
Linear Algebra Computation Benchmarks on a
Model Grid Platform

Loriano Storchi1, Carlo Manuali2, Osvaldo Gervasi3, Giuseppe Vitillaro4,
Antonio Laganà1, and Francesco Tarantelli1,4

1 Department of Chemistry, University of Perugia,
via Elce di Sotto, 8, I-06123 Perugia, Italy

redo@thch.unipg.it,lag@unipg.it,franc@thch.unipg.it
2 CASI, University of Perugia,

via G. Duranti 1/A, I-06125 Perugia, Italy
carlo@unipg.it

3 Department of Mathematics and Informatics, University of Perugia,
via Vanvitelli, 1, I-06123 Perugia, Italy

osvaldo@unipg.it
4 Istituto di Scienze e Tecnologie Molecolari, CNR,

via Elce di Sotto, 8, I-06123 Perugia, Italy
peppe@thch.unipg.it

Abstract. The interest of the scientific community in Beowulf clus-
ters and Grid computing infrastructures is continuously increasing. The
present work reports on a customization of Globus Software Toolkit 2
for a Grid infrastructure based on Beowulf clusters, aimed at analyz-
ing and optimizing its performance. We illustrate the platform topology
and the strategy we adopted to implement the various levels of process
communication based on Globus and MPI. Communication benchmarks
and computational tests based on parallel linear algebra routines widely
used in computational chemistry applications have been carried out on
a model Grid infrastructure composed of three 3 Beowulf clusters con-
nected through an ATM WAN (16 Mbps).

1 Introduction

Grid computing [1] is promising to establish itself as a revolutionary approach to
the use of computing resources. At the same time, Beowulf-type clusters (BC) [2]
have become very popular as computing platforms for the academic and scien-
tific communities, showing extraordinary stability and fault tolerance at very
attractive cost/benefits ratios. The availability of Gigabit Ethernet further facil-
itates the assembly of high throughput workstation clusters of the Beowulf type.
It is therefore a natural and smooth development to explore the possibility of
integration between the Grid and the cluster paradigms. By connecting together,
at the hardware and software levels, several clusters one can in principle build a
Grid computing platform very useful for scientific applications. While the Grid
model is often viewed as a cooperative collection of individual computers, it is
clear that, in order to make such a model efficient for scientific applications, and
we think in particular of computational chemistry ones, much effort must be

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2658, pp. 297−306, 2003.
 Springer-Verlag Berlin Heidelberg 2003

devoted toward re-designing the scheduling and communication software (and
possibly the application themselves) so that the Grid topology and interconnec-
tions are explicitly taken into account. As we mentioned, this refers especially to
local clustering. Some work along these lines was for example carried out by de-
veloping a MPI-based library of collective communication operations explicitly
designed to take into account two layers (wide-area and local-area) of message
passing [3].

The present work presents a study of the performance of a model platform
composed of three Beowulf clusters connected via Internet and assembled as
a Grid based on Globus Toolkit 2 [4], with a view on using it for quantum
chemistry applications. The aspects of the computational environment and the
optimizations we have focused on concern in particular:

1. a centralized installation of the Globus software into a NFS shared directory
and the definition of a method to specify the cluster’s hosts parameters for
MDS.

2. An implementation of Globus and MPICH-G2 [5] for Grid management tak-
ing explicitly into account the local tightly-coupled MPI level (LAM/MPI
in our case) for the intra-cluster communication among the nodes.

3. A modification of the LAM/MPI broadcast implementation in order to opti-
mize LAM/MPI throughput on the Grid.

The resulting computing model shows very promising features and supports
the existing wide interest in the Grid approach to computing. In Sec. 2 we give
some details of the platform we have set up. In Sections 3 and 4 we illustrate the
need for topology-awareness by discussing the performance of some broadcast
schemes. In Sec. 5 the performance of some parallel linear algebra kernels very
important for computational chemistry applications is analyzed.

2 A Model Computing Grid

The work described in the present paper has been carried out on a computing
platform composed of three Beowulf-type workstation clusters, named GRID,
HPC and GIZA. The nodes within each cluster are interconnected through
a dedicated switched network, with bandwidth of 100 Mbps for HPC (Fast-
Ethernet), 200 Mbps for GIZA (Fast-Ethernet with 2 NICs in Channel Bond-
ing [6]) and 1 Gbps (Gigabit-Ethernet) for GRID. HPC and GRID are intercon-
nected through a Fast-Ethernet local area network (LAN) at 100 Mbps, while
they are connected to GIZA over a 16Mbps ATM wide area network (WAN). The
connection among the three clusters is schematically shown in Fig. 1, where the
the effective average communication bandwidth is indicated. Table 1 summarizes
the main characteristics of each cluster.

On our model Grid we have installed Globus Toolkit 2, introducing some
modifications of the reference installation procedure [4] which are of general rel-
evance for Grids based on Beowulf clusters. In a Beowulf cluster environment
it is common practice to adopt a configuration where a specialized node, called

298 L. Storchi et al.

GIZA

GRIDHPC
4.6 Mb/s

v−MPI
 HPC

v−MPI
 GRID

v−MPI
 GIZA

WAN

0.8 Mb/s0.8 Mb/s

Fig. 1. Representation of the model Grid.

frontend, acts as a firewall for the other nodes and hosts all the Internet services
needed by the cluster. In particular, this node usually hosts the NIS to allow one-
time login of users, the shared (NFS exported) filesystems and the Automount
service. In particular, the directory /usr/local is exported via NFS and contains
the software packages shared by the other cluster nodes. In our case, all nodes ac-
cess Globus in /usr/local/globus. For security reasons, we have restricted the
range of port numbers Globus may use. The information about the nodes used
by MDS is kept in the custom directory /usr/local/globus/etc/nodes, where
a subdirectory for each node of the cluster is created to keep the GRIS node
configuration files. This directory must be named as the value of the HOSTNAME

environment variable. On each node, the GRIS subsystem is activated at boot
time, invoking the SXXgris command customized in order to point to the right
configuration directory defined by the environment variable sysconfdir. In this
way all nodes refer to the GIIS server running on the frontend of the cluster
and all the resources of the cluster may be inspected trough the LDAP server.
To implement such configuration, some modifications to the MDS configuration
files are necessary. In particular, in each node the following line must appear
in Grid-info-site-policy.conf so that all MDS operations from any node of
the cluster are accepted:

policydata: (&(Mds-Service-hn=*.cluster-IP-domain)(Mds-Service-port=2135))

and the file Grid-info-resource-register.conf in each node of the cluster,
in order to register the local GRIS server on the GIIS server, must contain:

reghn: GIIS-server.cluster-IP-domain

hn: GRIS-server.cluster-IP-domain

299Linear Algebra Computation Benchmarks on a Model Grid Platform

Cluster: GRID HPC GIZA
Number of nodes: 9 SMP working nodes, 8 SMP working nodes, 8 SMP working nodes

18 working CPU 16 working CPU
Processor type: Intel Pentium III Intel Pentium II Intel Pentium III

double-processor double-processor single-processor

Clock: 18 CPUs at 1GHz 4 CPUs at 550 Mhz, 8 CPUs at 800 Mhz
1 CPU at 450 Mhz,
3 CPUs at 400 Mhz

RAM: 18 Gbyte 4 Gbyte 4 Gbyte

HDISK: EIDE/SCSI EIDE/SCSI EIDE

Type of switched Gigabit-Ethernet Fast-Ethernet Fast-Ethernet,
Network: 2 channels bonded

Linux Kernel RedHat 7.2 2.4.13 RedHat 6.2 2.2.16-3 RedHat 7.0 2.2.19
type: SMP MOSIX SMP

Table 1. Characteristics of the three Beowulf clusters used for the model Grid.

One very important aspect of our exercise was that we wanted to retain,
in the Globus Grid, the ability to exploit the local level of MPI parallelism on
each cluster in a very general way. As the local level of MPI environment, we
have chosen to adopt LAM/MPI (version 6.5.6). To use the cluster’s local MPI
implementation one needs to compile the Globus Resource Management SDK
with the flavor mpi. As has already been noted [7], this operation fails on Beowulf
nodes (only some vendor MPI are supported). To overcome this problem, we
have recompiled the package globus_core according to the following sequence
of commands:

export GLOBUS_CC=gcc;

export LDFLAGS=’-L/usr/local/globus/lib’

/usr/local/globus/BUILD/globus_core-2.1/configure

--with-flavor=gcc32mpi --enable-debug --with-mpi

--with-mpi-includes=-I/usr/include/

--with-mpi-libs="-L/usr/lib -lmpi -llam"

make all

make install

After successful compilation of globus_core, the installation of the Globus
Resource Management SDK can be accomplished without problems. In order
to be able to build the MPICH-G2 package correctly, it is further necessary to
introduce some defines which are missing in the include file mpi.h of LAM/MPI.

#define MPI_CHARACTER ((MPI_Datatype) &lam_mpi_character)

#define MPI_COMPLEX ((MPI_Datatype) &lam_mpi_cplex)

#define MPI_DOUBLE_COMPLEX ((MPI_Datatype) &lam_mpi_dblcplex)

#define MPI_LOGICAL ((MPI_Datatype) &lam_mpi_logic)

#define MPI_REAL ((MPI_Datatype) &lam_mpi_real)

#define MPI_DOUBLE_PRECISION ((MPI_Datatype) &lam_mpi_dblprec)

#define MPI_INTEGER ((MPI_Datatype) &lam_mpi_integer)

#define MPI_2INTEGER ((MPI_Datatype) &lam_mpi_2integer)

#define MPI_2REAL ((MPI_Datatype) &lam_mpi_2real)

#define MPI_2DOUBLE_PRECISION ((MPI_Datatype) &lam_mpi_2dblprec)

300 L. Storchi et al.

To enable the spawning of MPICH-G2 jobs and to simplify the addition of
nodes to the cluster we let the $GLOBUS GRAM JOB MANAGER MPIRUN macro point
to the following script replacing the standard mpirun command:

export LAMRSH=rsh

export LAM_MPI_SOCKET_SUFFIX="GJOB"$$

/usr/bin/lamboot /usr/local/globus/hosts >> /dev/null 2>&1

/usr/bin/mpirun -c2c -O -x ‘/usr/local/globus/bin/glob_env‘ $*

rc=$?

/usr/bin/lamhalt >> /dev/null 2>&1

exit $rc

Here glob_env is a small program which returns the list of current environment
variables so that they can be exported by mpirun (-x flag).

3 Topology-Aware Functions: Broadcast Models

Since a Grid is made up of many individual machines connected in a Wide Area
Network (WAN), two generic processes may be connected by links of different
kind, resulting in widely varying point-to-point communication performance.
Therefore, the availability of topology-aware collective functionalities, and more
generally of topology discovery mechanisms, appears to be of fundamental im-
portance for the optimization of communication and performance over the Grid.
The aim of such topology-aware strategies would be to minimize point-to-point
communications over slow links in favor of that over high bandwidth and/or low
latency links. In some cases it may also be possible to schedule data exchange so
that as much slow-bandwidth communication as possible is hidden behind fast
traffic and process activity. Knowledge of the topology of a Grid is ultimately
knowledge of the characteristics of the communication link between any two
processes at any given time. A first useful approximation to such detailed map
is provided by the classification scheme described in the MPICH-G2 specifica-
tions [5, 8]. In this scheme there are four levels of communication: levels 1 and
2 account for TCP/IP communications over a WAN and a LAN, respectively.
Level 3 concerns processes running on the same machine and communicating via
TCP/IP, while level 4 entails communication through the methods provided by
the local MPI implementations. Thus, the MPICH-G2 layer implements topol-
ogy awareness over levels 1, 2 and 3, while level 4 operations are left to the
vendor-supplied implementation of MPI.

We have tried to obtain a first demonstration of the benefits of topology-
aware collectives by comparing the performance on our Grid of three different
broadcast methods: (i) the broadcast operation provided by MPICH-G2, (ii)
an optimized topology-aware broadcast of our own implementation, and (iii)
a non-topology-aware broadcast based on a flat binomial-tree algorithm. As is
clear, all processes can communicate at Level 1, because all machines are in the
same WAN, but only processes that run on machines belonging to the same
cluster (HPC, GRID or GIZA) can communicate using the locally supplied MPI

301Linear Algebra Computation Benchmarks on a Model Grid Platform

(l-MPI) methods. The l-MPI we have used is LAM/MPI [9] and provides for
communication via TCP/IP among nodes in a dedicated network or via shared-
memory for processes running on the same machine. In accord with the MPICH-
G2 communication hierarchy, we can thus essentially distinguish between two
point-to-point communication levels: inter-cluster communication (Level 1) and
intra-cluster communication (Level 4). As already mentioned, we notice that the
effective bandwidth connecting GIZA to HPC and GRID is slower than that
between HPC and GRID. This asymmetry may be thought of as simulating the
communication inhomogeneity of a general Grid.

Consider now a typical broadcast, where one has to propagate some data to
24 machines, 8 in each cluster. For convenience, the machines in cluster HPC will
be denoted p0, p1, . . . , p7, those in GRID as p8, p9, . . . , p15, and those in GIZA as
p16, p17, . . . , p23. The MPICH-G2 MPI_Bcast operation over the communicator
MPI_COMM_WORLD, rooted at p0, produces a cascade of broadcasts, one for each
communication level. Thus, in this case, there will be a broadcast at the WAN
inter-cluster level, involving processes p0, p8 and p16, followed by three intra-
cluster propagations, where l-MPI will take over. So we have just two inter-cluster
point-to-point communication steps, one from p0 to p8 and another from p0 to
p16, and then a number of intra-cluster communications. The crucial point to
be made here is that communication over the slow links is minimized, while the
three fast local (intra-cluster) broadcast propagations can take place in parallel.

In this prototype situation, the strategy adopted in our own implementation
of the broadcast is essentially identical, but we have optimized the broadcast op-
eration at the local level. The essential difference between our implementation
of the broadcast and the LAM/MPI one is that in the latter, when a node prop-
agates its data via TCP/IP, non-blocking (asynchronous) send operations over
simultaneously open sockets are issued, while we opted for blocking operations.
The local broadcast tree is depicted in Fig. 2. The LAM/MPI choice appears

1 2 4

5 63

7

0

Fig. 2. Local broadcast tree in a 8-node cluster.

to be optimal on a high bandwidth network where each node is connected inde-

302 L. Storchi et al.

pendently to all the others, but it clearly loses efficiency on a switched-ethernet
cluster, where simultaneous send operations issued by a node necessarily share
the available bandwidth. It is not difficult to see that on small clusters this
translates in a remarkable efficiency loss. In particular, in our 8-node case, with
the tree of Fig. 2, a factor of two in broadcast time is observed: if τ is the basic
transmission time step, i.e., the time required for data exchange between any
two nodes in an isolated send/receive operation (for large data transfers this is
roughly the amount of data divided by the bandwidth), then the synchronous
broadcast completes in about 6τ , while our version takes just 3τ .

4 Broadcast Tests

In all our tests we have propagated ∼38 Mb of data (5 ·106 double precision real
numbers). Thus, on a local switched 100 Mbit ethernet such as that of the HPC
cluster the measured time-step is τ = 3.4 s and the optimized broadcast takes
about 10 seconds. On GIZA, where each node multiplexes over two ethernet
cards, the time is exactly halved. It is instructive to compare the performance of
topology-aware broadcasts with the no-topology-aware one. The latter, as pre-
viously mentioned, is executed using a flat binomial tree algorithm involving all
nodes of the Grid, without consideration for the different link speeds. This pro-
cedure of course results in a larger amount of slow inter-cluster communication
at the expenses of the fast local transfers. An example is shown in Fig. 3 where a
broadcast is propagated again from node p0. As can be seen, we have here only 7

1 2

3 4

7

15 16 22

8 9 10 11 12 13 14

5 6

0

17 18 19 20 21 23

= HPC = GRID = GIZA

Fig. 3. Flat broadcast tree over the whole Grid.

intra-cluster data transfers (the same number we actually have in a single local
broadcast) and as many as 16 inter-cluster data transfers instead of the two we
have in the topology-aware algorithm. By taking into account the various link
speeds it is possible to give a rough estimate of the overall times required for
the three broadcast algorithms. For a 38Mb data propagation, as before, these
are compared with the measured ones in Table 2. It should be noted that the

303Linear Algebra Computation Benchmarks on a Model Grid Platform

Broadcast type Measured Estimated
time (s) time (s)

MPICH-G2 70 69
Locally optimized 60 59
No-topology aware 448 440

Table 2. Performance of different broadcast algorithms over the Grid.

serial link between either HPC or GRID and GIZA is not dedicated. Thus, the
reported link speed of 0.8 Mbyte/s (see Fig. 1) is an average value obtained over
various measurements at the time of our study. In the first case of Table 2 the
broadcast operation is executed by MPICH-G2 in two steps. First, a broadcast
over the WAN takes place, consisting in practice of two non-blocking sends from
p0 (HPC) to p8 (GRID) and p16 (GIZA). The rate of these data transfers falls
much below the available local bandwidth and they go through different routes,
thus they should overlap quite effectively: the overall time required coincides
with the time of the HPC-GIZA transfer, i.e. about 49 s. After the inter-cluster
broadcast, three parallel local broadcasts, one on each cluster. The time for
these operations is the largest of the three, i.e. ∼20 seconds, required on HPC
(LAM/MPI is used). Thus, the total time for a MPICH-G2 global broadcast is
estimated in 69 seconds, matching closely the observed time. The second case of
Table 2 differs from the first only for the optimization of the local intra-cluster
broadcasts. As we have shown, this halves the local time from 20 to 10 seconds.

The last case of broadcast reported in Table 2 is the flat no-topology-aware
structure whose tree is sketched in Fig. 3. All data transfers originating from
the same node are synchronous (blocking). First of all, a local broadcast within
HPC takes place. After 3 time steps (∼10 s) all local nodes except p6 have been
reached and p3, p4 and p5 simultaneously start their sends toward GRID. The
time for these would be ∼32 s, but it is in fact longer because after the first 3.4 s
also p6 starts sending through the same channel toward GRID. A better estimate
yields 38 s. After this the 8 transfers from HPC and GRID toward GIZA start
taking place and the time required for these, sharing the same channel, is of
course of the order of 400 s. In total, the observed broadcast time of 448 seconds
is therefore very well explained and the dominance of the long distance transfers,
which in a topology-aware implementation is suitably minimized, is evident.

5 Linear Algebra Benchmarks

Since the intended use of our cluster Grid is for quantum chemistry and nuclear
dynamics applications, we have also performed some preliminary tests on its
performance with standard linear algebra routines. To this purpose, we have
installed the ScaLAPACK package [10] on top of MPICH-G2. The resulting
software hierarchy is depicted in Fig. 4. As the figure shows, we have installed,
besides the standard BLAS and LAPACK software packages at the local level,
the BLACS software (Basic Linear Algebra Communication Subprograms) [11]
on top of MPICH-G2, PBLAS (a parallel BLAS library) and ScaLAPACK, a

304 L. Storchi et al.

ScaLAPACK

PBLAS

LAPACK

BLAS

BLACS

Message Passing Primitives

MPICH−G2

 Software Hierarchy

Fig. 4. ScaLAPACK software hierarchy on the Grid. The broken line separates the
local environment (below) from the global one (above).

library of high-performance parallel linear algebra routines. BLACS is a message-
passing library designed for linear algebra and it implements a data distribution
model consisting of a one- or two-dimensional array of processes, each process
storing a portion of a given array in block-cyclic decomposition. On this data
distribution scheme PBLAS and ScaLAPACK work. Besides parallel execution,
the data distribution model enables the handling of much larger arrays than
would be possible in a data replication scheme.

The initial tests we have made use one of the fundamental PBLAS routines,
PDGEMM, which performs matrix multiplication on double precision floating
point arrays. The algorithm used in PDGEMM is essentially the one described
in ref. [12] where a two-dimensional block-cyclic decomposition of the arrays is
distributed and data transfers occur mostly along one dimension. Thus, our Grid
of workstation clusters lends itself quite naturally to such decomposition if we
arrange the machines in each cluster along a different row (say) of the BLACS
array and ensure that data communication (the exchange of array blocks) takes
place predominantly along rows of the array (i.e., intra-cluster).

We have measured PDGEMM performance for such an arrangement for the
multiplication of two 20000 by 20000 matrices observing an effective speed of
about 2.5 Gflops. Comparing this to the theoretical aggregate speed of the Grid
in the absence of communication, it is clear that data transfers dominate the Grid
activity. This is confirmed also by the fact that the global performance is almost
completely independent of the size of the array blocks used in the block-cyclic
decomposition: the measured speed varies from 2.52 Gflops to 2.55 Gflops for
block sizes 64 to 256 (but the top speed is reached already for a block size of 160).
The block size substantially affects local matrix multiply performance through
the extent of cache re-use and a larger block size probably also improves data
communication slightly by decreasing the impact of network latency. It should
finally be noted that by exchanging rows with columns of the processor array, i.e.,
increasing the amount of inter-cluster data transfers, the expected performance
deterioration reaches 70%.

305Linear Algebra Computation Benchmarks on a Model Grid Platform

6 Conclusions

In this work we have discussed how to realize, on a model Grid made up of three
workstation cluster, two Globus communication levels, inter-cluster and intra-
cluster, using MPI. The benefits of topology-aware communication mechanisms
have been demonstrated by comparing a two-level implementation of broadcast
with a flat binary-tree one. The model Grid has been further tested by measuring
the performance of parallel linear algebra kernels of common use in theoretical
chemistry applications, arranged to exploit the two communication levels. The
tests have provided useful indications on how to make efficient use of a Grid
platform composed of workstation clusters.

Acknowledgments

This research has been financially supported by MIUR, ASI and CNR.

References

1. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a Future Computing In-
frastructure. Morgan Kaufmann Publishers, USA (1999)

2. See e.g.:http://www.beowulf.org
3. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: MAGPIE:

MPI’s Collective Communication Operations for Clustered Wide Area Systems.
ACM Sigplan Notices, Vol. 34 (1999) 131--140

4. The Globus Project:http://www.globus.org
5. Foster, I., Karonis, N.: A Grid-Enabled MPI: Message Passing in Heteroge-

neous Distributed Computing Systems. SC’98, Orlando, Florida (1998). See also
http://www3.niu.edu/mpi/

6. See e.g.:http://sourceforge.net/projects/bonding/
7. See the Globus mailing lists, e.g.:

http://www-unix.globus.org/mail_archive/mpich-g/2002/04/msg00007.html

8. Karonis, N., de Supinski, B., Foster, I., Gropp, W., Lusk, E., Bresnahan, J.: Ex-
ploiting hierarchy in parallel computer networks to optimize collective operation
performance. Fourteenth International Parallel and Distributed Processing Sym-
posium, Cancun, Mexico (2000).

9. http://www.lam-mpi.org/
10. http://www.netlib.org/scalapack/slug/scalapack_slug.html
11. (a) Dongarra, J., Van de Geijn, R.: Two dimensional basic linear algebra commu-

nication subprograms. Computer Science Dept. Technical Report CS-91-138, Uni-
versity of Tennessee, Knoxville, USA (1991) (also LAPACK Working Note #37);
(b) Dongarra, J., Van de Geijn, R., Walker, D.: Scalability issues in the design of
a library for dense linear algebra. Journal of Parallel and Distributed Computing,
Vol. 22, N. 3 (1994) 523-537 (also LAPACK Working Note #43).

12. Fox, G., Otto, S., Hey, A.: Matrix algorithm on a hypercube I: matrix multiplica-
tion. Parallel Computing, Vol. 3 (1987) 17--31

306 L. Storchi et al.

	Introduction
	A Model Computing Grid
	Topology-Aware Functions: Broadcast Models
	Broadcast Tests
	Linear Algebra Benchmarks
	Conclusions
	References

