
Prioritizing Network Event Handling in Clusters

of Workstations

Jørgen S. Hansen1,� and Eric Jul2

1 SIRAC Project
INRIA Rhône-Alpes, France
jorgen.hansen@inrialpes.fr

2 Department of Computer Science, University of Copenhagen, Denmark
eric@diku.dk

1 Introduction

The use of modern system area networking technologies [9,3] to construct tightly
integrated clusters of workstations exposes two weaknesses of current operating
systems. First, the low latency of current networks is often hidden from the
application due to the high cost of interrupt handling. Second, network event
handling during high load may result in serious performance degradation because
all processor time is used for network event handling resulting in application
starvation. This paper concerns the problems related to providing efficient and
stable network event handling for clusters of workstations and network servers.
By stable we mean that the throughput and response time of the system does not
suffer when the workload offered to the system is increased beyond the maximum
capacity of the system.

Our approach is based on assigning each network device a priority in the
regular process priority range and allow events from the device to enter the
system based on this priority. The handling of events from the device does not
preempt processes with equal or higher priority, but will preempt lower priority
processes. This integrates the processing of the stream of events from the device
with the scheduling of regular processes thereby allowing for a natural batch
processing of the events from the network adapter, and eliminating the risk of
livelock. Making the devices visible to the operating system scheduler also allows
us to eliminate the overhead of interrupts when the system is idle. When the
scheduler detects that no process is runnable, it continuously poll the devices.

The rest of this paper is organized as follows. Section 2 explains our event
handling approach in detail. Section 3 describes a prototype implementation in
the Linux operating system, it’s measured overhead, and the effects on a stream
protocol for a system area network based on Scalable Coherent Interface (SCI).
Related work is covered in Section 4, and our conclusions are drawn in Section 5.
� The main part of this work was carried out as a Ph.D. student at the Department
of Computer Science, University of Copenhagen

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 704–712, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Prioritizing Network Event Handling in Clusters of Workstations 705

2 Integrating Device Priorities with Scheduling

In this section, we present our device event handling based on device priorities
and describe how it can be used to increase the stability of systems processing
large amounts of network related events and to decrease network communication
latency. We base our discussion on a priority-based scheduler using preemptive
round robin scheduling of processes with the same priority. We first describe how
our approach can be applied to uniprocessor systems, and then we look at the
additional complexities of supporting multiprocessors.

2.1 Integrating Event Handling with Process Scheduling

In present day operating systems, the handling of events from a device usually
has higher priority than any other task in the operating system. This can lead to
degraded system performance when events arrive at a high rate [13,4] as time is
spent on performing processing of arriving events instead of allowing applications
or operating system to react to earlier events.

Instead of having a static high priority for device event handling, we propose
viewing device event handling as a task whose scheduling is controlled by the op-
erating system scheduler. In a priority based scheduler, this is done by assigning
the device (or actually the device event handling) a priority in the priority range
available for the scheduler. Thus, when events with a given priority are ready,
one of the following three cases will occur: 1) processes with higher priority than
the device are runnable, and the processing of events should be postponed, 2)
processes with a priority equal to the device are runnable, and the processing
of events should share the processor resources with these processes, and 3) no
process with priority equal to or higher than the device is runnable, and the pro-
cessing of events should take place immediately. From this, it is clear that when
events are available for processing, a thread with the device priority dedicated
to handling events by polling the device will behave as described in the three
cases, and we therefore base our event handling on such polling threads.

2.2 Event Notification Using a Mix of Polling and Interrupts

Allowing the device polling thread to remain runnable even when there is no
event to be processed obviously wastes processor resources. This problem can
be avoided by having the thread block when there is no event available, and
then using interrupts to schedule the process [13] when the first event occurs
after a period of inactivity. However, the interrupt overhead is still incurred and
the total latency experienced by the event will typically be higher. Instead, we
use a combination of polling integrated with the operating system scheduler and
interrupts to wake up a blocked thread. When there are runnable threads and
they all have a priority lower than the device, we use interrupts to activate the
polling thread, and in all other cases we rely on the operating system scheduler
to poll the device. When there exists runnable processes, the scheduler polls all
devices with priority equal to or lower than the highest priority runnable process



706 Jørgen S. Hansen and Eric Jul

at the time when it needs to make a scheduling decision. Lower priority devices
are polled to represent their polling threads in ready queues, if there are events
to be processed. Thus, techniques such as aging can be used to prevent device
starvation. When there are no runnable threads, we let the scheduler (or the idle
thread) poll all devices continuously to allow the system to react quickly to new
events. If processor power consumption is a concern, the processor can be halted
(and interrupts enabled) after a certain period of time, e.g., a couple of minutes.

Polling I/O adapters across an I/O bus can be time consuming (relative to
CPU-speeds) and should be avoided, if possible. Instead, we base our polling on
event flags placed in physical memory. A network adapter that needs attention
must raise its associated event flag to request kernel processing. On each sche-
duling decision, the scheduler checks these flags to detect pending events. This
limitation on the signalling of events might seem restrictive, but most current
high-speed networking technologies [3,6] include the necessary support for such
event signalling. Conventional network designs could be supported through al-
ternative polling handlers at a cost but having interrupts schedule the polling
thread is likely to be more efficient.

One possible problem with postponing network adapter servicing is that the
postponement may cause overflow of on-board buffers. If the network adapter
supports the generation of high water mark interrupts, buffer overflow can
be avoided by having these interrupts schedule a high-priority event handling
thread. If, on the other hand, polling is used to increase stability, buffer overflow
is how the increased stability during high load situations is obtained, i.e., by
shedding network load as early as possible.

2.3 Priority-Based Event Handling on Multiprocessor Systems

Multiprocessor systems provide further opportunities for decreasing network la-
tency through polling on idle processors because the many processors increase
the probability of an idle processor. Additionally, compared to the limited form
of prioritized distribution of interrupts supported in modern interrupt con-
trollers [10], the use of polling threads allows a strict enforcement of the schedu-
ling policy of the operating system. However, such interrupt controllers can be
used to reduce the number of interruptions of high priority processes.

To review the added cost (in terms of additional processor synchronization) of
priority-based event handling on multiprocessors, we revisit our two additions to
process scheduling: polling of event flags and disabling and enabling of interrupts
on priority changes. The polling of event flags need not be implemented as a
critical region, as the worst case is that several idle threads activate the same
polling thread. Enabling and disabling interrupts requires more careful handling
than for single processors. The interrupts for a device should be enabled only
when at least one processor is executing a thread with priority lower than the
device and neither the device polling thread nor an idle thread is executing.
If the scheduler uses a single run queue, the necessary global state is already
maintained by the scheduler, but if a local run queue on each processor is used
priority-based event handling adds synchronization to the scheduling loop.



Prioritizing Network Event Handling in Clusters of Workstations 707

3 An Example of Priority-Based Event Handling

We have implemented a prototype of the priority-based event handling for Linux
2.0 and 2.2. As the Linux scheduler implements a variation of priority based
FIFO scheduling, the approach described in the previous section can be directly
applied. The prototype has been used for the communication in a cluster of work-
stations connected by Dolphin’s SCI cluster adapters [6]. These adapters provide
hardware support for low overhead remote memory access through regular pro-
cessor load and store operations as well as DMA. In the cluster, communication
across the SCI network was handled by SciStream [8]—a TCP compatible stream
protocol for SCI, and all nodes used 450MHz Pentium II processors.

In this section, we present an evaluation of the overhead added to the Linux
scheduler and of the effects of priority-based event handling on SciStream com-
munication latency and SciStream stability during high network load.

3.1 Added Scheduler Overhead

The overhead added to the Linux scheduler by (1) polling event flags and (2)
changing interrupt status for devices was measured by augmenting the scheduler
with measurements using the Pentium processor cycle counters. We implemented
a kernel module that registers event flags as a real device would. The action taken
by the module, when an event flag is raised, is simply to find the event flag handle
in an array and reenable the event flag. Changing interrupt status increments
a counter, and thus reflects only the cost of invoking such a function. We used
three configurations, where each configuration used from 0 to 16 allocated event
flags with a size of four bytes each. In the No Activity configuration event
flags are allocated but never raised. In the Heavy Activity configuration event
flags are allocated and continuously raised. Finally, the Interrupt configuration
forces a change in interrupt status on each scheduling decision.

We measured the overhead of the different configurations on a single processor
system using Linux version 2.0. For No Activity the overhead amounts to
67 ns, and each additional flag adds an overhead of 25 ns. This is a bit more
expensive than the cost of single memory reference suggested in Section 2.2,
but our current implementation includes additional functionality such as partial
masking of event flags. In the Heavy Activity case, the overhead is 135 ns for a
single flag, and 91 ns are added for each flag. Finally, for Interrupt the overhead
is 56 ns in the case with no allocated flags, and for a single allocated flag the
overhead is 180 ns. Here each additional flag adds 39 ns of overhead. On multi-
processors, the priority-based event handling mechanism increases the overhead
of each scheduling decision with the cost of taking and releasing a spin-lock.

We measured the cost of a context switch in Linux to be 4.2 microseconds.
Thus, priority-based event handling adds between 1.6% and 11% overhead to
the process scheduling in the case of no activity. The scheduling of low priority
processes may suffer further due to the cost of changing the interrupt status. In
most cases, the number of network devices in a single node will be small, and the
overhead of supporting priority-based event handling will hardly be noticeable.



708 Jørgen S. Hansen and Eric Jul

3.2 Latency of Event Handling

The priority-based event handling in SciStream is implemented using the remote
memory access and remote interrupt facilities of the SCI cluster adapters. In the
current implementation, raising the event flag is done by performing a remote
fetch and increment, and throwing an interrupt (when interrupts are enabled)
adds to this the triggering of a remote interrupt.

To establish the benefits of avoiding interrupts and the cost of using kernel
threads for processing events, we compare the performance the priority-based
event handling (PriThread) with interrupts (Interrupt) and application pol-
ling (AppPol) where the SciStream receive operation continuously check a single
connection for incoming data. The effects of low priority compute-intensive jobs
is determined through a XXHog version for PriThread and Interrupt, where
an application, that only yields the processor when preempted, is present.

We evaluated the configurations by measuring the average one-way latency
of 10,000 request-response exchanges of a one byte packet on a uniprocessor
system. AppPol results in a latency of 10.1 microseconds. PriThread adds
20.0 microseconds to this overhead due to the remote event notification, context
switch, and selecting the proper process for execution. The two stage process
of generating the remote interrupt in PriThreadHog adds another 32.6 micro-
seconds to the latency. The newer versions of the SCI driver software allow this
to be performed in a single remote operation resulting in a latency equivalent
to Interrupt. Both Interrupt and InterruptHog are 20.1 microseconds more
expensive than PriThread. Thus, using priority-based event handling results in
a latency reduction to 20.0+10.1

40.1+10.1 = 60% when compared to interrupts. We achieve
similar performance gains on a dual processor system.

In summary, we see that allowing an idle workstation to continuously poll
it’s network adapters can significantly decrease network communication latency.

3.3 High Load Behavior of a Web Server

The high load behavior of SciStream was examined using the Apache web server
and the tool httperf [14]. Using httperf, we determined the maximum sustainable
load for each configuration through a series of experiments where we gradually
increased the offered fixed request rate. For all test cases, we were able to ex-
ceed the maximum sustainable load. We let the web server supply two different
documents: a small document with a size of 1,622 bytes (SD), and a large doc-
ument with a size of 56,257 bytes (BD). For both SD and BD we used the
PriThread configuration described in Section 3.2 and PriImm that performs
event handling immediately when an event flag is raised and therefore resembles
the static high priority of interrupts. In the experiments, we issued one request
per connection and the device and web server threads had the same priority.

The resulting reply rates (replies/s) for the Apache web server are shown in
Figure 1. The PriImm configuration is able to provide the highest reply rate
(471 replies/s for BD and 1,150 replies/s for SD as opposed to 466 replies/s
and 1,066 replies/s respectively for PriThread) for both document types. This



Prioritizing Network Event Handling in Clusters of Workstations 709

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000

R
ep

lie
s 

pe
r 

se
co

nd

Connections per second

PriImm+BD
PriThread+BD

PriImm+SD
PriThread+SD

Fig. 1. Apache Reply Rates under High Load

is a result of the overhead of scheduling a polling thread in the PriThread
configuration. Surprisingly, the PriImm configuration is able to sustain a rather
high reply rate beyond the maximum sustainable load. This is the result of how
a full connection request queue in the web server is handled in SciStream (see
also Banga et al. [1]). While the queue is full, the client program will get a
“connection refused” error for any connection attempts. However, as shown by
the average connection times in Figure 2 the full queues delay the processing of
all incoming requests considerably. Our Apache web server used 255 concurrent
processes to service requests, and the scheduling of these concurrent threads
also increase the average connection time of the PriThread configurations as
the offered load is increased.

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000A
ve

ra
ge

 c
on

ne
ct

io
n 

tim
e 

(m
s)

Connections per second

PriImm+BD
PriThread+BD

PriImm+SD
PriThread+SD

Fig. 2. Average Connection Time for Apache under High Load

Overall, we find that using priority-based event handling increases the sta-
bility (in the sense that the average response times are much lower during high
network load) of the web server in the experimental setup.



710 Jørgen S. Hansen and Eric Jul

4 Related Work

The work on eliminating livelock [13] explores the problem of livelock in great
detail. A solution is suggested, where the interrupt is only used to schedule a
polling kernel thread. The approach uses a kernel thread with higher priority
than any user thread and can therefore result in thread starvation problems.

Polling and interrupts have been integrated with the thread management
in a user-level thread library by Langendoen et.al. [11], but in contrast to our
approach, they statically prioritize interrupts higher than thread processing.

Polling Watchdogs [12] consider polling network adapters when scheduling
decisions are made, but they do not consider reducing the polling penalty by
using flags in physical memory. Special purpose hardware is needed to keep the
system responsive and to avoid network hardware buffer overflow.

Ensuring responsiveness when a network API does not support interrupts has
been investigated by Perkovic et al. [15]. They perform low overhead network
polling using event flags similar to ours but they mainly consider inserting this
polling code into applications through source-code manipulation.

In scientific parallel programs, it might be beneficial to poll the network for
a limited time before blocking, e.g., when a computation is followed by a data
exchange. Damianakis et al. [5] successfully use fixed busy-wait thresholds before
blocking on receive operations to reducing communication overhead.

Lazy receiver processing [7] makes each process perform most of the process-
ing of its own network communication. This makes it easier to account for the
time spent by each process on network communication. Preferably, the network
hardware performs the packet demultiplexing onto the communication endpoints
but if this is not possible a kernel thread handles the demultiplexing.

In signaled receiver processing [4], the protocol processing is also performed
by the application, but the applications themselves can control whether the
processing shall be performed synchronously, asynchronously or be suspended.
Packet processing still relies on interrupts, and thus receive livelock may occur.

Resource containers [2] provide more accurate accounting of resource con-
sumption for process-based operating systems through decoupling accounting
information from processes. In our approach, resource containers can be used to
improve the resource accounting for the device polling threads.

5 Conclusions

We have described a new approach to prioritizing event handling of network
devices in a general operating system. A network device is assigned priorities in
the scheduler priority range and by confining network event handling to a polling
thread using this device priority, the processing of network events is integrated
with the operating system process scheduling. The scheme relies on modifying
the scheduler to perform part of the device polling. Our results show that this
priority-based event handling increases the stability of network servers under
high load, and, in addition, the scheme may reduce latency for lightly loaded
systems.



Prioritizing Network Event Handling in Clusters of Workstations 711

Acknowledgements

Kåre Løchsen and Hugo Kohmann from Dolphin Interconnect (Norway) granted
us access to the source codes for the PCI-SCI adapter and answered all of our
questions. Povl Koch, Nokia and Emmanuel Cecchet, Simon Nieuviarts and
Xavier Rousset de Pina, SIRAC project, provided us with valuable support for
the SciOS prototype.

References

1. G. Banga and P. Druschel. Measuring the capacity of a Web server. In USENIX
Symposium on Internet Technologies and Systems Proceedings, pages 61–71, 1997.
709

2. G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new facility for
resource management in server systems. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation, pages 45–58, February 1999. 710

3. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,
and Wen-King Su. Myrinet: A gigabit-per-second Local Area Network. IEEE
Micro, 15(1):29–36, February 1995. 704, 706

4. J. C. Brustoloni, E. Gabber, A. Silberschatz, and A. Singh. Signaled receiver
processing. In Proceedings of the 2000 USENIX Annual Technical Conference,
2000. 705, 710

5. S. Damianakis, Y. Chen, and E. Felten. Reducing waiting costs in user-level com-
munication. In Proceedings of the 11th International Parallel Processing Sympo-
sium (IPPS-97), pages 381–387. IEEE Computer Society Press, April 1–5 1997.
710

6. Dolphin Interconnect Solutions. PCI-SCI cluster adapter specification, May 1996.
Version 1.2. See also http://www.dolphinics.no. 706, 707

7. P. Druschel and G. Banga. Lazy receiver processing (LRP): A network subsystem
architecture for server systems. In The Second Symposium on Operating Systems
Design and Implementation Proceedings, pages 261–276, October 1996. 710

8. J. S. Hansen, P. T. Koch, and E. Jul. A stream protocol implementation for
an SCI-based cluster of workstations. In Proceedings of the 1999 Workshop on
Cluster-Based Computing, pages 16–20, Rhodes, Greece, June 1999. ACM. 707

9. IEEE. IEEE Standard for Scalable Coherent Interface (SCI). IEEE, 1992. Standard
1596-1992. 704

10. Intel Corporation. Pentium Pro Family Developer’s Manual. Volume 3: Operating
Systems Writer’s Guide. Order Number 242691. 706

11. K. G. Langendoen, J. Romein, R. A. F. Bhoedjang, and H. E. Bal. Integrating
polling, interrupts, and thread management. In Proceedings of the 6th Symposium
on the Frontiers of Massively Parallel Computation, pages 13–22. IEEE, 1996. 710

12. O. Maquelin, G. R. Gao, H. H. J. Hum, K. Theobald, and X. Tian. Polling watch-
dog : Combining polling and interrupts for efficient message handling. In Proceed-
ings of the 23rd Annual International Symposium on Computer Architecure, pages
179–190, 1996. 710

13. J. C. Mogul and K. K. Ramakrishnan. Eliminating Receive Livelock in an
Interrupt-Driven Kernel. ACM Transactions on Computer Systems, 15(3):217–
252, August 1997. 705, 710



712 Jørgen S. Hansen and Eric Jul

14. D. M. Mosberger and T. Jin. httperf—a tool for measuring web server performance.
In Proceedings of the 1998 Workshop on Internet Server Performance. ACM, 1998.
708

15. D. Perkovic and P. J. Keleher. Responsiveness without interrupts. In Proceedings
of the 1999 International Conference on Supercomputing, June 1999. 710


	Prioritizing Network Event Handling in Clusters of Workstations
	Introduction
	Integrating Device Priorities with Scheduling
	Integrating Event Handling with Process Scheduling
	Event Notification Using a Mix of Polling and Interrupts
	Priority-Based Event Handling on Multiprocessor Systems

	An Example of Priority-Based Event Handling
	Added Scheduler Overhead
	Latency of Event Handling
	High Load Behavior of a Web Server

	Related Work
	Conclusions


