, busy.

Threads 50 jobs 100 jobs 150 jobs 200 jobs 300 jobs
4 2.26 2.58 2.62 2.63 3.10
8 2.83 3.42 3.50 3.51 3.50

10 2.87 3.61 3.68 3.71 3.72
15 3.10 4.01 4.32 4.41 4.43
20 3.46 4.09 4.55 4.45 4.43
30 3.52 4.30 4.70 4.69 4.70
60 3.18 4.20 4.57 4.57 4.58

Table 3. Speed-up ratios for S1: 8 CPUs, busy.

Threads 50 jobs 100 jobs 150 jobs 200 jobs 300 jobs
4 2.46 2.53 2.62 3.14 3.15
8 3.46 4.30 4.31 4.65 4.89

10 3.82 5.14 5.10 5.26 5.57
15 3.89 6.01 6.11 6.93 6.95
20 3.95 6.54 6.60 7.62 7.60
30 4.19 6.96 6.97 8.67 8.68
60 4.10 6.52 6.87 8.28 8.31

Table 4. Processing time (in sec.) by a single thread under the three different servers.

Computers 50 jobs 100 jobs 150 jobs 200 jobs 300 jobs
S1 238.4 563.5 278.4 1069 2859
S2 207.3 435.1 606.8 1001 1652
S3 99.30 292.4 486.5 922.5 1565

From the results, we can examine the relationship between the speed-up ratio and the
number of jobs of the problem as well as the number of threads. The processing times of
the PGA using a single thread are presented in Table 4 and these reflect the complexity
of the PGA algorithm.

The parallel implementation of the GA will create certain overheads in the process-
ing time such as the time required to create the threads and to synchronize two threads.
These times are in the scale of microseconds and can be ignored when compared to the
processing time demanded by the algorithm (see Table 4). Moreover, the synchroniza-
tion between threads only takes place during migrations and these occur in a very limited
number of times (25 in our tests) for the complete process.

555Parallel Genetic Algorithm for a Flow-Shop Problem with Multiprocessor Tasks

As our algorithms are implemented on general-purpose servers, during run time, they
are competing with other users’ processes for the available system resources (CPUs).
Usually, the Operating System, Solaris in our case, is responsible for the fair allocation
of resources to users’ processes. If there are more jobs than the available number of
CPUs, then the jobs will form a queue and share the CPUs based on the round-robin
mechanism. This is the major source of overhead induced in the computation time.

When a problem has more jobs, the computing requirement increases. Hence, the ef-
fect of the overhead is reduced and a better speed-up ratio is obtained. This is substanti-
ated by the results presented in Tables 1, 2, and 3. Based on the results, we can observe
that if the number of threads is fixed, the speed-up ratio has a tendency to increase for
cases with more jobs. There are, however, some exceptional cases. These may be caused
by workloads submitted by other users, or by tasks performed by the operating system
while the PGA program is being executed.

The speed-up ratio increases with the increase in the number of threads because this
increases the share of PGA on the system. However, the speed-up ratio begins to de-
crease if there are too many threads, for example, 60 threads. The total processing time
of the PGA is equal to the total duration of all threads, i.e., it is determined by the last
thread terminated. The duration of a thread is the combination of the total time when it is

served by a CPU (st) and the time when it is waiting for available resources (wt). When

the number of thread increases, the term st decreases since the workload assigned to a

thread is reduced. On the other hand, the term wt increases as there are more threads

waiting in the queue. A speed-up is obtained when the total duration (ws tt +) of the last

terminating thread is reduced compared to the single thread case. When both terms are
minimized then the speed-up ratio will be optimized. In our experiments, the optimal
result is obtained when 30 threads are created. The speed-up ratios decrease in the 60-

thread case because the total duration is increased due to the term wt .

3.1 Number of Subgroups

The advantage of PGA is not only the speed-up of computation time, but also the im-
provement of the solution. We can find a better solution by dividing a large population
into several subgroups. Table 5 depicts such a result. We have a whole population of
240 individuals, which means that the total computing requirements are fixed. With
different number of subgroups G , the subgroup size is Gs /240= . To compare the
solutions for different subgroups, the solution obtained from the single thread (group)
case is used as a reference. The ratio of the solutions obtained from using different num-
ber of subgroups to the single group case are evaluated and listed in Table 5.

From Table 5, we can see that PGA can obtain better solutions than the sequential GA
on a large whole population (the case of one thread). Computational results show that 15
subgroups each with 16 individuals produce the best result. If the subgroup size is too
small, the improvement is less significant. In addition, PGA gives a better result if we
have more jobs to schedule. For the problems with 50 jobs the maximum improvement is
0.010 while for the problems with 300 jobs the improvement is 0.025.

Generally, when the amount of computation increases, a better solution can be ob-
tained. The size and the number of subgroups determine the amount of computation and

556 C. Oguz et al.

we have shown that a small subgroup is better than a large one. Next we will study the
effect of altering the number of subgroups by fixing the size of each subgroup. We con-
centrate on the 300-job case and we use 16 and 30 as the size of a subgroup for compari-
son. The results, which are given in Table 6, indicate that increasing the number of sub-
groups can improve the solutions, but the improvement becomes less significant when
the number of subgroups exceeds 20. If the number of subgroups is fixed, the subgroup
size of 30 gives better results than 16. However the improvement is not significant.

Table 5. Ratio of solutions found by different number of subgroups to the single group case.

Sub-groups 50 jobs 100 jobs 150 jobs 200 jobs 300 jobs
1 1.000 1.000 1.000 1.000 1.000
4 0.994 0.984 0.981 0.978 0.989
8 0.991 0.982 0.977 0.976 0.984

10 0.991 0.982 0.977 0.975 0.980
15 0.990 0.982 0.976 0.974 0.975
30 0.993 0.983 0.978 0.976 0.980
60 0.994 0.984 0.979 0.977 0.983

Table 6. Ratio of solutions found by different number of subgroups to the single group case.

Subgroup 1 4 8 10 15 20 30 40
16 1.000 0.987 0.983 0.977 0.973 0.971 0.970 0.970
32 0.998 0.98

6
0.982 0.975 0.972 0.970 0.969 0.969

3.2 Design of Migrations

In Table7, we compare the fixed route migration and random route migration mechanism
with different number of migration. The problems with 300 jobs are used and the solu-
tion of the fixed route mechanism with zero migration is taken as a base. It is easy to
observe that the random route migration performs better than the fixed route migration.
For the number of individuals for migration, 2 or 3 should be a better choice. We also
consider the complete island model in which no migration occurs among the subgroups,
that is, when migration number is zero. The result of the complete island model is worse
than the result of none-zero migration, which demonstrates the usefulness of migration.

Table 7. Ratio of solutions found by different numbers of migration to the zero migration.

No. of migra-
tion

0 1 2 3 4 5

Fixed route 1.000 0.988 0.985 0.985 0.986 0.987
Random route 1.000 0.987 0.984 0.984 0.985 0.987

The frequency of migration, which is represented by the epoch length, also affects
the performance of PGA. The short epoch length will weaken the outcome of the island
model, which will become similar to the global PGA. The long epoch length will lead to
the complete island model. To compare the different epoch lengths, we chose the epoch

557Parallel Genetic Algorithm for a Flow-Shop Problem with Multiprocessor Tasks

length to be 10, 20, 30, 40, 50 and 100, with the corresponding number of epochs of 50,
25, 17, 13, 10 and 5, so that the total number of generations will be almost identical, i.e.
500, or slightly more. The results are provided in Table 8 for problems with 300 jobs,
where the problem with the epoch length of 100 is taken as a base. The results are con-
sistent with the above analysis and the epoch length of 20 gives the best result.

Table 8. Ratio of solutions found by different length of epoch.

Length of Epoch 10 20 30 40 50 100
Relative error 0.989 0.987 0.988 0.990 0.995 1.000

3.3 PGAs with Different Crossover Operations

As mentioned in Section 2.3, seven PGAs, namely PGA-c1, PGA-c2, PGA-c3, PGA-
c12, PGA-c13, PGA-c23 and PGA-c123, are analyzed. The performances of the seven
PGAs for the 300-job case are compared and the results are depicted in Table 9, where
PGA-c12 is taken as a base. Results show that PGA-c1 and PGA-c2 have similar per-
formances and are better than PGA-c3. On the other hand, the performances of all these
PGAs, with only one kind of crossover operation, are worse than that of the PGAs with
combined crossover operations. Among different combinations of the crossover opera-
tions, the combination of two operations seems to be sufficient for obtaining reasonable
performance since the combination of three operations, PGA-c123, does not produce a
better result.

Table 9. Ratio of solutions found by different crossover operations.

PGA-c1 PGA-c2 PGA-c3 PGA-
c12

PGA-c13 PGA-c23 PGA-c123

1.0010 1.0008 1.0147 1.0000 1.0003 1.0002 1.0005

4 Conclusions

The purpose of this study is to provide a quick but a good solution for MPT schedul-
ing in flow-shops. To achieve this objective, we developed a PGA. In the paper, we
introduced the design of a SGA, which is the basic element of the PGA, together with
the different characteristics of the PGA. The algorithm was implemented by multi-
threaded programming on SUN servers. It was observed that if the workload of the
server is high, by creating more threads, a better speed-up ratio could be obtained. We
found that a relatively small size of a subgroup, about 16, and medium number of sub-
groups, about 15, are suitable. We compared different methods of migration among
subgroups and found that random migration with 2 or 3 individuals is a better choice. In
conclusion, the parallel implementation of the genetic algorithm can achieve both speed-
up of computation time and the improvement of the near optimal solutions. As a proto-
type, this parallel genetic algorithm can be used to solve other complex scheduling prob-
lems.

558 C. Oguz et al.

Acknowledgement.
The work described in this paper was partially supported by a grant from The Hong
Kong Polytechnic University (Project no. G-S551).

References

1. Blazewicz J., Drabowski M., Weglarz J.: Scheduling Multiprocessor Tasks to
Minimize Schedule Length, IEEE Trans. Computers C-35/5 (1986) 389-393

2. Brucker P.: Scheduling Algorithms, Springer, Berlin (1995)
3. Cantoni V., Ferretti M.: Pyramidal Architectures for Computer Vision, Plennium

Press, New York (1994)
4. Chen C.L., Vempati V.S., Aljaber N.: An Application of Genetic Algorithms for

Flow Shop Problems, European Journal of Operational Research 80 (1995) 389-396
5. Chipperfield A., Fleming P.: Parallel Genetic Algorithms, In: Zomaya, A.Y. (ed.):

Parallel and Distributed Computing Handbook, McGraw-Hill (1996)
6. Dorndorf U., Pesch E.: Evolution Based Learning in a Job Shop Scheduling Envi-

ronment, Comp. Opns. Res. 22 (1995) 25-40
7. Drozdowski M.: Scheduling Multiprocessor Tasks - An Overview, European Jour-

nal of Operational Research 94 (1996) 215-230
8. Ercan M.F., Fung Y.F.: The Design and Evaluation of a Multiprocessor System for

Computer Vision, Microprocessors and Microsystems 24 (2000) 365-377
9. Gupta J.N.D., Hariri A.M.A., Potts C.N.: Scheduling a Two-stage Hybrid Flow

Shop with Parallel Machines at the First Stage, Ann. Oper. Res. 69 (1997) 171-191
10. Holland H.: Adaptation in Natural and Artificial Systems. Ann Arbor, The Univer-

sity of Michigan Press (1975)
11. Krawczyk H., Kubale M.: An Approximation Algorithm for Diagnostic Test Sched-

uling in Multicomputer Systems, IEEE Trans. Comput. 34/9 (1985) 869-872
12. Lloyd E.L.: Concurrent Task Systems. Opns Res. 29 (1981) 189-201
13. Murata T., Ishibuchi H., Tanaka H.: Genetic Algorithms for Flowshop Scheduling,

Comp. Ind. Engng, 30 (1996) 1061-1071
14. Oguz C., Ercan M.F., Cheng T.C.E., Fung Y.F.: Multiprocessor Task Scheduling in

Multi Layer Computer Systems, in print European Journal of Operations Research.
15. Reeves C.R.: A Genetic Algorithm for Flowshop Sequencing, Comp. Opns. Res. 22

(1995) 5-13
16. Scala M. L., Bose A., Tylavsky J., Chai J. S.: A Highly Parallel Method for Tran-

sient Stability Analysis, IEEE Trans. Power Systems 5 (1990) 1439-1446

559Parallel Genetic Algorithm for a Flow-Shop Problem with Multiprocessor Tasks

	1 Introduction
	2 Parallel Genetic Algorithm
	2.1 Hardware and Software Environment
	2.2 The Sequential Genetic Algorithm
	2.3 Design of Migration
	2.4 Property of SGA

	3 Experimental Results
	3.1 Number of Subgroups
	3.2 Design of Migrations
	3.3 PGAs with Different Crossover Operations

	4 Conclusions

