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Abstract. A technique is proposed for choosing the thresholds for a number of
object detection tasks, based on a prototype selection technique. The chosen
prototype subset has to be correctly classified. The positive and negative objects
are introduced in order to provide the optimization via empirical risk minimiza-
tion. A Boolean function and its derivatives are obtained for each object. A spe-
cial technique, based on the fastest gradient descent, is proposed for the sum of
Boolean functions maximization. The method is applied to the detection task of
house edges, using its images in aerial photos. It is shown that proposed method
can be expanded to solving of a wide range of tasks, connected to the function

optimization, while the function is given in vertices of a n2  single hyper - cube.

Keywords: Prototype selection, Sum of Boolean function optimization, Edge
detection.

1 Introduction

A wide variety of image processing tasks such as images compression [17], image
matching for motion estimation and 3D modeling [2], object decipherment [14], edge
detection [4] and so on, demands in its final stage a threshold selection procedure to
distinct between correct and incorrect results. Usually these thresholds are supposed
to be pre-defined and no techniques are given for their correct choice, in spite of
strong influence of these thresholds on the final results. It was shown in previous
works [14], that correct parameter estimation can be achieved using two sets of sam-
ples: a set of positive samples (objects) { }m21 e,...,e,eE = and set of negative samples

(anti – objects) { }p21 a,...,a,aA = . Sometimes [17] it can be found an automatic pro-

cedure for object and anti – object detection, however in common case samples are
pointed out manually. Every object p,...,1j,m,...,1i,a,e ji == can be represented by n

– dimensional vector of features n21 ,...,, jjj , where 1i R˛j is supposed to be a real

value from limited interval [ ]max

i

min

i ,jj . Without loss of generality, let us assume that

for each ( )[ ] ( )[ ]AEEEi ii j>j , where ( )[ ]EE ij and ( )[ ]AE ij are average values
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of feature ij  distribution for samples of an object and an anti - object. Under this

assumption thresholds ( ) n,..,1iemint ji
m,..,1j

i =j=
=

provide correct classification for all

objects and misclassification for anti-objects with values [ ]jin,..,1i t‡j" = . In the other

words object ( )in2i1ii X,...,X,Xe = , where ijX  is value of feature n,...,1j,j =j for

object ie , will be correctly classified if for each feature jj value ijX it exceeds or

equals to the threshold jt , i. e., [ ]jijj tX ‡" . To simplify the expression let us intro-

duce a function similar to the Kroenecker notation:

( ) oterwise0andtXif1t,X ‡=d . (1)

Using (1) the expression for true object classification can be rewritten as

( )Õ
=

d=
n

1j
jiji t,Xf

(2)

(2) becomes one for true classification and zero for misclassification.
The problem is to define optimal thresholds n,..,1j,t j = in the sense of empirical

risk minimization [20], i. e., to minimize functional

( )( ) ( )( ),t,aXt,eX1
p

1i

n

1j
jij

m

1i

n

1j
jij å Õå Õ

= == =

d+
œ
œ
ß

ø

Œ
Œ
º

Ø
d-=y

(3)

where ( )ij eX and ( )ij aX are values of feature jj for a object and an anti-object. The

first sum of (3) expresses the misclassification rate and it changes in the points
( )ijj eXt = . When jt is increased the sum is reduced and vice versa. The second

sum of (3) expresses the false alarm rate. It changes in the points ( )ijj aXt = and it

decreases when jt is increased, so if there exists a situation

( ) ( ) ( ) ( ) ( )2ijikj2ij1ij1ij eXaX...aXaXeX <££<  there is no reason to choose any

one of ( )ikj aX in order to minimize (3). Thus, it is enough to considerate only values

( )ij eX . If for any feature jj value ( )ijj eXt > is chosen ie will not be correctly clas-

sified. Hence, the following approach can be used to threshold selection. There has to
be selected a subset EE ˝¢ of objects E that should be correctly classified using
thresholds

( ) n,...,1jeXmint ij
Ee

j
i

==
¢˛

(4)

and it has to minimize sum (3). Using this definition the task of threshold selection
can be considered as a task of prototype selection (PS).

The PS task has a rather long history. In the works of P. E. Hart [9] and G. W.
Gates [8] the PS task was defined as a task of selection the most representative pro-
totypes for NNk - classification. To overcome the problems of classification quality
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a hypothesis of local statistical compactness was proposed [6]. There is a number of
algorithms in this framework [11], [3], [13]. Some of them e. g., [13] allow combina-
tion of features (genes) to generate new prototypes.

Other approaches can be borrowed from the feature selection task. In expression
(3) positive samples ie can be treated as a feature set and negative samples can be

used for feature selection. All of approaches in the framework of feature selection can
be divided into optimal and sub-optimal approaches. The optimal approach involves
exhaustive search [10] and mathematical programming approach [7]. The exhaustive

search of all available prototype combinations demands L2m recognition operations,
where m is the initial number of prototypes and L is the test sample volume. Evi-
dently it is impractical in case of (3) minimization. The mathematical programming

approach demands L2ma operations, where [ ]04.0...008.0˛a also is not applicable

for (3) optimization, since pmL += can be very large.

A sub-optimal approach supposes an existence of a finite set of optimal vertices in
a m-dimensional hyper-cube, where each vertex corresponds to a combination of the
prototypes. Let us assume, that binary vector { }m1 b,...,bb = corresponds to the initial

prototype set E . If 1bi =  prototype ie is included into optimal subset E¢ . Using

random generation of vector b and it substitution into (3) one can choose an optimal
E¢ , related to the minimum (3). If there are maxN optimal subsets E¢ with the same

value (3) the probability to reach one of them is m
max 2Np = and hence [15] it is

enough

( ) max
m N1ln2T h--= (5)

runs of a search algorithm to reach a global minimum with probability h . There are

two main directions in the framework of the sub-optimal approach, yielding a single
solution of the problem. They are deterministic and stochastic approaches [10]. The
stochastic approach [1] is based on a punishment and encouragement technique for
different subsets. It is similar to genetic approach [13] and actually converges to an
adaptive random search. The family of deterministic algorithms [12] can be repre-
sented for (3) optimization by forward and backward methods, which are based on
sequential deleting/addition of an appropriate prototype.

Sometimes as for 1-NN classification [15] functional (3) can be expressed analyti-
cally in respect to probabilities of prototypes present in the optimal subset, and the
optimal subset can be found using classical optimization procedures [3]. The purpose
of the work is to show that this approach is also possible for (3) minimization and so
one can derived an algorithm that combines the advances of the above mentioned
approaches.

In Section 2 an illustrative example for 1n = is given. In Section 3 an algorithm

for the common n-dimensional case is developed. Section 5 includes experiments and
conclusions.
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2. One-Dimensional Case

Let us consider an illustrative example of threshold selection. Let 1n = be the number

of features, { }m1 e,..,eE = is an initial prototype set, where prototypes are sorted up

so that ( ) ( ) ( )11mm e...ee j>>j>j - and { }p1 a,..,aA = is a set of negative objects

which are also sorted up. If threshold t  is chosen using (4) 1e is recognized correctly

if and only if Ee1 ¢˛ . Prototype 2e can be classified correctly if 1e or 2e are included

into E¢ , since ( ) ( )21 ee j£j and so on ie can be recognized if one of ij,e j £ is in-

cluded into E¢ . Using a set of Boolean variables { }m1 b,...,bb = , where each ib is

associated with ie the condition for ie correct classification can be written as

( ) j
i

1ji21i bb...bbef Ú =
=ÚÚ= and for negative object ( )

( ) ( )
j

ae
i baf

ij

Ú
j£j

= . Since the

aim is to recognize ie and not to recognize ia functional (3) can be rewritten as

( )
( ) ( )

å Úå Ú
= j£j= =

÷
÷
ł

ö
ç
ç
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i
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truebtruebb
ij

(6)

Let us assume that 1p0 i ££ is a fuzzy variable [19] associated with ie . If a lot of

subsets E¢ are obtained using a random generation, then ip means a probability that

prototype ie belongs to the optimal prototype subset. Hence, ii p1q -= means a

fuzzy variable associated with ie . Since prototypes are supposed to be independent

(6) can be rewritten using iq  as follows

( )
( ) ( )

å Õå Õ
= j£j= =

+
÷
÷

ł

ö

ç
ç

Ł

æ
-=y

p

1i ae
j

m

1i

i

1j
j

ij

qq1Q
(7)

The problem is to find maximum of the analytical function ( )Qy , where

{ }m1 q,...,qQ = . There are some properties of (7) that makes the problem easier. It

follows from (7) that every iq is represented in each multiplication not more than

once. Therefore for every iq

( )
0

q

q,...,q,q
2
i

m21
2

=
¶

y¶ (8)

Such a function can be called poly-line function [15]. Generally speaking, there is no
problem to calculate derivatives of the poly-line function. For instance, in case (7) the
expression for derivative is
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( ) ( )( ) ( )
å ÕÕå Õ

j‡j „j£j+==

-

=

+-=
¶

y¶

ki ijea kj;ae
j

i

1kj
j

m

ki

1k

1j
j

k

qqq
q

(9)

So calculations of the gradient almost do not demand additional operations and opti-
mization based the fastest gradient descent [5] can be used. From (9) it follows that

pqm k £¶y¶£-  that fulfils the Lipschiz condition what is necessary for the exis-

tence of the maximum (7). Let us prove that poly-line function can be represented as a

convex combination of its values in the vertices of m2 single hyper-cube as follows:

( ) ( )( )iBq,...,q m
12

0i im1

m

yl=y å -

=
,

(10)

where 10 i £l£ , 1
12

1i i

m

=lå -

=
, ( )Õ =

=l
m

1j ji iy and ( )iBm  is binary m-dimensional

decomposition of the integer value i , where i is one of the vertices and each bit
m,...,1j = of the decomposition with respect to the associated variable jq . Variable

( ) jj qiy = if bit j in ( )iBm is equal to one and ( ) jj q1iy -= otherwise.

Let us consider the following induction. If 1m = poly-line function (10) can be rep-
resented as ( ) baqq +=y or using decomposition q10 -=l , q1 =l so

110 =l+l and ( ) ( ) ( )q1bqbaq -++=y . Let us assume that it is correct for all

d,..,2,1m =  and let us try to prove that it is correct also for 1dm += . From (8) it

follows that

( ) ( ) ( )d121dd111dd1 q,..,qqq,..,qq,q,..,q y+y=y ++ , (11)

where 21 , yy  are poly-line functions that can be represented in form (10). Substitu-

tion (10) into (11) gives

( ) ( )( ) ( )( )[ ] ( ) ( )( )iBq1iBiBqq,q,..,q d21d

2

0i
i

2

0i
d2d11di1dd1

1d1d

y-l+y+yl=y +
==

++ åå
-- (12)

Thus, ( ) 21d1 1,q,...,q y+y=y , ( ) 2d1 0,q,...,q y=y and

( ) 1q1q
12

0i i
12

0i di1di

dd

=l=-l+l åå -

=

-

= + . Therefore all values in the hyper-cube are

limited within values in its vertices and so a global maximum of  (10) can be found
only in a vertex of hyper-cube, hence for optimization algorithm it is enough to con-
sider only values { }1,0q i ˛ .

The main corollary following from this property is that a variety of tasks that are

connected with optimization on the m2 hyper-cube, when the values of the functional
could be found in every vertex can be solved using poly-line function optimization.
However this corollary does not show how this poly-line function and its derivatives
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can be found except of trivial case (10) when all m2 values are known. In most of the
pattern recognition tasks functional (3) can be represented as sum of Boolean func-
tions as (6). Let us prove that if Boolean function ( )n1 x,...,xF is defined on all of

n2 sets of variables { }1,0x i ˛ , there exists a poly-line function ( )n1 p,...,py , where

ip is the probability that ix belongs to the optimal subset.

Indeed every Boolean function ( )n1 x,...,xF can be represented using its disjunc-

tive normal form ( ) CBxAxx,...,xF iin1 ÚÚ= , where B,A  and C do not depend on

ix . The expectation of ( )n1 p,...,py respected to ( )n1 x,...,xF is

( ) ( )( ) ( )( )C|BxAxPr1CPr11p,...,p iin1 Ú---=y . (12)

Since events Ax i and Bx i are independent (12) can be rewritten as

( ) ( )[ ] ( ) ( )[ ] ( ){ }C|BPr1C|BPrC|APrpCPr1p,...,p in1 ----=y . (13)

and hence, 0p 2
i

2 =¶y¶ . Since ix is an arbitrary variable (13) is correct for any

n,..,1i = . Formula (17) gives the technique to solve task (3) in common case.

3. Common n-Dimensional Case

Let us consider once more expression (2). Object ie will be correctly classified if

jijk XX
k

n

1j
i e&f

£=
Ú= is true. Using disjunctive form the same expression can be written also

for an anti-object as follows:

jijk XX
k

n

1j
ii e&Vaf

£=
==

(14)

If it is supposed that 1a,f ii = if (14) is true and zero if it is false, the maximum of

åå ==
+=y

p

1i i
m

1i i af is equal to minimum of (3). Any one of expressions (14) can be

simplified using common variable extraction: ( )cbaacab Ú=Ú and group elimina-

tion: aaab =Ú  and hence, (14) can be represented as

÷÷
ł

ö
çç
Ł

æ
Ú==

˛=˛
j

Ge

m

1kGe
ii e&&af

kj0j

,
(15)

where 0G is common group,  nm £ is reduced number of groups and kG is a partial

group.
Let us find derivatives of (15). Since inclusion of any ie does not depend on inclu-

sion exclusion of any other ij,e j „ into the optimal subset, it can be written:
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from (16) is follows that for any 0j Ge ˛
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For any kj Ge ˛ expression (15) in parenthesis can be written as

21jjGe

m

1k
FFeeR & kj

Ú==
˛=Ú , where ljl,GeeG1 eF & kljk „˛˚Ú= and

ljl,GeeG2 eF & kljk „˛¸Ú= . The derivative of R is

21212jjj FFFFF)0e(R)1e(RdedR -=Ú-===== and finally
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Since if , ia and their derivatives could be calculated using the same groups

kG computation of the gradient ( )n1 g,...,ggrad =y almost does not demand addi-

tional operations. It allows us to derive the following optimization algorithm, based
on gradient descent [5].

1. For every m,..,1i,f i = and p,..,1i,a i = obtain formulae (15) and save them via

groups ,..1,0k,G k =
2. Using random generation, choose an arbitrary vertex ( )n1 q,..,qQ = , where

{ }1,0q i ˛ .

3. For a chosen vertex Q calculate y and ( )n1 g,...,ggrad =y , where each de-

rivative ig is sum of (17), (18) for all if and ia .

4. Define next vertex ( )n1 p,..,pP = , where ii qp = if 1q i = and 0g i ‡ or

0qi = and 0g i £ . Otherwise ii q1p -= . If QP = (the same vertex) the pro-

cess is over and local maximum point is reached, otherwise the next step has
to be done.

5. If ( ) ( )
B

igmaxQP +y‡y , where B includes indices i for which ii qp „ as

P is the next vertex. Otherwise the next vertex is

( )n1jj1j1 q,..,q,q1,q,..,qY +- -= , where 
B

igmaxargj = .

6. Repeat Steps 2-5 for ( )hcN  random vertices, where h  is the required prob-
ability for the reaching a global maximum, typically 95.0=h . The value of

( )hcN can be found using results of [15] ( ) ( ) ( )h-+»h 1lnmp1Nc .
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7. Select the maximal value ( )i
N,..,1i

EmaxargE
c

y=¢
=

among ( )hcN  local maxima.

Following [15] the algorithm of local maximum search converges after no

more than gme steps 2-5, where ...577215.0=g is the Euler constant. The av-

erage number of steps is ( ) t÷
÷
ł

ö
ç
ç
Ł

æ t
= ò å

=

d
i

expmC
1

0

m

1i

i

.

4. Experiments

Let us consider for example the well-known task of automatic edge detection. The
purpose is to detect edges of houses and ignore edges of vegetation using aerial pho-
tos. At the first stage of image processing the convolution map

( ) ( ) ( )y,x,L,Cy,xImaxy,xM
L,

¢¢j*=
j

is obtained, where C is Canny’s function [4] of

scale of edge L , rotated to angle j . Calculation of ( )y,xM  is done using fast Fou-

rier transform. Threshold of ( ) 0My,xM ‡ is the first parameter. Other parameters can

be extracted by applying mask ( ) ( )y,xMmaxargL,C =j to the image ( )y,xI in point

( )y,x . The second parameter is minimal contrast ( ) ( )y,xIminy,xImaxC
Cy,xCy,x

0
˛˛

-= , the

third is minimal median value
( )

( )
( )

( )÷
ł
ö

ç
Ł
æ=

<>
y,xImed,y,xImedmaxm

0y,xC0y,xC
0 . The next

three parameters are minimal common standard deviation ( ) ( )[ ]Cy,x|y,xID0 ˛=s ,

maximal one-side standard deviation
( ) ( )[ ] ( ) ( )[ ]( )0y,xC|y,xID,0y,xC|y,xIDminm <>=s  and relative Student relation

( ) ( )[ ] ( ) ( )[ ] m0y,xC|y,xIE0y,xC|y,xIEt s<->= , where [ ]xE and [ ]xD are

expectation and standard deviation of variable x . Using this set of six parameters
7n = , 142m = positive and 180p =  negative points edge image of Fig. 1 was re-

ceived.

5. Conclusion

The further development of the maximization method of functions given on the verti-
ces of a n-dimensional single hyper-cube [15] opens the way to decision making in a
wide range of well-known pattern recognition tasks such as prototype feature selec-
tion, factor analysis, threshold estimation and so on. The only problem to be solved in
this way is to obtain a correct expression for Boolean functions and their derivatives
such as (15), (17), (18). Theoretically, following theorem (10) it always possible but
practically the derivation of these expressions is a special and sometimes complicated
task that requires deeply understanding of the being considered problem.
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.

Fig. 1.  The result of house edge detection using optimal threshold selection
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