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Abstract. Current processor allocation techniques for highly parallel
systems are based on centralized front-end based algorithms. As a result,
the applied strategies are restricted to static allocation, low parallelism
and weak fault tolerance. To lift these restrictions we are investigating a
distributed approach to the processor allocation problem in large mesh-
connected multicomputers. A noncontiguous version of a distributed dy-
namic processor allocation strategy is proposed and studied in this paper
as an alternative for parallel programming models that allow dynamic
creation and deletion of tasks. Simulations compare the performance of
the proposed dynamic strategy with the static counterpart and also with
well-known centralized algorithms in such an environment with growing
and shrinking processor demands. We also present the results of exper-
iments on a Siemens hpcLine Primergy Server with 96 nodes that show
dynamic allocation is feasible with current technologies.

1 Introduction

Parallel machines with distributed memory, such as massively parallel processing
systems (MPP) or cluster computers are called multicomputers. Their processing
nodes consist of a processor and private memory and are connected by some kind
of network to exchange messages. Despite some specific applications where a pro-
gram is running permanently on a dedicated machine, it is almost inevitable in
large systems with hundreds or thousands of nodes, to allow multiprogramming,
i.e. many parallel programs share the machine in space in order to achieve high
machine utilization. We assume that upon arrival, each program requests a spe-
cific number of processing nodes. Such a request is usually satisfied by allocating
a sufficiently large partition of the processors to the program. Processor alloca-
tion involves the selection of a partition for a given parallel job, with the goal
of maximizing throughput over a stream of many jobs. A resource management
scheme for processor allocation has to meet several partly contradicting goals:
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High utilization It should maximize the utilization of the resources, i.e. it has
to avoid any kind of fragmentation so that all processors can be used.

Appropriate shapes It should support low execution times of the parallel pro-
grams. The execution time will be affected by the allocation scheme with re-
gard of the communication bandwidth and latencies within the partition (in
a 2D-mesh, a partition that forms a square would better serve an arbitrary
program than a partition shaped as a narrow and long stripe).

Low overhead Since all requests are processed at run-time, the resource allo-
cation algorithms have to be fast and should cause only low overhead.

Scalability The algorithms should be able to support systems of thousands of
nodes without becoming a bottleneck.

In the following, we constrict our work to multicomputers connected by a
two-dimensional mesh since most of the currently existing MPPs and also cluster
computers connected with SCI boards [3] are based on 2D- or 3D-meshes (the
extension of our 2D-algorithm to the 3D-case is rather straightforward).

2 Processor Allocation Policies

Because allocation operations need to be fast, usual allocation techniques restrict
the feasible shapes of partitions to achieve some regularity, which facilitates
their management. A partitioning scheme can be called structure preserving if it
generates partitions that are of the same topological graph family as the entire
processor graph. In our case of 2D-meshes it means that always rectangular
submeshes are allocated. In addition, most systems also require that the allocated
processors are constrained to be physically adjacent (contiguous allocation). So
each request will be served by exactly one rectangular partition of sufficient size.
When using rectangles, however, a 100% utilization of the processor resource
is impossible due to two types of fragmentation: internal fragmentation, when
processors are allocated, but not used, and external fragmentation, when there
are free processor partitions that cannot be allocated since they are too small.

Another important point is the dynamic behavior of parallel programs. Pre-
viously presented schemes have assumed that the processor demand of a program
is constant through its execution time. This is an idealized or simplified assump-
tion. Many parallel programming models and their corresponding language con-
structs allow dynamic creation and deletion of tasks, resulting in growing and
shrinking demands. A partitioning scheme where partitions can ”breathe” will
result in better utilization. Dynamic partitions will minimize the internal frag-
mentation, since the size of the partition closely follows the number of processors
actually needed. This is difficult to achieve when we stick to rectangular parti-
tions because we only could add or remove some boundary rows or columns which
again would result in some internal fragmentation. To completely avoid internal
fragmentation, free-form partitions have to be used which can be of arbitrary
shape. However, even with free-form partitions, there will be still a considerable
amount of external fragmentation, since there will be ”holes” between the par-
titions. Holes in general are not completely bad, since they represent free space
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that allows the partitions to breathe. If a partition wants to grow and there is no
adjacent free space available, the request for more processors has to be denied. A
solution to this problem could be to resort to noncontiguous allocation, i.e. the
request of an application will be served by more than one contiguous partition.

Several approaches to deal with the processor allocation problem can be
found in the literature [9,4,5,1,2]. In spite of the fact that they apply differ-
ent policies in the resource management, all the schemes have one in common:
the control of allocated resources is done with a global data structure localized
mostly in a host machine. This is easy to implement and may be the natural
approach. There are, however some problems associated with such a centralized
management which may become important for large systems: (i) lack of scal-
ability, (ii) the incompatibility with adaptive processor allocation schemes [6]
(dynamic allocation), and (iii) it’s weak fault tolerance. The scalability prob-
lem is caused by the utilization of centralized structures in the management. By
increasing the number of processors to be managed, the global data structure
grows, increasing its processing time and reducing the performance to a level
that may not be acceptable for a procedure done at execution time. In a cen-
tralized model, a dynamic behavior as described above would result in frequent
updates to the global data leading to an overhead in communication between
host and parallel machine. The host eventually becomes a bottleneck of both I/O
and computation of the parallel machine. Regarding the fault tolerance problem,
since all allocation operations have to go through the host, a host failure may
stop all processing in the system.

Most of the previous policies cause also a high machine fragmentation. This is
a direct consequence of the simplifications made by the allocation schemes con-
cerning the shape of the partitions (rectangles) and the restriction to contiguity.
These simplifications reduce the processing time of an allocation operation but
increase both types of fragmentation, compromising the overall machine utiliza-
tion. To summarize, there are several alternatives when considering a processor
allocation scheme: static vs. dynamic, rectangular vs. free-form, contiguous vs.
noncontiguous and centralized vs. distributed.

In [8] we have already presented a distributed model for processor allocation
with some initial results for a structure preserving and a free-form distributed
allocation scheme. We also analyzed the impact of noncontiguous allocation in
a distributed scheme. In this paper, we analyze the feasibility of the dynamic
allocation model in large PC clusters. We propose and study an enhanced non-
contiguous version of one of our algorithms, called Leak as an alternative for
parallel programming models that allow dynamic creation and deletion of tasks.
We consider the use of a distributed implementation as rather natural for this
type of environment, however, centralized implementations are also possible.

3 Distributed Processor Allocation

Figure 1 shows a global view of the distributed allocation model [8] and the
distributed Processor Managers involved in the allocation operation. The main
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differences to the centralized management are (i) the absence of a central data
structure with information about the state of all processors, and (ii) the exe-
cution of allocation operations directly in the processor mesh in a distributed
way, and not in a data structure localized in the host. The host machine is now
only responsible for queuing the incoming requests and forwarding them to the
processor mesh. Each node in the mesh has a local Processor Manager (Pm) re-
sponsible for the processor allocation. The Pm’s cooperate to solve the allocation
problem in a distributed way.

Additional allocations
Releases

Allocation jobs

Initial allocations

Processor meshHost machine

PM

PM

PM

PM

PM PM

PM

PM

PM PM

PM

PM

PM PM
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Fig. 1. Distributed allocation

Processor Allocation Operations To match the distributed characteristics
of this new allocation model the basic allocation operations are adapted and
new dynamic allocation operations are implemented in the distributed processor
manager. This results in allocation operations being divided in two groups: static
(initial allocation and final release) and dynamic (partial allocation and partial
realease). The initial allocation is the most costly operation in the distributed
environment. It originates in the host computer and initiates a search wave in the
mesh for the desired partition. Since all the mesh nodes are possible candidates,
and we are considering large machines with many nodes, the search scope is
very large. The first-fit strategy is used in the search and different initial nodes
are used each time as mesh entry-points to increase the probability of finding
free nodes in early stages of the search wave. In contrast to centralized list-based
algorithms (released processors may have to be concatenated to an free partition
or will concatenate multiple free partitions in one), the release operation is trivial
in a distributed management. Starting in one of the partition nodes, a wave is
used to change the state of the involved processes to free.

The dynamic operations allow a running parallel application to allocate ad-
ditional processors and to adapt the partition in use dynamically to a new pro-
cessor demand (breath). To start this operation, the application sends a local
allocation request to the Pm of one of its nodes. A search wave for free processors
will be originated in this node and will search for possible candidates around this
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partition in the case of a partial allocation or, in the case of a partial release, for
specific nodes to be liberated. Both operations generates much fewer messages
than the static operations due to the smaller search scope.

Distributed Allocation Algorithm The implemented Pm from section 3 uses
an enhanced version of the Leak algorithm [8]. This algorithm is based on the
principle of leaking water. From an origin point, an amount of water leaks and
flows to the directions where no resistance is encountered. The algorithm has two
phases. In the first phase a suitable origin point is searched with a sequential
search wave (in the used mesh topology the nodes are searched from left to
right in each row until all rows are traversed). In the second phase all the direct
neighbors of the origin point are tested in parallel if they are free. Each free
neighbor becomes part of the load and the second phase continues recursively
and in parallel until no more load is available. All nodes found free are tried as
origin point until a free partition of suitable size is found or no more nodes are
available to try and the allocation is denied. Figure 2 exemplifies the execution
of a 4-processor request. After a feasible origin point is found with a search wave
(Figure 2a), the possible flowing directions are determined and the remaining
load is distributed (Figure 2b-c). This procedure is repeated recursively until all
processors are allocated.
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Fig. 2. Contiguous Leak algorithm

The essential feature of the algorithm is its free-form allocation strategy,
i.e. partitions are no longer restricted to rectangles, but may have an arbitrary
shape. This gives the processor management more flexibility to find a partition
of suitable size, and results in less fragmentation. Due to the recursive nature of
the algorithm and its distributed execution in the machine, it is also important
to notice that different flowing directions allocate processors in parallel, resulting
in a reduced allocation time. The parallel potential of an allocation operation
increases with the size of the requested partition.

Current communication technologies like wormhole routing [7] enable us to
consider noncontiguous allocation schemes, since the number of hops between
nodes is not the dominant factor determining message latency [5]. The idea is to
try to serve a request with contiguous allocation, and to look for noncontiguous
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additions only on demand. Under our noncontiguous scheme, a partial alloca-
tion is sustained, and the search wave continues only looking for the additional
processors.

4 Performance Analysis

In order to investigate the potential and the feasibility of the proposed dy-
namic allocation in large PC clusters we conducted (i) fragmentation experi-
ments and (ii) allocation overhead experiments. For (i) we used the Siemens
hpcLine Primergy High Scalable Compute Sever at the Paderborn Center for
Parallel Computing (PC2). The Primergy Server is a distributed memory multi-
computer with 96 compute nodes (two Intel Pentium II with 450 MHz and 512
megabyte DRAM) connected by a 500 megabyte per second unidirectional two
dimensional SCI mesh [3], with wormhole XY routing. Programs were written in
a special MPI version for the SCI hardware (ScaMPI) that run over the Solaris
operating system. Our discrete event simulator is a multicomputer simulator sup-
porting experimentation with distributed allocation strategies on architectures
with mesh- connected network topologies. The simulator evaluates the effects
of system fragmentation and the generated allocation messages. It was used in
(ii) to study the effects of fragmentation for the proposed strategies in bigger
machines (up to 1024 nodes).

Fragmentation Experiments This set of experiments, studying the effects of
fragmentation on system utilization and job response time, are modeled after the
simulation experiments conducted in previous allocation strategy research [5,9].
In these experiments, jobs arrive, are scheduled with a first-come, first-serve pol-
icy (FCFS), delay for an amount of time taken from an exponential distribution,
and then depart. Allocation messages are also modeled, to evaluate the message
overhead in the distributed allocation.

The strategies simulated in these experiments are a dynamic and a static ver-
sion of the distributed noncontiguous free-form Leak algorithm, a static contigu-
ous version of Leak and the contiguous structure preserving Frame Sliding [5].
Frame sliding examines the first candidate ”frame” from the lowest leftmost
available processor and slides the candidate frame horizontally or vertically by
the stride of width or height of the requested submesh, respectively, until an
available frame is found, or all candidate frames are checked. The independent
variable in these experiments was the system load, defined as the ratio of the
mean service time to mean interarrival time of jobs. Higher system loads reflect
the greater demands when jobs arrive faster than they can be processed. Jobs
only delay for an exponentially distributed service time with mean of 10.0 time
units. For example, under a system load of 1.0, jobs arrive as fast as they are
serviced, on the average, and under a system load of 2.0, jobs arrive twice as fast
as they can be serviced. Job request size is randomly generated from one of two
different distributions, uniform and exponential. In the uniform distribution the
size of each job is uniformly distributed over the range U[a, b], with a = 1 and b
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having four times the side length of the entire mesh. In the exponential distribu-
tion, job size is exponentially distributed with a mean of twice the side length of
the entire mesh. In this case, there are many small jobs and fewer large ones. To
simulate the dynamic behavior of parallel programs four processor profiles are
randomly generated for each job: constant, increasing, decreasing and triangular.
In the constant profile the processor demand do not vary during execution. By
the increasing and decreasing profiles the processor demand varies from 1 to job
size and from job size to 1 respectively during execution. The triangular profile
simulates divide-and-conquer algorithms, with the processor demand increasing
from 1 to job size in the first half of the execution time and then decreasing to
1 again in the second half. For each job size distribution in these experiments,
we measure: Finish Time (Ft): the time required for completion of all the jobs,
Job Response Time (Jrt): the time from when a job arrives in the waiting queue
until the time it completes, System Utilization (Su): the percentage of processors
that are utilized over time and Messages per allocation (Mpa): the total number
of generated messages by the processor management to allocate the incoming
requests divided by the number of generated requests.

All simulations model a 32 × 32 mesh and run until 1,000 jobs have been
completed. Results reported for the fragmentation experiments represent the
statistical mean after 10 simulation runs with identical parameters, and given
95 percent confidence level, mean results have less than five percent error. Table 1
shows how well the three algorithms handle a system saturated by job requests
with job sizes taken from each distribution. Simulation results for a heavy system
load of 10.0 are presented. At this load, the system waiting queue is filled very
early in the simulation (full load), allowing each allocation strategy to reach its
upper limits of performance.

Table 1. Fragmentation experiments for a heavy system load (10.0)

Algorithms Distribution Ft Jrt Su Mpa

Uniform 185 57.73 96.85% 750.3
Dynamic Leak

Exponential 157 32.75 97% 507

Uniform 266 99.07 60.49% 5949
Static Leak

Exponential 180 43.82 63.72% 2184

Uniform 357 152.85 47.82% 1083
Frame Sliding

Exponential 243 72.53 50.45% 849

As expected, we can see that the dynamic strategy achieved the highest
system utilization since it is the only strategy that can cope with the dynamic
processor requests. Static strategies have to allocate fixed partitions with the
highest number of needed processors increasing the internal fragmentation. It is
important to notice that this not always results in the highest throughput and
lowest job response time. Especially with high load, the optimistic approach of
the dynamic allocation (no reservation are made for possible future increases
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in the number of processors) may result in partitions that are allocated but
do not have space to grow. The processing time of these partitions have to be
extended, increasing the response time and reducing throughput. The dynamic
strategy also profits from allocating free-form noncontiguous partitions. Bigger
partitions are difficult to find in contiguous schemes resulting in long search
waves and a lot of tries, each of them increasing the number of messages and
time. In a noncontiguous scheme, allocations are cumulative resulting in shorter
search waves and no waste of messages and time. The difficulties of structure-
preserving contiguous allocation can be verified with the frame sliding strategy
and the resulting poor system utilization.

Figure 3 (left) show the average job response times for the uniform job size
distributions at varying system loads. For the uniform distribution, the system
cannot maintain stability with the contiguous FS strategy past a system load
of about 1.5. At this point, the job response times for this algorithm begin to
increase very sharply. However, for the noncontiguous strategies, represented by
Leak, with the uniform distribution, the system remains stable until a system
load of about 2.5, where job response times begin to increase significantly, though
not as dramatically as with the other strategies. Notice that the curves in these
graphs begin to reach a plateau at high average response times. This is due to the
fact that the simulated job stream is finite in length, and all response times are
bounded by the overall finish time of the simulation. For an infinite job stream,
the response time curves would continue to increase exponentially, resulting in
near-infinite response times at high system loads. Figure 3 (right) graph the
system utilization for these same algorithms and job size distribution at varying
system loads. Notice that peak utilization is reached just after the same load
where the system was seen to become unstable in its response time graph. All
three strategies attained their peak utilization at system loads of about 3.0. The
dynamic noncontiguous Leak reached up to 97 percent utilization, whereas the
contiguous Leak reached only 65 percent because of the fixed partitions. The
structure preserving contiguous leak was only able to reach 51 percent because
of the high internal and external fragmentation.

The results measured in these experiments are all consistent with those re-
ported by Zhu in [9] for the contiguous Frame Sliding strategy and by Lo [5]
for the noncontiguous strategies. These fragmentation experiments indicate that
dynamic noncontiguous allocation is superior to static noncontiguous allocation
and far superior to contiguous allocation in terms of its ability to utilize the
processors. Because noncontiguous allocation can always allocate a job if there
are enough processors available, eliminating external fragmentation, it is shown
to achieve higher system utilization. Thus, noncontiguous allocation allows for
greater job throughput. However, these results ignore the increased communica-
tion contention that may be introduced as a result of noncontiguous allocation.
This is not significant in machines with little contention like our Primergy Server
or with switched machines like Myrinet clusters with no contention at all, but
should be evaluated in machines where message contention could become a prob-
lem.
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Fig. 3. Average job response time vs. system load and system utilization vs.
system load for the uniform distribution of job sizes

Allocation Overhead As a first step in evaluating the feasibility of the dy-
namic allocation with current technologies we implemented the processor man-
agers in the Primergy server and simulated incoming requests (the same load
generation module of the simulator was used). Only 64 nodes were used for this
experiments connected as an 8x8 torus. The incoming parallel jobs were not
actually loaded in the machine and the allocated partitions are only reserved
during the job duration and only global allocations are generated. In our prelim-
inary performance test for a medium system load (5.0) we obtained allocation
times around 0.03s for dynamic allocation and 0.162s for static allocation. Due
to the small search scope of the partial allocation operation in the dynamic ver-
sion of the algorithm we observed that the number of generated messages per
allocation is much smaller then in the static version. This results also in a re-
duction in the average time for an allocation. Altough, since in our test for each
static allocation 10 dynamic operations are realized in mean (partition duration
has a mean of 10) the total time needed for the dynamic allocation of all jobs is
around twice as slow then the static allocation.

Table 2. Allocation time in the Primergy multicomputer

Mean allocation Generated messages
Algorithm

time (s) per allocation

Dynamic Noncontiguous Leak 0.03 23

Static Noncontiguous Leak 0.162 128

5 Conclusions

This paper proposes a dynamic distributed processor allocation strategy for par-
allel programming models that allow dynamic creation and deletion of tasks,
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resulting in growing and shrinking processor demands. The dynamic strategy is
built up on our distributed allocation model, in which the central entity respon-
sible for processor status control is eliminated and the allocation operations are
executed in parallel in the processor mesh itself. The basic allocation operations
were redefined to match the characteristics of this new dynamic environment
and implemented in a distributed processor manager. A distributed dynamic
noncontiguous allocation strategy was evaluated and compared to static free-
form and structure preserving in a mesh-connected 96-node multicomputer and
results were simulated for bigger machines.

Our study shows that the dynamic distributed approach is feasible for large
cluster machines with current communication technologies and permitted a
greater parallelization of the allocation operations, eliminated the bottlenecks
of the centralized model, and achieved a much better utilization of the proces-
sors. As a result, system utilization for the noncontiguous version of our dynamic
algorithm reaches as high as 97 percent.

We conclude that distributed dynamic allocation provides a new approach
that will help highly parallel systems to achieve better price/performance ratios
in high demand, multi-user environments.
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