
Topic 10

Parallel Programming: Models, Methods and
Programming Languages

Scott B. Baden, Paul H. J. Kelly, Sergei Gorlatch, and Calvin Lin

Topic Chairpersons

The Field

This topic provides a forum for the presentation of the latest research results and
practical experience in parallel programming. Advances in programming models,
design methodologies, languages, interfaces, run-time libraries, implementation
techniques, and performance models are needed for construction of correct, par-
allel software with portable performance on different parallel and distributed
architectures.

The topic emphasises results which improve the process of developing high-
performance programs. Of particular interest are novel techniques for assembling
applications from reusable parallel components without compromising efficiency
on heterogeneous hardware, and applications that employ such techniques. Re-
lated is the need for parallel software to adapt, both to available resources and
to the problem being solved.

The Common Agenda

The discipline of parallel and distributed programming is characterised by its
breadth – there is a strong tradition of work which combines

– Programming languages, their compilers and run-time systems
– Performance models and their integration into the design of efficient parallel

algorithms and programs
– Architectural issues – both influencing parallel programming, and influenced

by ideas from the area – including cost/performance modeling
– Software engineering for parallel and distributed systems

This research area has benefited particularly strongly from experience with ap-
plications. There is a very fruitful tension between, on the one hand, a reductive
approach: develop tools to deal with program structures and behaviours as they
arise, and on the other, a constructive approach: design software and hardware
in such a way that the optimisation problems which arise are structured, and
presumably, therefore, more tractable. To find the right balance, we need to de-
velop theories, languages, cost models, and compilers - and we need to learn from
practical experience building high-performance software on real computers.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 491–493, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

492 Scott B. Baden et al.

It is interesting to reflect on the papers presented here, and observe that
despite their diversity, this agenda really does underly them all.

The Selection Process

We would like to extend our thanks to the authors of the 19 submitted papers,
and to the 50 external referees who kindly and diligently participated in the
selection process.

Six papers are presented in full-length form. One of the strengths of Euro-
Par is the tradition of accepting new and less mature work in the form of short
papers. We were very pleased to select two submissions in this category. Brevity
is a virtue, and the short papers propose interesting new approaches which we
hope to see developed further in time for next year’s conference.

The Papers

The 8 accepted papers have been assigned to three sessions based on their subject
area.

Session 1: Thread-based models and concurrency

– “Accordion Clocks: Logical Clocks for Data Race Detection”
Christiaens and De Bosschere introduce Accordion Clocks, a technique for
managing the space occupied by vector clocks needed for race detection in
multithreaded applications. Their results dramatically improve the practical
usability of race detection in multithreaded Java applications.

– “Partial Evaluation of Concurrent Programs”
Martel and Gengler present a prototype implementation of their theoretical
work specializing a concurrent program to a particular context by partial
evaluation. They show how messages can be automatically eliminated by
propagating compile-time constants across process boundaries.

– “A Transparent Operating System Infrastructure for Embedding Adaptabil-
ity to Thread-Based Programming Models”
Venetis, Nikolopoulos, and Papatheodorou describe transparent, non-intru-
sive services, e.g. OS-level, to permit multiple threaded jobs to run efficiently
together on a single machine. Individual parallel jobs are adaptable – they
are able to exploit an additional idle CPU and to maintain efficiency when
a CPU reallocated to another job.

Session 2: Parallel functional programming

– “Nepal – Nested Data Parallelism in Haskell”
Chakravarty, Keller, Lechtchinsky, and Pfannenstiel present an extension to
the Haskell language for nested parallel arrays, and demonstrate its useful-
ness with two case studies.

Parallel Programming: Models, Methods and Languages 493

– “Introduction of Static Load Balancing in Incremental Parallel Program-
ming”
Goodman and O’Donnell describe an incremental development methodology
with formal reasoning techniques that supports the introduction of static
load-balancing in a functional model of a SPMD system. The potential ben-
efits of the approach are a safe development framework and possible perfor-
mance improvements.

Session 3: Cost models and their application in parallel programming

– “A Component Framework for HPC Applications”
Furmento, Mayer, McGough, Newhouse, and Darlington present a compo-
nent framework intended to provide optimal performance for the assem-
bled component application. The framework offers an XML itemize schema,
a run-time representation in Java, and a strategy for selecting component
implementations.

– “Towards Formally Refining BSP Barriers into Explicit Two-Sided Commu-
nications”
Stewart, Clint, Gabarró, and Serna describe a formal transformation scheme
which translates BSP-style programs for execution on loosely coupled dis-
tributed systems employing asynchronous point-to-point communication.

– “Solving Bi-knapsack ProblemUsing Tiling Approach for Dynamic Program-
ming”
Sidi Boulenouar studies how to find the optimum tile size in solving the bi-
knapsack problem, which interestingly has problem-dependent dependence
distance vectors.

The common ground shared by the 8 papers presented here lies in understanding
the goals and problems in parallel programming models and languages. What is
also very striking is the diversity of approaches being taken!

	Topic 10 Parallel Programming: Models, Methods and Programming Languages

