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Abstract: Strategies for scheduling parallel applications on a
distributed system must trade-off processor application speed-up and
resource efficiency. Most existing strategies focus mainly on achieving
high application speed-up without taking into account the efficiency
factor. This paper presents our experiences with a self-adaptive
scheduling strategy that dynamically adjusts the number of resources
used by an application based on performance measures gathered during
its execution. The strategy seeks to maximize resource efficiency while
minimizing the impact in loss of speedup. It also uses the measured
times to decide how to assign tasks to resources. This work has been
carried out in the context of opportunistic clusters of machines and we
report the results achieved by our strategy when it was applied to an
image thinning application run on a Condor pool.

Keywords: Scheduling, resource management, cluster computing,
Master-Worker applications.

1 Introduction
Scheduling of parallel tasks is one of the crucial issues that must be solved in order to
achieve efficient execution in large-scale clusters of machines. Researchers have
focused on the development of heuristic methods to solve the scheduling problem. In
some cases, task scheduling is done prior to execution and is done only once �called
static scheduling-. This static scheduling can be quite effective for computations for
which a precise knowledge of their run-time behavior is available. However, this
information is not usually available a priori for most applications. For these cases, it
might be better to perform the scheduling periodically during run-time, as the
problem�s variable behavior more closely matches available computational resources.
These techniques are usually referred to as dynamic scheduling.
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Dynamic scheduling techniques lend themselves well to many parallel
programming paradigms (like Master-Worker, Divide and Conquer, or Speculative
Parallelism [11]) which exhibit a dynamic behaviour that precludes the use of static
scheduling techniques. From the previously mentioned paradigms, the Master-Worker
paradigm is especially attractive because, as has been shown by empirical evidence
[9], tasks executed by workers in successive iterations tend to behave similarly, so
that the measurements taken at run-time may be good predictors of near future
behavior. We focus on the dynamic scheduling of master-worker applications.

We propose an approach for increasing system utilization in a cluster environment
by using application-level agents which negotiate with a resource manager for an
appropriate level of resource allocation. Agents try to allocate and schedule the tasks
of a given master-worker application by following five main criteria: 1) dynamically
measure application performance and task execution times 2) predict the resource
requirements from measured history, 3) schedule tasks on the resources according to
that prediction in order to minimize the completion time of the application, 4)
voluntary relinquish resources when they are not plentifully utilized by the
application, and 5) allocate more resources whenever a significant loss in speedup is
detected.

We have designed and tested a scheduling agent for iterative master-worker
applications that allows adaptive and reliable management and scheduling of the
application running in a cluster environment. We have experimentally evaluated the
effectiveness of our scheduling strategy using an image thinning application.

The rest of the paper is organized as follows. In section 2 we present the
background and the parameters considered in our problem. Section 3 outlines our
adaptive scheduling strategy for master-worker applications. In section 4 we show
some experimental data obtained when the proposed scheduling strategy was applied
to a thinning application. In section 5 we survey some related work and section 6
summarises the main conclusions of this work.

2 Problem Motivation and Background

We focused on the study of dynamic scheduling strategies for parallel applications
that fit the iterative Master-Worker paradigm running onto a distributed cluster of
machines. This model has been used to solve a significant number of problems such
as Monte Carlo simulations [2] or material science simulations [9]. A Master-Worker
application consists of two entities: a master and multiple workers. The master is
responsible for decomposing the problem into small tasks (and distributes these tasks
among a farm of worker processes), as well as for gathering the partial results in order
to produce the final result of the computation. The worker processes receive a
message from the master with the next task, process the task, and send back the result
to the master. The master process may carry out some computations while tasks of a
given batch are being completed. After that, a new batch of tasks is assigned to the
master and this process is repeated several times until completion of the problem
(after K cycles or iterations).

When a Master-Worker application is running on a distributed cluster of machines,
one of the machines will be occupied by the master process and one worker process
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will be running in each one of the other available machines. This means that using as
many workers as possible is a natural way to reduce the computation times of a given
Master-Worker application. With this allocation scheme we would expect that the
larger the number of workers assigned to the application, the better the speedup
achieved (speedup is defined, for each number of processors N, as the ratio of the
execution time when executing a program on a single processor to the execution time
when N processors are used). However, most applications exhibit a temporal pattern
in their individual tasks that implies that not all the allocated workers can be kept
usefully busy. As a consequence, efficiency, defined as the ratio of the time that N
processors spent doing useful work to the time those processors would be able to do
work, will be low. For these applications, it is important to choose a processor
allocation carefully so that under-utilized processors are released back to the system.

Releasing under-utilized processors could be beneficial both for the whole system
and for the particular user. From the system perspective, released processors could be
allocated to other users which, in turn, will improve the overall throughput of the
cluster. A particular user will also benefit because cluster job managers normally
make use of priority and aging mechanisms in their allocation policies. Every user has
a priority and the job manager uses that priority to directly decide how many
resources are going to be allocated to him. The better the priority, the more resources
the user will get. The aging mechanism assigns a lower priority to a user when he has
already been allocated resources for a long time. This mechanism will ensure that the
resources will be fairly allocated to all users through time. Therefore, the priority of a
user for allocating resources will be more negatively affected when his applications
are running on a set of under-utilized resources.

In a previous work, we evaluated several scheduling policies for applications that
followed the Master-Worker programming model mentioned above [6]. All the
strategies assigned tasks to machines in decreasing order of execution time. The
evaluated strategies differ in the amount of precise knowledge that they have about
the expected execution time of the tasks.

We evaluated the scheduling policies using different workload distributions and, in
general, our results showed that for any given workload distribution, a similar
scenario is found. We observed that for any application there is an interval in the
number of machines that corresponds to the situation in which the application is using
an ideal number of workers. Efficiency is high and speedup is also high. All the
workers are doing useful work and the application is close to its maximum parallelism
utilization. The use of a number of machines belonging to the ideal interval
guarantees that the largest tasks of the batch are executed alone in a single machine
each (or together with some small tasks), and small tasks are executed together
sharing some other machines. Using a number of machines belonging to this interval
guarantees, in general, a good ratio between execution time and efficiency.

3 Self-Adjusting Scheduling Strategy

The facts mentioned above were used in [7] to design an early version of a self-
adjusting algorithm that was responsible for both assigning tasks to workers and
determining the number of workers to be allocated. Tasks were sorted in decreasing
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order of average execution time. This sorting criterion succeeded in obtaining good
performance even if task execution times exhibit significant variations from one
iteration to another. At each iteration, they were assigned to workers according to the
sorted list. The number of allocated workers was adjusted dynamically at run-time by
analysing the particular workload of a given application and determining the
appropriate number of workers according to an empirical table. This table categorized
applications according to the distribution of task execution times, and provided the
number of machines that should be allocated to them. There were two main
drawbacks with that strategy. First, the computation cost incurred at runtime to
evaluate the workload distribution exhibited by an application in order to determine
the appropriate table entry. Second, the sensitivity of the method to small variations in
task execution times in successive iterations. This problem resulted in scenarios in
which some machines were released and immediately reclaimed back because the
workload of the application was oscillating between two table entries.

Our new strategy, presented in next subsection, tries to overcome the problems
related to the allocation of workers by, on the one hand, being more conservative in
releasing machines and, on the other hand, trying to approach the �ideal� number of
processors in a more gentle way once the application runs with a number of machines
close to the upper limit of the ideal interval. The assignment of tasks to workers has
not changed from our previous work.

3.1 Description of the Self-Adjusting Scheduling Algorithm

Initially as many workers as tasks per iteration (N) are allocated for the application.
Later, at the end of each iteration, the Self-Adjusting algorithm (shown in figure 3.1)
computes the number of workers (Nworkers) that should be allocated to the
application using two main criteria:

1. First the AdjustBySpeedup function computes Nworkers by evaluating asp
(achievable speedup), defined as the ratio between the execution time of the whole
application (by adding all the time tasks) and the execution time of the largest task
(ItMaxTaskExecTime) obtained in the last iteration. From our theoretical studies
we know that the upper limit of the ideal number of machines is asp. Therefore, the
number of workers (Nworkers) is set to !asp"  + 1. This procedure is always used
when the application has not allocated all the machines requested in a previous
iteration. It is possible that the requirement of workers has changed from one
iteration to the next one. Therefore, asp is recomputed to check whether the
previous requirement of workers is still valid or not.

2. When the application is running with the number of workers previously computed
in Nworkers, the adjusting criterion to update Nworkers is based on two metrics:
the execution time (ItExecutionTime) and efficiency (ItEfficiency) obtained in the
last iteration. If the execution time is greater than the execution time of the largest
task plus a given threshold, then one more worker is allocated. We have fixed the
threshold as being the maximum between the time of the smallest tasks
(ItMinTaskExecTime) and 15% of the largest tasks. This threshold was fixed
empirically as it proved able to detect most of the situations in which the
application is not exploiting all its parallelism due to lack of workers, and it does



746      Elisa Heymann et al.

not yield unstable situations in which workers are claimed and released too
frequently. When the second metric is applied, a machine is released when
efficiency is smaller than 0.8.

It is important to point out that the criteria described in point 2 above are applied only
when the application runs during a whole iteration with a stable number of machines.
In this way we do not consider metrics obtained under unstable situations, in which a
new machine that was requested previously is allocated in the middle of an iteration
and used for executing pending tasks.  This situation may produce a temporarily
contradictory result in the efficiency or in the execution time metrics. This refinement
is not shown in figure 3.1 for the sake of simplicity.

In our experimental system the number of machines is handled cumulatively. This
means that when Nworkers machines are requested and the application already has
allocated CurrentNworkers machines, if (Nworkers > CurrentNworkers), only
Nworkers - CurrentNworkers machines will be added to the application.  Otherwise,
CurrentNworkers - Nworkers machines will be released.

1. In the first iteration Nworkers = Ntasks
For next iterations (While convergence condition is not met) {
2. Compute ItEfficiency, ItExecutionTime, ItMinTaskExecTime, ItMaxTaskExecTime,
                        CurrentNworkers.

3. if (CurrentNworkers <  Nworkers )  // We have not got the number of workers needed
 Nworkers = AdjustBySpeedup()

   else
   if (ItExecutionTime >  (ItMaxTaskExecTime +
                                                 MAX (ItMinTaskExecTime, 15%(ItMaxTaskExecTime))))
                    Nworkers = Nworkers + 1

else
                     if (ItEfficiency < 0.8)
                                             Nworkers = Nworkers � 1
} 

Figure 3.1. Algorithm to determine Nworkers

Our self-adjusting algorithm is based on two main assumptions: application
parallelism will not exhibit drastic increases over time, and the value of asp obtained
after the first iteration will not change significantly in the near future. None of these
assumptions were violated in our experiments. However, there are simple extensions
that can be included in our basic algorithm to deal with scenarios in which the above-
mentioned assumptions were not valid.

3.2 Implementation

We have included our adaptive algorithm into the MW [4] middleware library to
experimentally evaluate its performance. MW is a runtime library that allows quick
and easy development of master-worker computations on a distributed cluster of
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machines. It handles the communication between master and workers using PVM, and
performs processor allocation and fault-detection through the services provided by a
Condor job manager [8]. An application in MW has three base components: a Driver
that is the master and manages a set of user-defined tasks and a pool of workers; and
the Workers that execute the Tasks. We have extended MW to support both the
iterative master-worker paradigm and the self-adjusting scheduling algorithm.

4 Experimental Study

In this section, we report the results obtained with the aim of testing the effectiveness
of the proposed adaptive scheduling algorithm. We have executed an image thinning
application. We run the applications on a distributed cluster and we have evaluated
the ability of our scheduling strategy to dynamically adapt the number of workers
without any a priori knowledge about the behavior of the application.

4.1 Thinning Application

Our thinning algorithm for binary images was adapted from the AFP3 (Fully Parallel
Algorithm) described in [5]. The application works in the following way. Initially the
image is divided into M horizontal parts.  Each part contains the pixels of a piece of
the image, plus border pixels from neighboring parts. One task is created to compute
the thinning operation of one part, which basically consists of deleting pixels. At the
end of each iteration, workers send the image back to the master, which updates the
border pixels. If there are no more pixels to delete, the part achieves the local
convergence criterion and finishes.  When all the parts have finished then the global
convergence criterion is met, the skeleton image is reconstructed combining the parts
in order, and the application finishes. Figure 4.1 shows an original image and the
result obtained by the thinning algorithm.

Figure 4.1. Reference image Boy&Ball and its thinning result

This application exhibits two characteristics that make its use attractive for
evaluating a self-adjusting strategy. First, tasks corresponding to different parts of the
application usually exhibit different execution times. Tasks that are assigned complex
part of the image spend more time than tasks that deal with simple parts of the image.
Therefore, a self-adjusting strategy must be able to schedule together short tasks to
the same worker and relinquish spare workers. Secondly, the execution time of each
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task gradually decreases as the image thinning approaches convergence. Again, the
self-adjusting strategy must also be able to reduce the number of workers as the
execution time of converging tasks is close to zero.

4.2 Experimental Results

We conducted experiments using a distributed cluster platform consisting of a Condor
pool of machines at the University of Wisconsin. The total number of available
machines was around 700 although we restricted our experiments to machines with
Linux architecture. The execution of our application was carried out with a set of
processors that do not exhibit significant differences in performance, so that the
platform could be considered to be homogeneous.

We ran the thinning application with 3 images: Figures, Letters and Boy&Ball.
Images were initially divided into 8, 16 and 32 parts, which corresponded to the initial
set of tasks created at the initial iteration. The number of iterations until thinning
convergence was 92, 105 and 97 for the three images, respectively. We enlarged the
size of the images so that the execution time of the largest task was initially in the
range of 50 seconds when images were divided into 8 parts.

Different runs of the same programs generally produced slightly different final
execution and efficiency results due to the changing conditions in the opportunistic
environment. Hence, average-case results are reported for sets of three runs.

Results of efficiency and execution time (in seconds) are shown in table 4.1 when
the thinning application was run both using our self-adjusting strategy (Self-Adjusting
column) and without using it (No Self-Adjusting column). When no adaptive
scheduling was used, the initial number of requested workers was equal to the initial
number of tasks. Once a task met the convergence criterion, the corresponding worker
was released. In contrast, in the self-adjusting case, workers were released only
according to our strategy and no workers were released automatically on task
completion. Tasks were assigned to workers in decreasing order of average execution
time in both Self- and Non Self-Adjusting cases. Therefore, our results reflect mainly
the effectiveness of our strategy to dynamically adjust the number of resources.

In addition to the results obtained for both strategies using an initial number of
tasks of 8, 16 and 32, we also include the execution time of a sequential thinning
application (column InitialTasks = 1) for comparison purposes. In the NworkersAvg
rows the average of the number of workers used are shown.

As can be seen in table 4.1, self-adjusting obtains efficiency values above 0.8 in all
cases, while no self-adjusting obtains efficiency values that are significantly smaller
(between 0.4 and 0.65 in most cases). The execution time results indicate that the self-
adapting strategy results in a penalty that in most cases is less than 15% compared to
the non self-adjusting case. Only for the Letters example with 16 and 32 tasks, was
the difference in execution time 17% and 19%, respectively.  In general, the execution
time of the application does not decrease linearly as the image is decomposed in more
parts because the maximum parallelism is only achievable at the initial iterations of
the algorithm. Later, as different parts of the image converge, parallelism decays and
consists only of the tasks that compute the most complex parts of the images.
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Table 4.1. Results of the master-worker thinning application

Non Self-Adjusting Self-Adjusting
  InitialTasks   1 8 16 32 8 16 32

Figures 1 5,5 9,12 12,85 2,45 4,17 7,37
Letters 1 5,3 10,36 21,11 3,89 6,55 9,41  Nworkers

  Avg.
Boy&Ball 1 5,57 7,02 11,34 2,85 4,01 8,92
Figures 1 0,41 0,41 0,48 0,88 0,89 0,86
Letters 1 0,64 0,59 0,399 0,8 0,82 0,83  Efficiency

Boy&Ball 1 0,59 0,64   0,7 0,88 0,86 0,87
Figures 12746 4141 2634 1533 4473 2648 1703
Letters 12803 3179 1562 1204 3230 1833 1399 Exec. Time

(in seconds)
Boy&Ball 10080 2948 1678 1001 3094 1732 1002
Figures 12746 10100 6424,39 3193,75 5082,95 2975,28 1980,23
Letters 12803 4967,18 2647,45 3010 4037,5 2234,36 1685,54

Exec.Time/
 Efficiency
 Ratio Boy&Ball 10080 4996,61 2621,87 1430 3515,9 2013,95 1151,72

As a global index of performance, the last three rows of table 4.1 show the index
between execution time and efficiency corresponding to both strategies. The lower the
index, the better the use of resources achieved by a given strategy. This means that
our strategy achieves a better trade-off between efficiency and execution time.

Although 8, 16 and 32 workers were claimed initially by both strategies, a smaller
number of workers were effectively allocated throughout the computation. The Non
Self-Adjusting strategy simply relinquished workers as tasks were completed. Our
Self-Adjusting strategy further reduced the number of allocated workers, as can be
seen in the Nworkers Avg. row which contains the average number of workers used
from the beginning to the end of the computation. In general, our strategy saved
between 20% to 55% of workers compared to the Non Self-Adjusting case.

Figure 4.2 shows a detailed example of one execution of the thinning application
applied to the Figures image divided initially into 32 parts. This example is a
representative illustration of the general behavior and the performance achieved by
both the Self-Adjusting and the Non Self-Adjusting algorithms. We show the
information related to number of workers, efficiency and execution time after
iterations 1, 5, 10, 15, and so on.   Execution times are shown in a logarithmic scale.

 As can be seen, the allocation of resources is not serviced immediately after
request. This implies, for instance, that the Non Self-Adjusting algorithm achieves a
maximum number of 23 workers in iteration 15. At this time, some of the tasks have
already finished (those corresponding to image borders) and, therefore, the
application does not need the whole set of 32 workers requested at the beginning. In
general, the Self-Adjusting algorithm is able to tune the number of workers from the
initial iterations, fixing the maximum number of workers to 15 after iteration 10.
Significant differences in the number of workers (and, consequently, in efficiency) are
mainly observed at the central iterations of the computation (from iteration 15 to 75).
In these stages, the execution time of each iteration is slightly better for the Non Self-
Adjusting algorithm at the expense of sometimes using twice the number of workers
that the Self-Adapting strategy uses. Later, the application is close to the end and the
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number of workers is very small in both cases, so efficiency and execution time are
very similar for both strategies.

Figure 4.2. Number of workers, efficiency and execution time obtained with the Figures image
divided in 32 parts

5 Related Work
The problem of self-adaptive scheduling has been investigated recently in different
frameworks. There are several middleware environments that allow the development
of adaptive parallel applications running on distributed clusters. They include
NetSolve [3], Nimrod [1] and AppLeS [10]. NetSolve and Nimrod provide API for
creating task farms that can only be decomposed by a single bag of tasks. Therefore,
no historical data can be used to allocate workers, and their adaptive algorithms rely
on different metrics to the ones adopted here. In AppLeS, the application programmer
is supplied information about the computing environment and is given a library to
allow them to react to changes in available resources.

6 Conclusions
In this paper we have discussed the problem of scheduling master-worker applications
on distributed cluster environments. We have presented a self-adjusting strategy that
takes into account runtime information about the application. This information is used
to allocate and schedule the minimum number of processors that guarantees good
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speedup by keeping the processors as busy as possible and avoiding situations in
which processors sit idle, waiting for work to be done. The strategy is rather
straightforward at the moment and is not guaranteed to adjust the number of workers
to the optimal in all cases. However, our early experimental results with a thinning
application running in a homogeneous cluster of machines are encouraging, as they
have shown that our algorithm worked well in practice.  In general, our adaptive
strategy achieved an efficiency higher than 80% in the use of processors, while the
execution time was only slightly worse than the execution time achieved with a
significantly larger number of processors.
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