Implementation of a Grid-Enabled Problem
Solving Environment in Matlab

Hakki Eres, Graeme Pound, Zhouan Jiao, Jasmin Wason, Fenglian Xu, Andy
Keane, and Simon Cox

School of Engineering Sciences,
University of Southampton,
Highfield, Southampton, SO17 1BJ, UK
{eres, gep, z.jiao, j.l.wason, f.xu, ajk, sjc}@soton.ac.uk
http://wuw.geodise.org/

Abstract. In many areas of design search and optimisation one needs
to utilize Computational Fluid Dynamics (CFD) methods in order to
obtain numerical solution of the flow field in and/or around a proposed
design. From this solution measures of quality for the design may be
calculated, which are required by optimisation methods. In large models
the processing time for the CFD computations can very well be many or-
ders of magnitude larger than the optimisation methods; and the overall
optimisation process usually demands a combination of computational
and database resources; therefore this class of problems is well suited to
Grid computing. The Geodise toolkit is a suite of tools for Grid-enabled
parametric geometry generation, meshing, CFD analysis, design optimi-
sation and search, database, and notification tools within the Matlab
environment. These grid services are presented to the design engineer as
Matlab functions that conform to the usual syntax of Matlab. The use
of the Geodise toolkit in Matlab introduces a flexible and Grid-enabled
problem solving environment (PSE) for design search and optimisation.
This PSE is illustrated here with an exemplar problem.

1 Introduction

The process of design search and optimisation involves the modelling and anal-
ysis of engineering problems to yield improved designs [1]. Independent design
parameters that the engineer wishes to modify, and relevant design constraints
are identified, and a measure of the quality of a particular design (the objective
function) is computed using an appropriate model. A number of design search
algorithms may then be used to yield more information about the behaviour
of a model over the parameter space, and to minimise/maximise the objective
function to improve the quality of the design by modifying the design param-
eters subject to any constraints imposed on them. This process may include
lengthy and repetitive calculations to obtain the value of the objective function
with respect to the design variables. Design optimisation with regard to fluid
dynamics is relevant to, amongst others, the aerospace, automotive and oil in-
dustries. Computational Fluid Dynamics (CFD) methods allow the engineer to

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 420-429, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Implementation of a Grid-Enabled Problem Solving Environment in Matlab 421

analyse the properties of a design. However, they often require computer aided
design (CAD) tools to generate parametric design geometries, mesh generation
programs to mesh the flow domain, and CFD solvers to obtain an approximate
solution for each design search point. Therefore, the modeling and analysis is
usually the computationally expensive part of design search and optimisation
process. To perform the numerous solutions required for extensive parameter
exploration during a design search in this domain normally requires access to
significant computational and database resources.

Engineering design search and optimisation is also a data intensive process.
Data may be generated at different locations with different characteristics. It
is often necessary for a design engineer to access a collection of data produced
by design and optimisation processes to make design decisions, perform further
analysis and carry out post-processing. Databases are valuable to expose the
state of the design process to context sensitive design advisers, allowing them to
provide dynamic advice to the user. Databases therefore play an essential role
in our architecture, where it is important to capture the process of how results
are obtained in addition to storing the results themselves.

The Geodise project [2] aims to aid the engineer in the design process by mak-
ing available a suite of intelligent design optimisation and search tools, CAD
packages, mesh generation tools, and CFD analysis packages integrated with
distributed Grid-enabled computing, analysis, data, and knowledge resources.
Facilitating the use of such design search tools requires the integration of intel-
ligent design advisers, which are able to support the engineer throughout the
design process by providing ontology services, annotation services, and context
sensitive advice based on the states of the computation.

A problem solving environment (PSE) provides the user a complete and
integrated environment for problem composition, solution, and analysis [3]. PSEs
exist for numerous application areas, such as the solution of partial differential
equations, scientific visualisation, and computational chemistry. Various parts of
the design search and optimisation process can be integrated as a PSE to aid the
design engineer during tedious steps. Graphical components with drag-and-drop
capabilities can ease the involvement of a novice design engineer; on the other
hand, an expert user might require more flexibility which can only be provided
through direct access to a scripting language.

All these objectives impose a number of requirements upon our choice of envi-
ronment. The environment should provide an intuitive interface to the available
Grid resources. A Grid-enabled PSE abstracts the complexities of accessing Grid
resources by providing a complete suite of high level tools designed to tackle a
particular problem area [4]. There are various ongoing projects for Grid-enabled
PSEs, for example, Nimrod/G [5] is a tool that facilitates parameter studies
over computational Grids, and Triana [6] is a graphical programming environ-
ment which abstracts the complexities of composing distributed workflows.

Whilst it is possible to reduce the complexity of the technologies faced by

the user, it is important that the environment chosen has the flexibility to tackle
the subtleties of a wide range of workflows within the problem domain. A pre-

422 H. Ereset al.

vious prototype [7] that consisted of a wizard style web portal that guided the
user through design optimisation problems was useful. However, it proved to be
inflexible, because it failed to provide the user with the ability to re-use and
re-compose workflows for large-scale problems. The complexity and variation of
the workflows involved in typical design processes mean that a scriptable envi-
ronment where the user can tailor workflows to the task in hand is valuable.

The user interface used to expose the functionality provided by the Geodise
PSE is chosen to be the commercial Matlab environment [8]. The Matlab pack-
age provides an interpretive language for numerical computation, built-in math
and graphics functions and numerous specialised toolkites for advanced math-
ematics, signal processing and control design. The Matlab product is widely
used in academia and industry to prototype algorithms, and to visualise and
analyse data. Matlab 6.5 also features a number of ‘just-in-time’ acceleration
technologies to increase the performance of native Matlab code. Additionally,
Matlab enables the programmer to access Java classes, to create objects, and to
call methods of these objects within the Matlab environment by using Matlab’s
functions and commands.

The rationale behind adopting Matlab as the user interface for the Geodise
PSE is pragmatic. As a toolkit that may be integrated into an environment
routinely used by our industrial and academic partners the Geodise PSE becomes
a flexible tool, part of the engineer’s arsenal. The NetSolve system [9] which uses
a client-server architecture to expose platform dependent software libraries has
also successfully adopted Matlab as a user interface. It is an examplar of a hosting
environment which can be used to couple together a range of grid-services which
expose themselves via open-standard protocols.

The final Geodise toolkit will be composed of a hierarchy of components. Low
level compute and database functions will be available to the user, in addition
to a number of higher level design search and optimisation, pre/post-processing,
and CFD functions. All of these components will be available through a suite of
intelligent design advisers that will guide the user through the design process,
and facilitate the use of toolkit components. The remainder of this paper focuses
on the process of exposing Grid enabled resources to the Matlab environment,
allowing us to compose the required low level geometry and mesh generation,
analysis, visualisation, data access, and notification functionality in a scriptable
PSE. We first describe the architecture and the functionality of the existing
Geodise toolkit. We then demonstrate the use of these functions in an example
iteration of the design process.

2 Geodise Toolkit

The user of the Geodise toolkit acts as a client to remote compute resources that
are exposed as Grid services. Users should be authenticated, and then authorised
to access resources to which they have rights. They need to be able to submit
their own code to compute resources, or run software packages that are avail-
able as services. The user should be able to discover available resources, decide

Implementation of a Grid-Enabled Problem Solving Environment in Matlab 423

where to run a job and be able to monitor its status. It is essential that the user
be able to easily retrieve the results of a simulation. Additionally, the require-
ments of design search and optimisation mean that compute resources must be
available programmatically to algorithms that may initiate a large number of
computationally intensive jobs serially or in parallel.

The Globus toolkit [10] provides middleware that allow the composition of
computational grids through the agglomeration of resources which are exposed
as Grid services. This middleware provides much of the functionality required
by our toolkit including authentication and authorisation, job submission, data
transfer, and resource monitoring and discovery.

Client software to Globus Grid services exists natively on a number of plat-
forms [11] and also via a number of Commodity Grid (CoG) kits [12] that expose
Grid services to ‘commodity technologies’; including Java [13], Python, CORBA
[14] and Perl. By using client software to Grid services written for these com-
modity technologies the developer of a PSE is able to remain independent of
platform and operating system.

The independence allowed by adopting a commodity technology motivated
development of the Geodise toolkit over the Grid service client APIs of the Java
CoG kit v.0.9.13 [13]. Java is a mature technology that runs compiled byte-code
within a virtual machine. The Matlab environment itself runs within a Java
Virtual Machine (JVM), and provides an external interface which allows Java
classes to be instantiated and invoked easily within the Matlab workspace. The
support of Java version 1.3.1 by Matlab 6.5 provides the utility which makes the
Java language suitable for programming Grid middleware.

The Java CoG provides a number of low-level mappings, in the form of a
number of Java packages, which are APIs to the respective Globus Grid ser-
vice clients. To expose the functionality available from the Java CoG to the
Matlab user it was important to present functions which are consistent with
the behaviour and syntax of the Matlab environment. All functions are imple-
mented in the Matlab language, and they call Java classes which access the Java
CoG API. Additionally, these functions are written with the intention that they
may be incorporated programmatically into the higher level components of the
toolkit.

Table 1 lists the implemented functions in the Geodise toolkit. This set of
functions can be loosely categorized as: i) functions which allow the user to run
and control jobs on Globus compute resources, ii) functions which are used to
archive, query, and retrieve data, and iii) functions which are used to notify the
user.

The toolkit command gd_createproxy allows a user to create a temporally
limited Globus proxy certificate within the Matlab environment, essentially cre-
ating a point of single sign-on to the Grid resources that the user is entitled to
use. gd_certinfo, gd_proxyinfo, gd_proxyquery, and gd_destroyproxy are
associated utility commands which are used to query or invalidate the user’s
proxy certificate. The gd_jobsubmit command allows users to submit compute
jobs to a GRAM job manager described by a Resource Specification Language

424 H.Eresetal.
Table 1. Implemented commands in the Geodise toolkit

Function Name Description

gd_archive Stores a file in a repository with associated metadata
gd_certinfo Returns information about the user’s certificate
gd_createproxy Creates a Globus proxy certificate from the user’s credentials
gd_destroyproxy Destroys the local copy of the user’s Globus proxy certificate

gd_getfile Retrieves a file from a remote host using GridF TP
gd_jobkill Terminates the GRAM job specified by a job handle
gd_jobpoll Queries the status of a Globus GRAM job until complete

gd_jobstatus Returns the status of the GRAM job specified by a job handle
gd_jobsubmit Submits a GRAM job to a Globus server
gd_listjobs Returns job handles for all GRAM jobs

gd_proxyinfo Returns information about the user’s proxy certificate
gd_proxyquery Queries whether a valid proxy certificate exists

gd_putfile Transfers a file to a remote host using GridF'TP

gd_query Retrieves metadata about a file based on certain restrictions
gd_retrieve Retrieves a file from the repository to the local machine
gd_sendtext Sends a text message to the specified mobile phone number

(RSL) [15] string. The gd_jobsubmit command returns a unique job handle
which identifies the job. The job handle may be used to query, poll, or ter-
minate the status of the user’s job by using gd_jobstatus, gd_jobpoll, and
gd_jobkill, respectively. In addition the gd_listjobs command may be used
to query a Monitoring and Discovery Service (MDS) to return all the job handles
associated with the user’s certificate. Two file transfer commands, gd_putfile
and gd_getfile, are provided to allow users to transfer files to and from Grid-
enabled compute resources. These commands support the high performance file
transfer protocol GridFTP [16]. A third-party type of file transfer command will
be implemented in the future release of the Geodise toolkit.

Database related functions of the Geodise toolkit provide users with the
ability to store files in a repository with associated metadata, query the meta-
data and retrieve the files, providing they have the correct access rights. The
gd_archive function will store a given file in a repository for an authenticated
user. The function is able to generate a structure containing some standard meta-
data for the file, such as its local name, size, format, and creation time. The user
may add additional metadata, for example comments, custom information spe-
cific to that format, and a list of users or groups who may access the file in the
future. The function then transports the file to a server using GridFTP and also
sends the metadata to a database accessed via a web service. The gd_archive
command returns a unique handle which can be used to retrieve the file at a
later date. The metadata that is stored can be queried by an authorised user
with the gd_query command, in order to discover files that have certain charac-
teristics and obtain information about them, such as their handle for retrieval.
The gd_retrieve function will locate a file based on a given file handle and

Implementation of a Grid-Enabled Problem Solving Environment in Matlab 425

provides the user with the Matlab code which returns the file to a specified local
directory.

For the event notification we use the widely popular Short Message Ser-
vice (SMS) from mobile telecommunications technology. The Matlab command
gd_sendtext can send a text message to the specified mobile phone number via
a ‘pay-per-use’ service, independent of its geographical location, and inform the
user about the state of the processes. The client and the server of the text mes-
saging service run on Globus servers, hence, they both benefit from the security
measures provided by the Globus toolkit. We also use Matlab’s native function,
sendmail, to e-mail the user simulation results by using an SMTP server.

3 Geodise Application Exemplar

To demonstrate the possible use of our Grid-enabled Matlab PSE we choose a
basic problem of fluid dynamics, which is the two dimensional, external, laminar
flow over a NACA four digit airfoil. A sketch and a sample solution of the
problem are given in Fig. 1. At the velocity inlet the assumed free-stream velocity
profile is constant, and the angle of attack is measured in the counter-clockwise
direction to the horizontal. The upper and lower boundaries are periodic, and
there is a pressure outlet on the right hand side of the computational domain.
The airfoil profiles are generated by using standard NACA four digit expressions
[17]. This problem can be solved using various CFD tools. The Geodise toolkit
currently has two commercially available codes: Gambit and Fluent [18], for the
mesh generation and solution processes, respectively. Nevertheless it is possible
to integrate different codes as long as they can be run on the Globus server.

Periodic

v

Velocity inlet
Pressure outlet

Periodic

AN

(b)

(a)

Fig. 1. (a) NACA four digit airfoil problem with boundary conditions. Here, « is the
angle of attack. (b) Pressure contours visualized in Matlab

Since a valid Grid proxy is required to use the Grid-enabled resources, the
user initiates their Grid proxy certificate by using gd_createproxy command.

426 H. Ereset al.

This command invokes the Java CoG, which in turn pops a window where the
user can enter their password. After the user enters their password and presses
the “Create” button, a proxy certificate is generated for the user.

The next step involves the preparation of vertex data and journal files for
Gambit and Fluent, and their transfer to the Globus server. The vertex data
file for a NACA four digit airfoil is a text file containing the coordinates of
the airfoil, which are used by the mesh generation tool Gambit. The journal
files for Gambit and Fluent are tailored according to various input parame-
ters entered by the user. The Gambit journal file informs Gambit to use the
vertex file as the input file, to mesh the domain using a given mesh size pa-
rameter, and to export a Fluent compatible mesh file as output. Similarly,
the Fluent journal file instructs that program to use the mesh file as input,
to use inlet velocity and angle of attack parameters in the numerical solution,
and to export a data file after the solution converges. When the journal files
are ready, the user transfers them to the remote Globus server by using the
gd_putfile (<FQHN>,<Local file>,<Remote file>) Matlab command. Here,
<FQHN> is the fully qualified host name of the remote Globus server. A snapshot
of Fluent journal file preparation and transfer is shown in Fig. 2.

. BIEE:

File Edit ¥iew Web Window Help

O |D”'| * ||ﬁ| r)l (“xl El ll Current Directory: I fhomejeres/Sotan/a il J

#

Cenerating and transferring Fluent journal fil

mom o

Entar the inlet welocity [1]: 1
Enter angle of attack (in degrees) [0-10]: O

prepare_fluent_journal=> Preparing Fluent journal file
Fluent journal file is fluent_run.jou
=» gd_putfile("bTued?.diridis.soton.ac.uk",
*/home/feres fSoton/Ceodise/Ceodise-0p3p3/fluent_run.jou’,
‘fecratch/eres /fluent_run.jou')

dlStart | Faused: Fress any key

Fig. 2. Generating a Fluent journal file in Matlab environment, and transferring it to
the Globus server. Here, the user inputs are the inlet velocity and the angle of attack

A properly generated mesh file is required by the analysis tool, and here the
user must generate the mesh file by submitting the geometry to the Gambit
mesh generation tool. The user then waits until Gambit finishes meshing, and
the Globus server changes its status from “ACTIVE” to “DONE”. Additionally,
the user needs to make sure that the mesh generation process succeeds, and
the quality of the generated mesh is acceptable for analysis. Therefore, before

Implementation of a Grid-Enabled Problem Solving Environment in Matlab 427

running the analysis tool the state of the mesh generation and mesh quality are
checked by transferring the standard error file produced by Gambit to the local
file system and parsing the mesh quality information from that file. If the mesh
generation step is satisfactory, the user can now submit the analysis job to the
Globus server, get back a job handle, check the status of the job, and retrieve
convergence information and objective function values by using a very similar
process. Fig. 3 show the Matlab environment during these steps.

[Z——— EIETE 1 1L T EIETE)
File Edit View Webh Wwindow Help File Edit View Webh Wwindow Help
o= B o cuemovecor |]| Dla] ety 1]
Running Fluent on the Globus server Querying Fluent
=» gd_jobsubmit(fluent_rs1, 'blued2.diridis. =» gd_getfile('blueldZ.iridis.soton.ac.uk",
soton.ac.uk") ‘fscratch/eres/fluent_run.stdout”,
GRAM Job submission successful " /homeferes /Soton/Ceodise /Ceodise-0p3p3/
fluent_handle = fluent_run.stdout')
https://hlued.iridis.soton.ac.uk:60291/247 The solution is converged
89/1040203524/ Lift is: 0.020006053
=» gd_jobpoll1(fluant_handle, 200 Drag is: 0.015724117
ACTIVE Lift to drag ratio is: 1.2723165385
ACTIVE
ACTIVE
ACTIVE
DONE
£ £
4hStart | Paused: Press any key 4 Start | Paused: Press any key
(a) (b)

Fig. 3. (a) Running Fluent on the Globus server by using a proper RSL string and
previously generated journal file. The job status is polled every 20 seconds. (b) Trans-
ferring Fluent output file to the local file system, and parsing it to retrieve objective
function values

Throughout these processes intermediate and solution files are archived in
the Geodise repository, with the gd_archive command. By associating meta-
data with the files the design archive may be accessed interactively when required
using gd_query command which runs a Web browser from the Matlab environ-
ment and gives access to archived files (see Fig. 4). Furthermore, the user could
be notified about the progress of their simulation by text messages through a
SMS. At the end of the simulation an e-mail message containing simulation re-
sults is also sent to the user. Ultimately this process would form one loop in an
optimisation process.

4 Conclusions and Future Work

The Matlab environment along with the Java CoG [13] provides a flexible and
robust user interface for Grid computing. By exposing the compute, data and
notification features as toolkit components we are able to construct high level
functions which utilise Grid resources for CFD and design search tasks. Given

428 H. Ereset al.

File Edit View Tab Seftings Bookmarks Go Tools Help

gEeck , o, ©5wp G G @rone [ie0] e [rossporai ecs sotonac DB_GE/WebF orm_Disp aspc 1=

Query Results (If you want to retrieve files, please select them and click on the Retrieve button).

Prev Next

— |hakki 04/12/2002 04/12/2002 |latest avs = =
[eres [11:29'54 fluent_run.avs 6211135 113702 file fluent run_avs_a3ald:f1e935d8b7:-7ff3avs SUCCESS

hakki 04/12/2002 04/12/2002 |latest data

fluent_run.dat 2321329 fluent run_dat_a3ald:f1e935d8b7-7ffS5 dat SUCCESS

eres 11:29:26 11:36:45 file
m L R PERDP vt e e R L fluent run_cas a3aldf1e935d8b7-7f7(cas |SUCCESS
Prev Next

Retrieve File(s)
Note

« The syntax for retrieveing files from the Geodise archive is:
gd_retrieve(<filelD>, [<directory_path>|<file_path>])

« The directory path is where you will store the retrieved file(s). If you do not specify the location, the default directory is your current
MATLAB working directory, and the default file name is the one used when the file was archived in the Geodise archive, i.e. the string
stored in the localName column of the above table.

» To retrieve the selected files, please copy and paste the following lines into your MATLAB " .m’ file, and change the local_path
accordingly.

« The output of the gd_retrieve is the location of the retrieved file.

local_path - pwd; % The default current local directory
retrieved filel = gd_retrieve('fluent_run_avs_a3a1d:f1e935d8b7:-7{f3’, local path)

< |

Dane; 1L

Fig. 4. The Web interface of Geodise toolkit showing query results

commands in a high level interpretive language it is straightforward for the
engineer to exploit available Grid-enabled resources to tackle computationally
and data intensive tasks.

Future work on this project will focus on the creation of high level applica-
tion components. This work will include the exposure of heterogeneous legacy
codes, the integration of various optimisation algorithms, and amalgamation of
intelligent workflow composition and retrieval mechanisms to the Geodise PSE.
Refining the existing compute components will involve adding client side tools
to allow the user to discover compute resources. A future requirement for a fault
tolerant data management system is the provision of a local personal metadata
archive which replicates the data stored in the main repository. Data lifetime
management is another issue, i.e., a mechanism is needed to specify how long a
collection of data will be stored in Geodise repository, and to be able to extend
the lifetime, or perform clean up tasks. The ability to send text messages from
mobile devices to the Geodise PSE in order to control processes will also be
implemented. In the near future the Geodise toolkit may also exploit the feature
of sending binary images to third-generation mobile devices.

We expect that the architectures of the computational and database compo-
nents will converge with a move to an Open Grid Services Architecture (OGSA)
model. The implementation of OGSA defines a number of extensions to stan-
dard XML web services that provide the common functionality required by all
the Geodise toolkit components.

Implementation of a Grid-Enabled Problem Solving Environment in Matlab 429

Acknowledgements

This work is supported by UK EPSRC GR/R67705/01. The authors gratefully
acknowledge many helpful discussions with the Geodise team, and researchers
from the myGrid team (UK EPSRC GR/R67743/01). We thank Fluent, Mi-
crosoft, Level 9 Networks, Epistemics, and Intel for ongoing support.

References

1.

2.
3.

10.
11.
12.
13.

14.

15.

16.

17.

18.

Siddall, J.N.: Optimal Engineering Design: Principles and Applications. Marcel
Dekker, Inc., New York and Basel (1982)

The Geodise Project. (2002) http://www.geodise.org/

Walker, D.W., Li, M., Rana, O.F., Shields, M.S., Huang, Y.: The software archi-
tecture of a distributed problem-solving environment. Concurrency: Practice and
Experience 12(15) (2000) 1455-1480
http://www.cs.cf.ac.uk/User/David.W.Walker/papers/psearchOl.ps

von Laszewski, G., Foster, 1., Gawor, J., Lane, P., Rehn, N., Russell, M.: Designing
grid-based problem solving environments and portals (2001)
http://www-unix.mcs.anl.gov/~laszewsk/papers/cog-pse-final.ps
Abramson, D., Power, K., Kolter, L.: High performance parametric modelling
with Nimrod/G: A killer application for the global grid. In: Proceedings of the
International Parallel and Distributed Processing, Cancun, Mexico (2000) 520-528
http://www.csse.monash.edu.au/"davida/papers/ipdps.ps.Z

Triana. (2002) http://www.triana.co.uk/

Cox, S.J.: Grid enabled optimisation and design search for engineering
(GEODISE). NeSC Workshop on Applications and Testbeds on the Grid (2002)
Matlab 6.5. (2002) http://www.mathworks.com/

Casanova, H., Dongarra, J.: Netsolve: A network-enabled server for solving com-
putational science problems. The International Journal of Supercomputer Appli-
cations and High Performance Computing (2000)
http://citeseer.nj.nec.com/casanovaOOnetsolve.html

The Globus Project. (2002) http://www.globus.org/

Global Grid Forum. (2002) http://www.gridforum.org/

Commodity Grid Kits. (2002) http://www.globus.org/cog/

von Laszewski, G., Foster, 1., Gawor, J., Lane, P.: A Java commodity grid toolkit.
Concurrency: Practice and Experience 13 (2001)
http://www.globus.org/research/papers/vonLaszewski--cog-cpe-final.pdf
Verma, S., Parashar, M., Gawor, J., von Laszewski, G.: Design and implementation
of a CORBA commodity grid kit (2002)
http://www.caip.rutgers.edu/TASSL/Papers/corbacog-gcw01l.pdf

The Globus Resource Specification Language (RSL) v1.0. (2002)
http://wuw-fp.globus.org/gram/rsl_specl.html

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., Kesselman, C.,
Meder, S., Nefedova, V., Quesnel, D., Tuecke, S.: Secure, efficient data transport
and replica management for high-performance data-intensive computing. IEEE
Mass Storage Conference (2001)
http://wuw.globus.org/research/papers/msc01.pdf

Abbott, I., von Doenhoff, A.: Theory of Wing Sections. Dover Publications, New
York (1959)

Fluent. (2002) http://www.fluent.com/

	1 Introduction
	2 Geodise Toolkit
	3 Geodise Application Exemplar
	4 Conclusion and Future Work
	References

