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Abstract. Hidden Markov Models (HMM) have proven to be useful in a variety
of real world applications where considerations for uncertainty are crucial. Such
an advantage can be more leveraged if HMM can be scaled up to deal with
complex problems. In this paper, we introduce, analyze and demonstrate Self-
Similar Layered HMM (SSLHMM), for a certain group of complex problems
which show self-similar property, and exploit this property to reduce the com-
plexity of model construction. We show how the embedded knowledge of self-
similar structure can be used to reduce the complexity of learning and increase
the accuracy of the learned model. Moreover, we introduce three different types
of self-similarity in SSLHMM, and investigate their performance in the context
of synthetic data and real-world network databases. We show that SSLHMM
has several advantages comparing to conventional HMM techniques and it is
more efficient and accurate than one-step, flat method for model construction.

1 Introduction

There is a vast amount of natural structures and physical systems which contain self-
similar structures that are made through recurrent processes. To name a few: ocean
flows, changes in the yearly flood levels of rivers, voltages across nerve membranes,
musical melodies, human brains, economic markets, Internet web logs and network
data create enormously complex self-similar data [21]. While there have been much
effort on observing self-similar structures in scientific databases and natural struc-
tures, there are few works on using self-similar structure and fractal dimension for the
purpose of data mining and predictive modeling. Among these works, using fractal
dimension and self-similarity to reduce the dimensionally curse [21], learning associa-
tion rules [2] and applications in spatial joint selectivity in databases [9] are consider-
able. In this paper we introduce a novel technique which uses the self-similar struc-
ture for predictive modeling using a Self-Similar Layered Hidden Markov Model
(SSLHMM).

Despite the broad range of application areas shown for classic HMMs, they do
have limitations and do not easily handle problems with certain characteristics. For
instance, classic HMM has difficulties to model complex problems with large states
spaces. Among the recognized limitations, we only focus on complexity of HMM for
a certain category of problems with the following characteristics: 1) The uncertainty
and complexity embedded in these applications make it difficult and impractical to
construct the model in one step. 2) Systems are self-similar, contain self-similar struc
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tures and have been generated through recurrent processes. For instance, analysis of
traffic data from networks and services such as ISDN traffic, Ethernet LAN’s, Com-
mon Channel Signaling Network (CCNS) and Variable Bit Rate (VBR) video have all
convincingly demonstrated the presence of features such as self-similarity, long range
dependence, slowly decaying variances, heavy-tailed distributions and fractal dimen-
sions [24].

In a companion paper, Adibi and Shen introduced a domain independent novel
technique to mine sequential databases through Mining by Layered Phases (MLP) in
both discrete and continuous domains [1]. In this paper we introduce a special form
of MLP as Self-Similar Layered HMM (SSLHMM) for self-similar structures. We
show how SSLHMM uses the information embedded in a self-similar structure to
reduce the complexity of the problem and learn a more accurate model than a general
HMM. Our result is encouraging and show a significant improvement when a self-
similar data are modeled through SSLHMM in comparison with HMM.

The rest of this paper is organized as follows. In section 2 we review the related
work to this paper. In section 3, we introduce SSLHMM, its definition and properties.
We explain major components of the system and we drive the sequence likelihood for
a 2-layers SSLHMM. Section 4 shows the current result with an experimental finding
in Network data along with discussion and interpretation followed by the future work
and conclusions in section 5.

2 Related Work

HMMs proven tremendously useful as models of stochastic planning and decision
problems. However, the computational difficulty of applying classic dynamic and
limitation of conventional HMM to realistic problems has spurred much research into
techniques to deal with the large states and complex problems. These approaches in-
cludes function approximation, ratability consideration, aggregation techniques and
extension to HMM. In the following we refer to those works which are related to our
approach in general or in specific. We categorize these woks as extension to HMM,
aggregation techniques and segmentation.

Regular HMMs are capable of modeling only one process over time. To over-
come such limitation there are several works to extend HMMs. There are three major
extension which are close to our method. The first method introduced by Gharamani
and Jordan as Factorial Hidden Markov Model (FHMM)[12]. This models generalize
the HMM in which a state is factored into multiple state variables and therefore repre-
sented in a distributed manner. FHMM combines the output of the N HMMs in a sin-
gle output signal, such that the output probabilities depend on the N dimensional
meta-state. As the exact algorithm for this method is intractable they provide ap-
proximate inference using Gibbs sampling or variational methods. Williams and Hin-
ton also formulated the problem of learning in HMMs with distributed state represen-
tations[23], which is a particular class of probabilistic graphical model by Perl [16].
The second method known as Coupled Hidden Markov Model (CHMM) consists of
modeling the N process in N HMMs, whose state probabilities influence one another
and whose outputs are separate signals. Brand, Oliver and Pentland described poly-
nomial time training methods and demonstrate advantage of CHMM over HMM [5].



Self-Similar Layered Hidden Markov Models 3

The last extension to HMM related to our approach introduced by Voglar and
Metaxas as Parallel Hidden Markov Models (PHMM) which model the parallel proc-
ess independently and can be trained independently [22]. In addition, the notion of
hierarchical HMM has been introduced in [11] in which they extend the conventional
Baum-Welch method for hierarchical HMM. Their major application is on text recog-
nition in which the segmentation techniques benefits of the nature of handwriting. The
major difference of SSLHMM with most of the above mentioned approaches is that
they do not consider self-similarity for data. SSLHMM uses a recursive learning pro-
cedure to find the optimal solution and make it possible to use an exact solution rather
approximation. In addition, SSLHMM as a specific case of MLP use the notion of
phase in which learner consider laziness for the systems which is along with long
range dependence and slowly decaying variances. For a detail description of MLP
please refer to [1]. In addition, FHMM does not provide a hierarchical structure and
its model is not interpretable while SSLHMM is designed toward interpretability.
Also, HHMM does not provide the notion of self similarity.

In sequential planning, HMM-in general and Partial Observable Markov Decision
Process models (POMDP) specifically have proven to be useful in a variety of real
world applications [18]. The computational difficulty of applying dynamic program-
ming techniques to realistic problems has spurred much research into techniques to
deal with the large state and action spaces. These include function approximation [3]
and state aggregation techniques [4, 8]. One general method for tackling large MDPs
is decomposition of a large state model to smaller models [8, 17]. Dean and Lin [8],
Berteskas and Tsikits [3] also showed some Markov Decision Process are loosely
coupled and hence enable to get treated by divide-and-conquer algorithms. The evolu-
tion of the model over time also has been modeled as a semi-Markov Decision Proc-
ess (SMDP) [18]. Sutton1[20] proposed temporal abstraction, which concatenate se-
quences of state transition together to permit reasoning about temporarily extended
events, and form a behavioral hierarchy as in [17]. Most of the work in this direction
split a well-defined problem space to smaller spaces and they come up with sub-
spaces and intra actions. In contrast SSLHMM attempt to build a model out of a given
data through a top down fashion. The use of hierarchical HMMs mostly has been
employed to divide a huge state space to smaller space or to aggregate actions and
decisions. MLP in general and SSLHMM in specific are orthogonal to state decompo-
sition approaches.

Complexity reduction also has been investigated through segmentation specially
in Speech Recognition literature. Most of the work is based on probabilistic network,
Viterbi search for all possible segmentation and using of domain knowledge as hy-
pothesized segment start and end times [6, 7, 15]. Segmental HMMs also has been
investigated in [13]. Even though the approach fits in speech recognition applications,
but it decompose a waveform to local segments each present a “shape” with additive
noise. A limitation of these approaches in general is that they do not provide a coher-
ent language for expressing prior knowledge, or integrating shape cues at both the
local and global level. SSLHMM integrates the prior knowledge in the infrastructure
of model and as part of knowledge discovery process.

Based on our knowledge, the notion of Self-Similar Layered HMM has not been
introduced yet. In addition, the notion of locality and boundary in phases make this
work distinguish with similar approaches.
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3 Self-Similar Layered Hidden Markov Model (SSLHMM)

Conventional HMMs are enable to model only one process at the time which repre-
sent by transition among the states. Fig. 1(a) shows a HMM with 9 states. A HMM λ
for discrete symbol observation characterized by the following set of definitions: state
transition matrix: S, observation distribution matrix: B, a set of observations M, a set
of states: n and initial distribution π [19]. Having a set of observation O and a model
λ, the old well-known problem is to adjust model parameters to maximize )|( λOP .

In the modeling of complex processes, when the number of states goes high, the
maximization process gets more difficult. A solution provided in other literature is to
use of a Layered HMM instead [1, 12]. Layered HMM has the capability to model
more than one process. Hence, it provides an easier platform for modeling complex
processes. Layered HMM is a combination of two or more HMM processes in a hier-
archy. Fig. 1(b) shows a Layered HMM with 9 states and 3 super-states, or macro-
states (big circles with shade), which we refer to them as phases. As we can see, each
phase is a collection of states bounded to each other. The real model transition hap-
pens among the states. However, there is another transition process in upper layer
among phases. The comprehensive transition model is a function of transition among
states and transition among phases. Layered HMM similar to conventional HMM
characterized by the following set of definitions: a set of observation: M and a set of
states: n, a set of phases: N, state transition matrix: S, phase transition matrix: R,
observation distribution in each state: B and observation distribution in each phase
:C and initial condition for each layer: π..Learning and modeling follows the well-
known Baum-Welch algorithm with some modification in forward and backward al-
gorithm.
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(a) (b)

Fig. 1. (a) A normal Hidden Markov Model with 9 states, (b) Self-Similar Layered Hidden
Markov Model with 9 states and 3 phases. As it shows each phase contains similar structure
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A macro point of view suggests that the overall system behavior is more a tra-
jectory among phases. In particular, system may go from one phase to another and
stays in each phase for a certain amount of time. From a modeling point of view,
phase is a set of properties, which remain homogenous through a set of states of the
system and during a period of time. phase may be considered as a collection of lo-
cally connected sets, groups, levels, categories, objects, states or behaviors. The
notion of Phase comes with the idea of granularity, organization and hierarchy. An
observed sequence of a system might be considered as a collection of a behaviors
among phases (rather than a big collection of states in a flat structure), and it may
provide enough information for reasoning or be guidance for further details. Hence,
a sequence with such property could be modeled through a layered structure. For
example in network application domain a phase could define as “congestion” or
“stable”. A micro point of view shows that the overall system behavior is a transi-
tion among the states.

SSLHMM is a special form of Layered HMM in which there are some con-
straints on state layer transition, phase layer transition, and observation distribu-
tion. A closer look at Fig. 1(b) shows that this particular Layered HMM structure
indeed is a self-similar structure. As it shows, there is a copy of the super model
(model consists of phases and transition among them) inside of each phase. For
instance the probability A of going form phase III phase I is equal to the probabil-
ity a of transition from state 3 to state 1 in phase III (and in other phases as
well).

The advantage of such structure is that like any other self-similar model it is
possible to learn the whole model having any part of the model. Although there
are a couple of assumptions to hold such properties but fortunately for a large
group of systems in nature self-similarity is one of their characteristics. In the
following, we introduce a self-similar Markovian structure in which the model
shows similar structure across all or at least a range of structure scale.

3.1 Notation

In the following we describe our notation for the rest of this paper along with as-
sumptions and definitions. We follow and modify Rabiner [19] notation for dis-
crete HMM. A SSLHMM for discreet observation is characterized by the Table 1.

For the simplicity we use ),,( πλ BS= for the state layer and ),,( πCR=Λ for a

given phase layer structure. In addition we use ),,( ZΛ=Θ λ for the whole structure

of SSLHMM in which Z holds the hierarchical information including leaf structure
and layer structure. Even though the states are hidden but in real world application
there is a lot of information about physical problems, which points out some charac-
teristics of state or phase.
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Table 1. Self-Similar Layered Hidden Markov Model parameters and definition

Parameter Definition

N

The number of Phases in the model We label individual
phases as },,2,1{ NL and denote the phase at time t

as tQ .

n
The number of states. We label individual states as

},,2,1{ nL and denote the state at time t as tq .

M The number of distinct observations

{ }IJrR =
Phase layer transition probability, where

)|( 1 IQJQPr ttIJ === + and NJI ≤≤ ,1

}{ ijsS =
State layer transition probability: where

)|( 1 iqjqPs ttij === + and nji ≤≤ ,1

)}({ kcC t
J= The observation probability for phase layer in which

]|[)( JQvoPkc tkt
t
J ===

)}({ kbB t
j=

The observation probability for state layer in which

]|[)( jqvoPkb tkt
t
j ===

},,,{ 21 ToooO L= The observation series

][ IQiqP ttiI =∧==π The initial state distribution in which ni ≤≤1 and
NI ≤≤1

3.2 Parameter Estimation

All equations of Layered HMM can be derived similar to conventional HMM. How-
ever without losing generality we only derive the forward algorithm for a two layer
HMM as we apply such algorithm to calculate likelihood in next section. In addition,
we assume a one-to-one relation among states and phases for hidden self-similarity.
Similar to HMM, we consider the forward variable ),( iItα defined as

)|,,,(),( 21 Θ=∧== iqIQoooPiI tttt Lα (1)

which is the probability of the partial observation sequence, tooo L,, 21 at time t at

state i and phase I , given the model Θ . Following the Baum-Welch forward proce-
dure algorithm we can solve for ),( iItα inductively as follows:

Initialization:

)|(),( 111),(1 jqJQoPjJ jJ =∧==Θ πα (2)
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Induction:

)|(),(),( 111
1 1

),)(,(1 jqJQoPWiIjJ ttt

N

I

n

i
jJiItt =∧=∗

!
!
"

#

$
$
%

&
⋅= +++

= =

ΘΘ
+ ’’αα (3)

in which ),)(,( jJiIW is the transition matrix form state i and phase I to state j in phase

J. We will show how we calculate this transition matrix in a simple way.

Termination:

’’
= =

Θ=Θ
N

I

n

i
t iIOP

1 1

),()|( α (4)

3.3 Self-Similarity Definition and Conditions

In geometry, self-similarity comes with the term fractal. Fractals have two interesting
features. First they are self-similar on multiple scales. Second, fractals have a frac-
tional dimension, as opposed to an integer dimension that idealized objects or struc-
tures have. To address self-similarity in Layered HMMs, we define three major types
of Markovian Self-Similar structures: structural self-similarity, hidden self-similarity
and strong self-similarity.

Structural Self-Similarity: The structural self-similarity refers to similarity in struc-
ture in different layers. In our example if phase structure transition be equivalent to
the state structure transition, we consider model Θ as a self-similar HMM. In this

case, we will have ijIJ sr = if i=I, J=j and n=N*2. This type of self-similarity refers

to the structure of the layers. The scale of self-similarity can goes further depends on
the nature of the problem. It is important to mention that in general, in modeling via
HMM the number of states preferably keep low to reduce the complexity and to in-
crease accuracy. One of the main advantage of SSLHMM as it was described is that it
reduces the number of states dramatically.

Hidden Self-Similarity: The Hidden self-similarity refers to similarity in observation
distribution in different layers. We define Hidden self-similarity as the following.
There is a permutation of iI , , )(iI Ψ= in which ))),((|())(|( iioPioP tt Ψ=Ψ in

which

))(|()|())(|())),((|())),((|(
11

ijPjoPijPjioPiioP t

n

j
t

n

j
t Ψ⋅=Ψ⋅Ψ=Ψ ’’

==
(5)

in our example if we assume III =Ψ=Ψ )2(,)1( and III=Ψ )3( , the above mention

property for state 1 and phase I will be as the following:
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)|3())3,(|()|2())2,(|()|1())1,(|()),1(|( IPItoPIPItoPIPItoPItoP ++= (6)

We refer to this type of self-similarity as hidden because it is not intuitive and it is
very hard to recognize.

Strong Self-Similarity: A SSLHMM ),( Λ=Θ λ is strong self-similar if the model

satisfies requirements of structural self-similarity and hidden self-similarity.

3.4 Assumptions

In the following we describe our major assumptions, definitions and lemmas to re-
write the sequence likelihood.

Decomposability: we assume layers in a Layered HMM model are decomposable.
The probability of occupancy of a given state in a given layer is:

]|[*][][ 11111 JQjqPJQPjqJQP ttttt =====∧= +++++ (7)

Decomposability property assumes that system transition matrix is decomposable to
phase transition matrix and state transition matrix. Considering such assumption, the
overall transition probability for a given state to another state is a Tensor product of
phase transition and state transition. For a multi-layered HMM the over all transition
probability would be equal to Tensor products of HMM transition models. Without
loosing generality we only explain the detail of a 2-layer SSLHMM. The transition
probability among states and phases will be as following:

ijIJtttt sriqIQjqJQP ×==∧==∧= ++ ]|[ 11 (8)

We show the tensor product with W.

RSW ⊗= and ijIJjJiI srw ×=),)(,( (9)

Example: If we consider the transition probability for state layer and phase layer as
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Lemma 1: Tensor Product of HMMs: Considering a HMM Model as
),,( πλ BW= , it is possible to decompose λ to smaller models if 21 ,WW∃ of order

|| 1W and || 2W such that |||||| 21 WWW ×= and 21 WWW ⊗= .

Note: Not all HMMs are decomposable to a Tensor product of smaller models.

Lemma 2: Markov Property of HMMs Tensor Products: If S and R are Mark-
ovian transition matrix then SRW ⊗= is Tensor Markov.

1
1

=’
=

N

J
IJR for all RI ∈ and 1

1

=’
=

n

j
ijS for all Si ∈ (10)

’’ ’’ ’ ’
= = = = = =

===
N

J

n

j

N

J

n

j

N

J

n

j
ijIJijIJjJiI srsrW

1 1 1 1 1 1
),)(,( 1 (11)

Any Tensor Markov Model |||| 21 WW × is isomorphic by a Markov Model to order of

|||||| 21 WWW ×= .

3.5 Re-writing Sequence Likelihood

By using above mentioned assumptions we can re-write the sequence likelihood for a
strong self-similar (one-to-one) HMM as following. Hidden self-similarity implies:

)|()|( 11111 jqoPjqJQoP ttttt ===∧= +++++ if jJ = (12)

Decomposability assumption along with structural self-similarity make it possible to
calculate W. Hence equation (3) becomes as:

)|(),(),( 11
1 1

),)(,(1 jqoPWiIjJ tt

N

I

n

i
jJiItt =∗

!
!
"

#

$
$
%

&
⋅= ++

= =

ΘΘ
+ ’’αα if ji =

))(|()|(),(),(
11 1

),)(,(1 ijPjoPWiIjJ t

n

j

N

I

n

i
jJiItt Ψ⋅∗

!
!
"

#

$
$
%

&
⋅= ’’’

== =

ΘΘ
+ αα if ji ≠

(13)

3.6 The Learning Process

The learning procedure for SSLHMM is similar to traditional HMM via the expecta-
tion maximization (EM) [19] except the calculation of ),( Iitα and ),( Iitβ as above.

We can choose ),,( ZΛ=Θ λ such that its likelihood )|( ΘOP is locally maximized

using an iterative procedure such as Baum-Welch method. This procedure iterates
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between E step which fixes the current parameters and computes posterior probabili-
ties over the hidden states and M step which uses these probabilities to maximize the
expected log likelihood of the observation. We derived forward variable α in last
section, and deriving B , the backward parameter is similar to forward parameter.

4 Result

We have applied SSLHMM approach to synthetic data and a Network domain data-
base. Our implementation is in MATLAB programming language and has been tested
on Pentium III 450 MHz processor with 384 MB RAM.

4.1 Experiment 1: Synthetic Data

To compare SSLHMM with HMM, we employed a SSLHMM simulator with the
capability of simulation of discrete and continuous data. In our simulator, a user has
the capability to define the number of sequence in experimental pool, length of each
sequence, number of layers, number of states in each phase, number of phases and
observation set for discrete environment or a range for continuous observation. We
verified that the synthetic data is indeed self-similar with H=.6. In this paper we only
report the comparison of Baum-Welch forward algorithm for HMM with nHMM states
and a 2-layer strong SSLHMM with N phases and n states. The main purpose of this
experiment is built on the following chain of principles:
Assume there is a sequence of observation O generated by a self-similar structure.

• We would like to estimate HMM parameter for such data (n assume to be known
in advance)

• We would like to adjust model parameters ),,( πλ BS= to maximize )|( λOP .

• Model could be either a flat HMM or a SSLHMM
• We illustrate that for },,,{ 21 ToooO L= , )|( SSLHMMOP is higher than

)|( HMMOP , the probability of the observation given each model.

• We also observed that if O is not generated by a SSLHMM but by a HMM
)|( SSLHMMOP )|( HMMOP≈ . However due to space limitation we do not

show the result.
We ran a series of test for a problem consists of pre-selected number of states, up

to 15 perceptions and 100 sequence of observation for each run. We assume the
number of states and phases are known so Baum-Welch algorithm uses nHMM to build
the model and SSLHMM use N and n (number of phases and number of states). The
assumption of strong self-similarity implies that n = N2, as we have a copy of phase
structure inside of each phase to present state layer. We repeat the whole experience
with a random distribution for each phase but in a self-similar fashion and for a vari-
ety of different n and N. First we trained on the 50% of the data and find P(Model |
train) for both HMM and SSLHMM. In second step we calculate P(Model | test)
where “test” is the remaining 50% of the data. Fig. 2 shows -log(likelihood) of differ-
ent experiments. A smaller number of -log(likelihood) indicate a higher probability.
We ran HMM with prior number of states equal to 9, 16 and 64, and SSLHMM with
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number of phases equal to 3, 4 and 8 (shown as 3-s, 4-s and 8-s in the Fig. 4. As we
may see the best model of SSLHMM outperforms the best model of HMM. In addi-
tion, the average -log(likelihood) of modeling through SSLHMM in all experiences is
lower than modeling through HMM by 39%.

4.2 Experiment 2: Network Data

Understanding the nature of traffic in high-speed, high-bandwidth communications is
essential for engineering and performance evaluation. It is important to know the traf-
fic behavior of some of the expected major contributors to future high-speed network
traffic. There have been a handful research and development in this area to analyze
LAN traffic data. Analyses of traffic data from networks and services such as ISDN
traffic and Ethernet LAN’s have all convincingly demonstrated the presence of fea-
tures such as self-similarity, long term dependence, slowly decaying variance and
fractal dimensions.[10, 14].

In this experiment we applied the same principle similar to synthetic data ex-
periment. A sample of network data is logged by the Spectrum NMP. There are 16
ports pn on the routers that connect to 16 links, which in turn connect to 16 Ethernet
subnets (Sn). Note that traffic has to flow through the router ports in order to reach the
16 subnets. Thus, we can observe the traffic that flows through the ports. There are
three independent variables:

• Load: a measure of the percentage of bandwidth utilization of a port during a 10
minute period.

• Packet Rate: a measure of the rate at which packets are moving through a port
per minute.

• Collision Rate: a measure of the number of packets during a 10 minute period that
have been sent through a port over the link but have collided with other packets.

Sim ulation
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200

250
300

350

400

9 16 64 3-S 4-S 8-S
HMM SSLHMM

Fig. 2. Negative log likelihood for synthetic data. “x-s” indicates a 2 layers SSLHMM with
x as number of state in each layer

Train Test
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Data has collected for 18 weeks, from ‘94 to ‘95. There are 16,849 entries, repre-
senting measurements roughly every 10 minutes for 18 weeks. Fig. 3 illustrates an
example of collected data for port #8.

We applied the HMM and SSLHMM to a given port of database with the purpose
of modeling the Network data. We did test our technique through cross validation
and in each round we trained the data with a random half of the data and test over the
rest. We repeat the procedure for Load, Packet Rate and Collision Rate on all 16
ports. Fig. 4 illustrates the comparison of HMM and SSLHMM for Load, Packet Rate
and Collision Rate. Respectively, we ran HMM with prior number of states equal to 2,
3, 4, 9 and 16, and SSLHMM with number of phases equal to 2, 3 and 4 (shown as 2-
s, 3-s and 4-s in the Fig. 4). As it shows in Fig. 4 the SSLHMM model with N=4 out-
performs other competitors in all series of experiments. Our experiment showed -
log(likelihood) increases dramatically for models with number of sates grater than 16
as it over fits the data. The best SSLHMM performance beats the best HMM by 23%,
41% and 38% for Collision Rate, Load and Packets Rate respectively.

Our experiments show SSLHMM approach behave properly and does not per-
form worse than HMM even when the data is not self similar or when we do not have
enough information. The SSLHMM provides a more satisfactory model of the net-
work data from three point of views. First, the time complexity is such that it is possi-
ble to consider model with a large number of states in a hierarchy. Second, these lar-
ger number of states do not require excessively large numbers of parameters relative
to the number of states. Learning a certain part of the whole structure is enough to
extend to the rest of the structure. Finally SSLHMM resulted in significantly better
predictors; the test set likelihood for the best SSLHMM was 100 percent better than
the best HMM

C ollision R at e: Port # 8
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Fig. 3. The number of collisions of port #8. Data show self-similarity over different scales
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While the SSLHMM is clearly better predictor than HMM, it is easily interpret-
able than an HMM as well. The notion of phase may be considered as a collection of
locally connected sets, groups, levels, categories, objects, states or behaviors as a col-
lection of certain behavior and it comes with the idea of granularity, organization and
hierarchy. As it mentioned before in Network application domain a phase could de-
fine as “congestion” or “stable”. This characteristics is the main advantage of
SSLHMM over other approaches such as FHMM [12]. SSLHMM is designed toward
better interpretation as one the main goal of data mining approaches in general.

5 Conclusion and Future Work

Despite the relatively broad range of application areas, a general HMM, could not
easily scale up to handle larger number of states. The error of predictive modeling
will increased dramatically when the number of sates goes up. In this paper we pro-
posed SSLHMM and illustrate it is a better estimation than flat HMM when data
shows self-similar property. Moreover, we introduced three different types of self-
similarity along with some result on synthetic data and experiments on Network data.
Since SSLHMM has hierarchical structures and abstract states into phases, it over-
comes, to a certain extent, the difficulty of dealing with larger number of states at the
same layer, thus making the learning process move efficient and effective.

As future work we would like to extend this research to leverage the MLP power
for precise prediction in both long term and short term. In addition we would like to
extend this work when the model shows self-similar structure only at a limited range
of structure scale. Currently we are in process of incorporation of self-similar property
for Partially Observable Markov Decision Process (POMDP) along with generaliza-
tion of SSLHMM.
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