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Abstract. In this paper we compare recently developed and highly ef-
fective sequential feature selection algorithms with approaches based on
evolutionary algorithms enabling parallel feature subset selection. We in-
troduce the oscillating search method, employ permutation encoding of-
fering some advantages over the more traditional bitmap encoding for the
evolutionary search, and compare these algorithms to the often studied
and well–performing sequential forward floating search. For the empiri-
cal analysis of these algorithms we utilize three well–known benchmark
problems, and assess the quality of feature subsets by means of the sta-
tistical Bhattacharyya distance measure.

1 Introduction

The problem of selecting a “good” subset of features from the total of available
features arises in a great variety of problem domains in science, engineering, and
economy. As the number of possible subsets increases exponentially with the
number of total features, a variety of deterministic and nondeterministic Feature
Selection (FS) algorithms have been developed in order to escape the Curse of
Dimensionality.

In this work we would like to compare some very efficient sequential FS
algorithms with parallel FS techniques based on Evolutionary Algorithms (EAs).
Basically, a sequential FS algorithm adds a feature to or leaves out a feature from
the subset to be constructed in an iterative manner. Hence, the feature subset
generation depends on initial and intermediate subsets. A parallel FS algorithm
constructs a complete feature subset at once. The latter can be achieved by EAs
which are generally believed to be well–suited for nonlinear, high–dimensional
problems of exponential complexity (Schwefel, 1995; Mitchell, 1996).

The two basic categories of approaches to FS are the Filter and the Wrapper
approach (John et al., 1994). The crucial point in discriminating these methods
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is the absence or presence, respectively, of a classifier to assess the quality of a fea-
ture subset. Either, a statistical measure independent of a classifier is employed
(filter approach), or the error rate of a classifier determines the usefulness of a
feature subset (wrapper approach). In this work we adopt the filter approach, as
our main goal is to compare the performance of conventional to evolutionary FS
algorithms. The additional use of specific classifiers (and training algorithms)
would increase the already complex FS process interactions, and make it even
more difficult to isolate the effectiveness of the FS algorithms to be compared.

For experimental comparisons we employ the Bhattacharyya (B–) distance
measure (Fukunaga, 1990), and investigate algorithm performance on three dicho-
tomous classification problems from the real world with the total number of
features ranging from the single best feature to the (almost) full feature data
set.

1.1 Formulation of the Feature Selection Problem

Following the statistical approach to pattern recognition, we assume that a pat-
tern or object described by a real D-dimensional vector x = (x1, x2, · · · , xD)T ∈
X ⊂ RD is to be classified into one of a finite set of C different classes Ω =
{ω1, ω2, · · · , ωC}. The patterns are supposed to occur randomly according to
some true class conditional probability density functions (pdfs) p?(x|ω) and the
respective a priori probabilities P ?(ω). Since the class conditional pdfs and the
a priori class probabilities are rarely known in practice, it is necessary to esti-
mate these probability functions from the training sets of samples with known
classification.

If the pdfs are a priori known to be unimodal, probabilistic distance measures,
e.g., Mahalanobis or Bhattacharyya distance, may be appropriate to evaluate the
quality of a feature subset. As pointed out by Siedlicki and Sklansky (1988) the
error rate with respect to the chosen measurement criterion J(·) is even better
(computational feasibility provided) (Siedlecki and Sklansky, 1988).

1.2 Bhattacharyya Distance for Feature Selection

In the following formulation B–distance measures the separability of normal
distributions for two classes indexed by i and k (Fukunaga, 1990):
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where µi, µk are the feature mean vectors and Σi and Σk denote class co-
variance matrices for classes i and k, respectively. We point out, that a more
general distance measure, such as the Chernoff distance, is in general closer to
the error rate than B–distance, on the other hand such a measure is not easy to
obtain (Kailath, 1967).
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2 Feature Selection Algorithms

Assuming that a suitable criterion function J(·) has been chosen to evaluate
the effectiveness of feature subsets, FS is reduced to a search for a (sub)optimal
feature subset based on the selected measure. Although an exhaustive search is
a sufficient procedure to guarantee the optimality of a solution, in many realistic
problems it is computationally prohibitive. Therefore, in practice one has to
rely on computationally feasible procedures to avoid exhaustive search for the
price of suboptimal results. A comprehensive list of suboptimal procedures and
the corresponding formulas can be found in (Devijver and Kittler, 1982). An
excellent taxonomy of currently available FS methods in pattern recognition is
presented in (Jain and Zongker, 1997).

The strategies used to find a useful subset of features range from the simple
but popular sequential forward (SFS) and sequential backward selection (SBS),
to more sophisticated but computationally more expensive algorithms. In the
following section we will describe three of the latter which will then be compared
on three benchmark problems.

2.1 Sequential Forward Floating Search

The sequential forward floating search (SFFS) Pudil et al., 1994 can be viewed
as SFS with backtracking. SFS is a simple greedy algorithm starting with an
empty feature subset, then iteratively adding the feature which maximizes the
evaluation criterion of the feature subset up to a specified target size t. Obviously,
this procedure does not account for nonlinear interactions of features, hence
SFFS offers the following improvements:

After adding a feature xi to a subset of size k with J(k) in SFS manner
(inclusion), SFFS tries to find a feature xj with j 6= i which can be excluded
so that the new J ′(k) > J(k) (conditional exclusion). This step is continued as
long as a feature can be excluded under the above condition which demands
that the best values of J(·) are recorded for each subset size (continuation of
conditional exclusion). If an exclusion step is not successful, inclusion continues
until the algorithm has “floated” through all possible subset sizes or has reached
a certain target size t.

While SFFS starts with an empty feature subset dominantly searching in
forward direction, the sequential backward floating search (SBFS) “floats” in
backward direction and analogously can be viewed as SBS with backtracking
(Pudil et al., 1994).

2.2 Oscillating Search

A very recent development is the oscillating search (OS) algorithm (Somol and
Pudil, 2000). Most of the known suboptimal FS methods are based on step–wise
adding of features to an initially empty feature set, or on step–wise removing
features from an initial set of all features. A single search direction – forward or
backward – is usually preferred. It is apparent that all these algorithms spend
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a lot of time testing feature subsets having cardinalities far distant from the
required cardinality d.

Unlike other methods, OS is based on repeated modification of the current
subset Xd of d features. This is achieved by alternating the down– and up–swings.
The down–swing removes o “worst” features from the current set Xd to obtain a
new set Xd−o at first, then adds o “best” ones to Xd−o to obtain a new current
set Xd. The up-swing adds o ”good” features to the current set Xd to obtain a
new set Xd+o at first, then removes o ”bad” ones from Xd+o to obtain a new
current set Xd again. The intitial subset Xd is generated randomly, and an up–
and down–swing is achieved by SFS and SBS, respectively.

Let us denote two successive opposite swings as an oscillation cycle. Then,
the oscillating search consists of repeating oscillation cycles. The parameter o is
termed oscillation cycle depth and should initially be set to 1. If the last oscilla-
tion cycle did not find a better subset Xd of d features, the algorithm increases
the oscillation cycle depth by setting o = o+1. Whenever any swing finds a better
subset Xd of d features, the depth value o is restored to 1. The algorithm termi-
nates, when the value of o exceeds the user–specified limit ∆. Besides the basic
OS algorithm described here, variants can be found in (Somol and Pudil, 2000).

2.3 Evolutionary Algorithms for Feature Selection

When employing EAs for FS, complete subsets are generated in parallel poten-
tially eliminating the problems inherent to sequential FS methods. Basically, a
start population of EA chromosomes (feature subsets) is generated randomly,
and each individual receives a fitness according to the evaluation criterion J(·).
The fitness determines the probability of an individual to be selected for ma-
ting, where (usually) two individuals exchange their genetic information. The
offspring then undergo a mutation operation and form the next generation. This
evolutionary cycle is repeated for a user–defined number of generations, and the
best individual (feature subset) of all generations represents the final solution.

In the basic approach to feature selection using EAs a feature subset is en-
coded as a binary vector (Bitmap Encoding) a = (a1, . . . , ad), where ai = 1
indicates the presence of the i−th feature in the subset, while the absence of
the i−th feature is expressed by ai = 0. The bitmap encoding is well suited
for an evolutionary feature selection technique based on a wrapper approach
(Siedlecki and Sklansky, 1989).

In (Punch et al., 1993) the bitmap encoding was generalized to a weighted en-
coding, where features were assigned different weights resulting in a modification
(warping) of the feature space for a k–NN classifier. In (Yang and Honavar, 1997)
bitmap encoding has been employed for the evolutionary search of feature sub-
sets for an ANN classifier. A mixture of filter and wrapper approach is presented
in (Chaikla and Qi, 1999), where an EA with a fitness function comprising k–
NN classifier accuracy and multiple correlation coefficients is employed for FS.
Although all these works could report on improvements in accuracy or subset
size, none of them compared evolutionary to conventional FS methods.
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With the filter approach and the inherent monotony of the B–distance mea-
sure we are using in this work, bitmap encoding together with a fitness function
only assessing B–distance would simply result in convergence to the full fea-
ture set. A penalty or cost term could be introduced in the fitness function
f(a) = J(a)+ p(a), where the function p(a) depends on the number of features
present in a. The penalty term p(a) can then be used to favor feature subsets
of a given cardinality.

Intuitively, for the experimental framework in this work the use of a penalty
term unnecessarily complicates the evolutionary search, as the EA has to find
a subset size which is known from the very beginning. Moreover, as soon as
the EA arrives at the correct size of the feature subset it will likely stay with
this solution, because only very specific interactions of genetic operators will
allow the transition to a different solution of the given target size. Experimental
results confirmed these assumptions, hence we introduce a permutation encoding
method.

3 Permutation Encoding

As outlined in Section 2.3, instead of the more traditional bitmap encoding for
the generation of subsets, we experimented with variants of permutation enco-
ding which is primarily used for order problems such as the Traveling Salesperson
Problem (TSP). The bases 1 of the EA chromosome are integers building a per-
mutation as shown in Figure 1.

4 1 2 3 6 5 0

0 6 1 4 5 2 3

Subset Size = 2

0100100

1000001

Fig. 1. Permutation encoding for the generation of subsets.

For the generation of a subset of a specific target size t the chromsome is
scanned from left to right, and the first t bases representing a feature index
are used to construct the subset. The permutation encoding ensures that each
feature taken into account is different, and always yields a subset of the given
target size t.

In order to preserve the permutation property of the chromosomes, specific
genetic operators have been devised. The mutation operator simply exchanges
1 Many researchers use the term gene, but a wild type gene is a much more complex

structure, and the term base is equally a synonym for an atomic information unit in
biology.
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two random bases on the chromosome with a given mutation rate pm (usually
in the range of 0.001 − 0.01). One of the most prominent crossover operators for
permutation encoding is the Partially Matched Crossover (PMX) proposed in
(Goldberg and Lingle, 1985). Its basic mechanisms are presented in Figure 2.

3 2 1 4 5 6 0

0 5 2 3 6 1 4

4 1 2 3 6 5 0

0 6 1 4 5 2 3

Crossover Sites

OffspringParents

Fig. 2. Partially Matched Crossover (PMX).

Generally, for crossover two parent chromosomes are selected, and crossover
is performed according to a user–defined crossover rate pc (usually in the range
of 0.6 − 1.0). If no crossover occurs, the two parents are simply copied to two
offspring chromosomes. In the crossover phase two crossover sites are selected
randomly (sites are the same for both parents). Then, the bases in between
the crossover sites are exchanged. Up to this point we have exactly described
the very common 2–point Crossover, but if the bases were only exchanged, the
permutation property would be lost. Thus, each base to be copied to the other
parent is searched in that parent and swapped with the base currently at the
locus, where the exchange takes place (just like a single mutation). In doing
so the partial order between the crossover sites can be exchanged between the
parents without corrupting the permutation property.

As can be seen in Figure 1 parts of the chromosome are not expressed. If
both crossover sites fall into this region, it might appear that crossover does
not change the expressed feature subset. But assuming an exemplary target
subset size t = 2 in Figure 2, it can be observed that with PMX the features in
the subset can be altered even under this condition. Though, a mutation in an
unexpressed region of the chromsome does not effect the encoded subset, it can
indirectly take an influence by means of a subsequent PMX crossover.

4 Benchmark Problems

A brief description of the data sets used for FS experiments is given below.
The main criterion for selecting these specific benchmarks is the rather high
number of features challenging the search capabilities of the FS algorithms to
be compared.
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Breast This is the diagnostic Wisconsin Diagnostic Breast Center database
containing 284 examples. From 30 features a prediction into the classes ma-
lignant and benign is aspired (from the UCI Machine Learning Repository)
(Blake and Merz, 1998).

Sonar This data set is used to classify sonar signals into signals bounced off
a metal cylinder and those bounced off a roughly cylindrical rock (Gorman
and Sejnowski, 1988). It has 105 examples with 60 continuous inputs (from
the CMU neural networks benchmark collection).

Mammo This is a mammogram data set from the Pattern Recognition and
Image Modeling Laboratory at the University of California, Irvine, con-
taining 86 examples. From 65 features a prediction into the classes mali-
gnant and benign is aspired (from the UCI Machine Learning Repository)
(Blake and Merz, 1998).

4.1 Experimental Setup

Experiments have been run for the three benchmark data sets using the three
FS algorithms to be compared. For each problem all subset sizes from t = 1 to
t = n − 1 (with n being the total number of features) have been investigated.
The following parameters have been used with all the experiments in this paper:
SFFS Parameters: Initial subset size = 2 (generated by SFS), Runs = 1 (de-
terministic behavior).
OS Parameters: ∆ = 50% (of the number of features), Runs = 20.
EA Parameters: Population Size = 50, Generations = 100, Crossover Proba-
bility pc = 0.6, Mutation Probability pm = 0.01, Crossover = PMX, Selection
Method = Binary Tournament, Runs = 20 (the EA parameters are fairly stan-
dard and are not based on extensive experiments).

5 Experimental Results

For the Breast data set containing 30 features, we were able to compute the
optimal subset of each cardinality by means of a yet unpublished Branch–and–
Bound method. Thus, Figure 3 shows the differences (error) of the compared
algorithms to the optimal subsets.

It can be observed that OS yields the smallest mean errors, followed by SFFS,
and EA. When looking at the best results of OS and EA, the optimal result
was always found within the 20 runs spent. As SFFS is deterministic, the best
results are identical to the mean results shown in Figure 3 (left). The relatively
large mean error for EA and a t = 2 might be a side effect of permutation
encoding, as most mutations fall in an unexpressed region of the chromosome,
and the population quickly converges to a local optimum. However, with bitmap
encoding it is even difficult to find any solution with subset size t = 2!

In terms of computational cost (Figure 3 (right)) OS is the most expensive,
but also delivers the best results. However, increase of the number of generations
of the EA would further improve its solutions.
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Fig. 3. Breast – Mean errors (left) and mean number of evaluations to find the best
B–Distance (right) of Sequential Floating Forward Search (SFFS), Oscillating Search
(OS), and Evolutionary Algorithm (EA) (averaged on 20 runs).

The best results of the compared FS algorithms and the corresponding com-
putational cost for the Sonar data set is depicted in Figure 4.
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20000

Evaluations ___ SFFS ...... OS _ _ EA

Fig. 4. Sonar – Best B–distances (left) and mean number of evaluations to find the
best B–Distance (right) of Sequential Floating Forward Search (SFFS), Oscillating
Search (OS), and Evolutionary Algorithm (EA) (averaged on 20 runs).

Although, the best results found seem to be very similar in Figure 4 (left),
a closer look at the numbers reveals the same order of performance as for the
other data sets. The sudden decrease of the B–distance 2 is a strong indicator
that some of the features in the data set are linearly dependent. Obviously,
EA exhibits these problems earlier which remains to be studied, but a possible
explanation is the more “intelligent” inclusion and exclusion of features with OS,
whereas EA performs a blind search.

Very similar things can be said about the results for the Mammo data set
shown in Figure 5.

Again, OS and EA deliver the best results, but starting with a subset size
around t = 30 EA marginally drops behind SFFS. A main reason for that be-
havior might be the increased complexity of that problem (65 features), while
keeping the number of generations of the EA fixed at 100, which even compared
to SFFS results in a much lower number of subset evaluations. Accordingly, the
2 The numerical value of 0.0 is arbitrary and is used by our software to indicate

impossible matrix operations.
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Fig. 5. Mammo – Best B–distances (left) and mean number of evaluations to find
the best B–Distance (right) of Sequential Floating Forward Search (SFFS), Oscillating
Search (OS), and Evolutionary Algorithm (EA) (averaged on 20 runs).

computational cost (Figure 5 (right)) clearly confirms the well established fact
that EAs find good solutions in a short time (but are less effective in honing
these solutions).

6 Outlook

The results presented in this paper are quite encouraging considering that SFFS
has been evaluated as one of the best available FS algorithms in (Jain and
Zongker, 1997). Not only OS and EA generate better results than SFFS, but
EA also takes comparable, if not smaller computation time. Clearly, these results
have to be confirmed with a number of additional data sets and the algorithms
should also be investigated in the environment of a wrapper approach employing
a number of different classifiers. A very promising future research direction could
be the hybridization of EA and OS combining the speed of an EA to find a good
solution with the ability of the OS to improve an existing feature subset.
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