
Scheduling the Computations of a Loop Nest

with Respect to a Given Mapping

Alain Darte1, Claude Diderich2, Marc Gengler3, and Frédéric Vivien4

1 LIP, École normale supérieure de Lyon, F-69364 Lyon, France.
2 Wannerstrasse 21, CH-8045 Zurich, Switzerland.

3 LIM, École Supérieure d’Ingénierie de Luminy, F-13288 Marseille cedex 9, France.
4 ICPS, Université Louis Pasteur, Strasbourg, Pôle Api, F-67400 Illkirch, France.

Abstract. When parallelizing loop nests for distributed memory paral-
lel computers, we have to specify when the different computations are
carried out (computation scheduling), where they are carried out (com-
putation mapping), and where the data are stored (data mapping). We
show that even the “best” scheduling and mapping functions can lead
to a sequential execution when combined, if they are independently cho-
sen. We characterize when combined scheduling and mapping functions
actually lead to a parallel execution. We present an algorithm which
computes a scheduling compatible with a given computation mapping,
if such a schedule exists.

1 Introduction

When parallelizing codes for distributed memory parallel computers, it is fun-
damental to develop efficient strategies to distribute the workload between pro-
cessors, and to distribute the data involved by these computations. Indeed, for
such machines, communications between processors and global synchronizations
are very expensive compared to the computation speed of the processors. The
problem is to find an acceptable trade-off between the two extreme solutions, a
one processor execution that involves no external communication, but sequen-
tializes all computations, and the maximal distribution of computations that
exploits all parallelism but whose performance may be damaged by too many
communications or synchronizations. In the field of automatic parallelization of
nested loops, this problem has been cut into two sub-problems known as the
mapping problem and the scheduling problem.

The first problem is the mapping, to the different processors, of the com-
putations (i.e., the loop iterations) and of the data elements involved by them.
This mapping is usually done as follows: a first step (the alignment phase) de-
fines a mapping on a δ-dimensional grid of virtual processors, the goal being
to minimize the amount of communication overhead due to non local data ref-
erences. The dimension δ is usually an input to this problem. Then, a second
step (the distribution phase) defines a mapping of the virtual processors onto
physical processors. This two-step scheme follows the same principle as in HPF.
The alignment phase can be viewed as a way to automatically derive HPF align

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 405–414, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

406 Alain Darte et al.

directives. Different formulations of the mapping problem were studied. The
mapping has been studied, in similar linear algebra frameworks, among others,
by Ramanujam and Sadayappan [11], Anderson and Lam [2], Bau et al. [3], Dion
and Robert [7], Feautrier [9], and Diderich and Gengler [6].

The second problem is the definition of a partial order for the execution of the
loop iterations. This order must respect the dependences in the code. It is used
to rewrite the code so as to make explicit the sequential steps (more or less the
global synchronizations) required by the semantics of the code. In the context of
HPF, scheduling can be viewed as a way to automatically detect independent di-
rectives. The main algorithms, using exact representations of data dependences,
are those of Feautrier [8], and Lim and Lam [10]. Allen and Kennedy [1], Wolf
and Lam [12], and Darte and Vivien [5] introduced parallelism detection and
scheduling algorithms that use a conservative approximation of the data depen-
dences.

Until now, both problems - the mapping and the scheduling problems - have
generally been studied separately. In most works on scheduling, the mapping is
supposed to fit well with the scheduling. However, there is no reason for a given
scheduling to lead to an efficient execution, if communication costs are not taken
into account. It is possible that the scheduling enforces some computations to be
executed by different processors, and that this “inherent” mapping involves very
expensive communications. In most works on mapping, the scheduling problem
is not addressed at all: the code is supposed to be compiled, for example as an
HPF program, following the owner computes rule (the processor that performs
an assignment is the processor that owns the memory cell that is assigned). In
the least favorable case, this may lead to very poor performances, since the order
in which computations are carried out is not optimized. There is indeed no reason
for a particular alignment to lead to a parallel execution of the computations,
if the scheduling problem is not taken into account. It is very possible that the
mapping enforces a sequential utilization of the processors when respecting the
data dependences in the code.

This paper is a first step in the direction of a simultaneous solution to both
the mapping and the scheduling problems. We illustrate, in Section 2, why both
problems cannot be solved independently in general. Then, in Section 3, we
formally state the problem of compatibility between mapping and scheduling
functions. In Section 4, we present our solution on an example. In Section 5,
we characterize the mappings for which there exists a compatible scheduling.
Finally, in Section 6, we describe an algorithm that effectively builds a compat-
ible scheduling for a given mapping, when one exists. We conclude with some
perspectives and extensions of our results.

Note: the missing proofs and explanations can be found in [4].

2 Compatibility of Mapping and Scheduling Functions

We consider here the (uniform) loop nest presented as Example 1. Suppose that
we are looking for a one-dimensional alignment of this loop nest, that is, we

Scheduling the Computations of a Loop Nest 407

consider the processors to be indexed as a vector of processors. As usually, we
search for an alignment which minimizes the cost of non local memory accesses.
If communicated data are not kept in memory for multiple reuse the optimal
1D-alignment maps the operations S(I,*) and the data elements A(I-1,*) to
processor P(I) which yields three local accesses A(I-1,J-1), A(I-1,J), and
A(I-1,J+1), and one remote to store A(I,J) (thereby breaking the owner com-
putes rule). This alignment is not compatible with the implicit (and shortest)
scheduling given by the DOSEQ-DOALL form: processor P(I) would compute all
computations S(I,*) at time-step I and would thus serialize them. Neverthe-
less, one can find schedules compatible with the given alignment: any schedule
of the form aI + bJ, with a > b > 0, is compatible and valid, like the function
which schedules S(I,J) at time-step 2 ∗ I + J. In terms of program transfor-
mation, this schedule is equivalent to a loop skewing and a loop interchange. In
this example, the linear part of the computation mapping is given by the vector
(1, 0) (i.e., (I,J) is mapped onto P(I)) and the linear part of the scheduling
by the vector (2, 1). The compatibility can be read from the fact that (2, 1) and
(1, 0) are linearly independent. However, if the scheduling DOSEQ-DOALL is im-
posed, we have to change the alignment. One possible solution is to map A(I,J)
on processor P(J) (thus with two non local accesses, instead of one). In this
example, either the scheduling or the alignment can be chosen optimal, but the
optimal scheduling and the optimal alignment are incompatible. There exist of
course cases where the optimal scheduling and alignment are compatible.

Example 1.
DOSEQ I = 1, N

DOALL J = 1, N

S A(I,J) = A(I-1,J-1) + A(I-1,J) + A(I-1,J+1)

ENDDO

ENDDO

3 Statement of the Problem

The problems of mapping and scheduling were both mainly studied in the affine
framework. In this framework, the mapping and scheduling functions are (multi-
dimensional) affine functions, and the virtual processors form a grid. We suppose
that we want to parallelize a loop nest while exhibiting δ degrees of parallelism.
The scheduling functions must be such that the δ dimensions of the mapping are
actually parallel: at each time step defined by the scheduling (in steady state)
some operations are executable independently; we want the mapping to project
this set of computations onto a set of processors of dimension δ. A schedule and
a computation mapping which satisfy this property are said compatible.

As illustrated by Example 1, an alignment that minimizes the communication
and a scheduling that expresses the maximum achievable parallelism can lead to
a completely sequential execution when used together. We thus have to consider
both problems simultaneously, or at least to solve one with respect to the other.
A general approach consists in computing a “good” alignment that is compatible

408 Alain Darte et al.

with at least one possible scheduling. Indeed, the constraints on the scheduling
are mandatory, while the constraints on the locality of the accesses are not. If an
alignment constraint cannot be met, this means that one access will be remote
and will slow down the execution speed but will not affect correctness. So, we
start by computing an optimal (optimal with respect to some communication
cost) alignment and we check whether there is a scheduling compatible with it. If
so, we keep both the alignment and the scheduling. On the contrary, we look for
the next best alignment, checking whether it is compatible with some scheduling
function, and so on. We thus have to characterize what we mean by compatible,
to characterize mappings for which there is at least one compatible scheduling,
and to provide an algorithm that builds such a scheduling when it exists.

3.1 Hypotheses and Notations

We assume that the alignment problem has been solved and we make no assump-
tion on the mapping we are given. We focus on the scheduling problem of a single
loop nest that we assume to be perfectly nested, of depth n, and containing s
assignment instructions. For each instruction S, the scheduling function assigns
a (multi-dimensional) execution date to each loop iteration and is written

ES : D −→ TS

i �−→ ES(i) = ES i + eS

where TS is the dS-dimensional time space associated with S (it is a subset
of ZdS). ES(i) is the time-step when iteration i of instruction S is scheduled
(time-steps are lexicographically ordered). Similarly, for each instruction S, the
mapping function assigns a processor to each loop iteration and is written

CS : D −→ P
i �−→ CS(i) = CS i + cS

where P is the virtual δ-dimensional grid of processors. CS(i) is the processor
on which iteration i of instruction S is executed. All matrices CS and ES are
assumed to be of full row rank.

There exist different equivalent criteria to define compatibility. We can say
that the scheduling function ES and the mapping function CS of an instruction
S are compatible if and only if at any time any virtual processor is supposed to
execute a limited number of iterations that does not depend on the loop bounds
(that may be parameterized). Mathematically, this is equivalent to:

rank
(

ES

CS

)
= dS + δ. (1)

Indeed, if this rank is not dS + δ, there is a nonzero vector x such that ES x = 0
and CS x = 0. Consequently, all iterations i′ = i + λx are performed at the
same time ES(i) and on the same virtual processor CS(i), whatever the integer
λ. This matrix constraint is well known when applying loop transformations.
Here the first dimensions correspond to time, the last dimensions to space.

Scheduling the Computations of a Loop Nest 409

3.2 The Underlying Scheduler

In this paper, we solve our problem for a particular scheduling algorithm called
Darte-Vivien and fully detailed in [5]. This algorithm generalizes both the
Allen-Kennedy algorithm [1] and the Wolf-Lam algorithm [12]. It works
on an over-approximation of dependences by polyhedra. Here, we only state
the details of Darte-Vivien needed to understand the rest of this paper. This
algorithm produces, for each statement S, a multidimensional affine function:
(S, i) �→ (E1

Si + ρ1
S , . . . ,E

dS

S i + ρdS

S), where dS denotes the dimension of the
schedule for S. Different statements may have different schedule dimensions.
Briefly speaking, Darte-Vivien computes recursively some strongly connected
subgraphs denoted Gu(S, i). The graphs Gu(S, i) contain some nodes which cor-
respond to statements and which are called actual, and some other nodes which
are called virtual. If i ≤ dS , the graph Gu(S, i) is defined as the strongly con-
nected component, containing S, of the subgraph (Gu(S, i− 1))′ of Gu(S, i− 1)
generated by all the edges that can not be satisfied by the first (i−1) dimensions
of any schedule. If a statement T is in Gu(S, i), then Gu(S, i) = Gu(T, i) and
statements S and T have the same i-th linear part Ei

S in their schedules. If C
is a set of edges of Gu(S, i), w(C) is the sum of the dependence weights along
C, and l(C) is the number of edges in C whose tail is an actual node and which
are satisfied by the i-th dimension of the schedule. Then the linear part of the
schedule of any statement S is easily characterized: the set of admissible Ei

S is
the polyhedron P(S, i): {X | ∀C cycle of Gu(S, i), Xw(C) ≥ l(C)}. Conversely,
any collection of vectors Ei

S ∈ P(S, i) such that Ei
S = Ei

T for each statement T
in Gu(S, i) is the valid linear part of a schedule. Thus, we can explicit the set of
all possible schedules (up to some regularity conditions). In this set we will look
for one schedule compatible with the given mapping. Finally, let VS(S, i) be the
vector space generated by P(S, i) (VS(S, i) (VS(S, i+ 1)).

4 Example

In this section, we illustrate on an example how to build a schedule compatible
with a given computation mapping. Here we chose a simple example for clarity. It
illustrates the main lines of our technique but does not exhibit all the complexity
of the problem, which appears only for some loop nests of dimension at least 3.
The existence condition of a compatible schedule is presented in Section 5. The
formal algorithms used to build such a schedule are presented in Section 6.

The Mappings. Figure 1 presents Example 2 and its (uniform) dependences.
Here we look for a one-dimensional schedule and a one-dimensional mapping. We
assume that, possibly because of other loop nests, data a(I,J) and operation
S1(I,J) are mapped onto processor I (the linear part of the mapping is then
vector CS1 = (1, 0)), and data b(I,J), data c(I,J), and operation S2(I,J)
are mapped onto processor J (the linear part of the mapping is then vector
CS2 = (0, 1)). The linear part of the schedule must be linearly independent of
the mapping directions (Condition (1)). As the mapping functions are (0, 1) and
(1, 0), we cannot use a schedule whose linear part is parallel to one of the axes.

410 Alain Darte et al.

Example 2.
DO I=1,N

DO J=1,N

S1 a(I,J) = b(I-1,J-1)+c(J,I)

S2 b(I,J) = a(I-1,J)+a(I,J-1)+c(I,J)

ENDDO

ENDDO

1
0

0
1

1
1

S2S1

Fig. 1. Code and dependence graph for Example 2.

Constraints on the Schedule. Let vectorX and constants ρS1 and ρS2 define a
one-dimensional affine schedule: Sk(I,J) is then scheduled at time X(I, J)t+ρSk

,
k ∈ {1, 2}. The three dependences give three constraints on this schedule:

– S1(I,J) depends on S2(I-1,J-1). Therefore, (X(I, J)t + ρS1) must be
greater than 1 + (X(I− 1, J− 1)t + ρS2), i.e., X(1, 1)t + ρS1 − ρS2 ≥ 1.

– S2(I,J) depends on S1(I-1,J). Therefore, X(1, 0)t + ρS2 − ρS1 ≥ 1.
– S2(I,J) depends on S1(I,J-1). Therefore, X(0, 1)t + ρS2 − ρS1 ≥ 1.

From the previous set of constraints, we infer that the vector X = (x, y) is the
linear part of a valid one-dimensional schedule if and only if it belongs to the
polyhedron: P = {(x, y) | 2x+ y ≥ 2 and x+2y ≥ 2}. This polyhedron generates
the vector space VS = Q2 .

The Scheme. A schedule compatible with the mapping is built in three steps:

1. We build a vector F∈VS satisfying Equation (1) for both S1 and S2 (VS⊃P).
2. From F, we build a vector E∈P satisfying Equation (1) for both S1 and S2.
3. We compute the constants ρS that, associated with E, define a valid schedule.

Building a Solution in the Vector Space. We need a vector in the vec-
tor space VS = Q2 which belongs neither to C(S1) = Span{(1, 0)} nor to
C(S2) = Span{(0, 1)}. We consider a vector in VS, but not in C(S1) (resp.
C(S2)), say X1 = (0, 1) (resp. X2 = (1, 0)). Neither of them is a solution as
X1 ∈ C(S2) and X2 ∈ C(S1). But any other vector on the line defined by X1

and X2 is independent with both CS1 and CS2 , e.g. (X1 + X2)/2 = (1/2, 1/2).
To get an integral solution, we scale this vector and we obtain: F = (1, 1).

Building a Solution in the Polyhedron. We know a vector F in the vector
space VS = Q2 which is linearly independent with both the vectors CS1 and
CS2 . What we need is a vector E of P with the same property. In fact (1, 1) be-
longs to P and our problem is already solved! To show how to proceed when we
are not so lucky, suppose we found the vector (1,−1) of VS, which also belongs
neither to C(S1) nor to C(S2). First we consider an arbitrary vector P of P, e.g.
P = (1, 1) (such a vector can easily be found by linear programming [5]). We
want to add λ times the vector P to F so as to obtain a vector E = F + λP
which belongs to P and is linearly independent with the vectors CS1 and CS2 . As
P = {(x, y) | 2x+ y ≥ 2 and x+ 2y ≥ 2}, condition (F + λP) ∈ P is equivalent
to λ ≥ 1. We cannot choose λ = 1 which leads to E = (2, 0) which is collinear

Scheduling the Computations of a Loop Nest 411

with CS1 . We can take λ = 2 which gives the solution E = (3, 1). Note that this
mechanism gives in general a solution, not an optimal solution.

Computing the Constants. We have built the linear part of our schedule,
say E = (1, 1), but we still need the constants. The constants can be computed
using a shortest-path algorithm. In our example, this is not needed: the inner
product of (1, 1) with each distance vector is already greater than 1, so we can
take ρS1 = ρS2 = 0. S1(I,J) and S2(I,J) are both computed at time I+J.
At time T, processor P only has to execute the two operations S1(P,T-P) and
S2(T-P,P). Here is the code corresponding to the whole transformation:

DOSEQ T = 2, 2N

DOALL P = max(T-N,1), min(N,T-1)

S1 a(P,T-P) = b(P-1,T-P-1)+c(T-P,P) /* on processor P */

S2 b(T-P,P) = a(T-P-1,P)+a(T-P,P-1)+c(T-P,P) /* on processor P */

ENDDO

ENDDO

5 Existence of a Compatible Schedule

As stated in Section 3, we need to find, for each statement S and each integer i
in [1, dS], a vector Ei

S in P(S, i) such that the vectors E1
S, ...,E

dS

S ,C1
S , ...,C

δ
S are

linearly independent and such that Ei
S = Ei

T for each statement T in Gu(S, i).

Lemma 1 (Existence of a Solution for Darte-Vivien).
Let C(S) denote the vector space generated by the vectors {C1

S, ...,C
δ
S}. We can

associate to each statement S a sequence of vectors E1
S , ...,E

dS

S such that:

1. Ei
S ∈ P(S, i);

2. all the statements T of Gu(S, i) have the same i-th vector Ei
S;

3. the vectors E1
S , ...,E

dS

S ,C1
S , ...,C

δ
S are linearly independent;

if and only if, for each statement S, each integer i in [1, dS],

i+ dim(VS(S, i) ∩ C(S)) ≤ dim(VS(S, i)) (2)

This lemma gives a necessary and sufficient condition for the existence of a sched-
ule compatible with a given computation mapping, the underlying scheduling
algorithm being Darte-Vivien. This condition states the existence of a com-
patible schedule iff there is one among those that Darte-Vivien can build. One
could wonder whether there are examples for which there exist affine schedules
compatible with the given computation mapping, but no such schedules among
those Darte-Vivien can build. In fact, this cannot occur when dependence dis-
tances are approximated by polyhedra [4]. Condition (2) is a general condition.

412 Alain Darte et al.

6 The Algorithm

The algorithm, which builds the desired schedule when Condition (2) of Lemma 1
is fulfilled, proceeds in three steps: 1) building of the vectors Fi

S ∈ VS(S, i)
satisfying the desired properties; 2) from the vectors Fi

S , building of the vectors
Ei

S ∈ P(S, i) satisfying the desired properties; 3) computing the constants ρi
S

that, associated with the vectors Ei
S , define a valid schedule.

6.1 Construction of the Vectors

In the algorithms listed below, each vector space is defined by one of its basis.

– Algorithm Build Vectors takes as inputs the vector spaces VS(S, i) and
C(S), and builds the desired Fi

S ∈ VS(S, i) iff Condition (2) is fulfilled.

Build Vectors

For i = 1 to maxS∈Gu dS do
For each subgraph Gu(S, i) do

Let T1, ..., Tp be the p statements in Gu(S, i).
x =In&Out(Span(F1

S , ...,F
i−1
S)+C(T1), ...,Span(F1

S , ...,F
i−1
S)+C(Tp);

VS(S, i)).
For each T in Gu(S, i) let Fi

T = x.

– Algorithm In&Out takes as input some subspaces of Qn , F1, ..., Fm, and E.
It outputs a vector x ∈ (E \ ∪m

j=1Fj).

In&Out(F1, ..., Fm;E)
x1 = Find Point Not In(F1, E).
For i = 2 to m do
y = Find Point Not In(Fi, E).
H =

{
λxi−1 + (1 − λ)y | λ ∈ {

0, 1
i , ...,

i
i

}}
Choose xi in H such that: ∀j ∈ [1, i], Point Is Not In(xi, Fj) = True.

Return xm.

– Algorithm Find Point Not In takes two vector subspaces F and E and
outputs a vector of E \ F , e.g. by testing all the vectors of a basis of E.

– Algorithm Point Is Not In takes a vector x and a vector space F and
outputs True if and only if x /∈ F . This can be done by Gaussian elimination.

6.2 Construction of the Schedule Linear Parts

Preprocessing. For each statement S we complete {F1
S , ...,F

dS

S ,C1
S , ...,C

δ
S} in

a set of n linearly independent vectors using some vectors L1
S , ...,L

n−δ−dS

S . We
build the matrix MS,0 below, where FS , resp. LS , resp. CS , is the matrix whose
i-th row vector is the vector Fi

S , resp. Li
S , resp. Ci

S . For each graph Gu(S, i) we
build (e.g. by rational linear programming [5]) a solution P(S, i) of the system:{

e = (xe, ye) ∈ (Gu(S, i))′ ⇒ P(S, i)w(e) + ρye − ρxe ≥ 0
e = (xe, ye) /∈ (Gu(S, i))′ ⇒ P(S, i)w(e) + ρye − ρxe ≥ 1 (3)

Scheduling the Computations of a Loop Nest 413

MS,0 =


 FS

LS

CS




We want all statements included in Gu(S, i) to have the same i-th linear part,
and this linear part to be a point of P(S, i). For that, we add to the i-th row of
each matrix MT,i the same adequate number of times the vector P(S, i).

Algorithm to Build Linear Parts in P(S, i) from Linear Parts in VS(S, i)

For i = 1 to maxS∈Gu dS do

– For each subgraph Gu(S, i) do
1. Find an integer ν s.t. (Fi

S +ν P(S, i)) belongs to P(S, i), i.e. s.t. there exist
some constants ρS satisfying for each edge e=(xe, ye)∈Gu(S, i):{
e∈Gu(S, i)′ or xe is virtual ⇒ (Fi

S +νP(S, i))w(e)+ρye−ρxe ≥0
e /∈Gu(S, i)′ and xe is actual ⇒ (Fi

S +νP(S, i))w(e)+ρye−ρxe ≥1

2. For each T in Gu(S, i), let M′
T,i−1 be equal to MT,i−1 plus the vector

P(S, i) on the i-th row. Let γT = det(MT,i−1) and γ′T = det(M′
T,i−1).

3. Compute the set: Γ =
{

−γT

γ′
T−γT

∣∣∣T ∈ Gu(S, i), γT �= γ′T
}

4. Let λ be an integer s.t. λ ≥ ν and λ /∈ Γ . For each statement T of Gu(S, i),
let MT,i be equal to MT,i−1 plus λ times the vector P(S, i) on the i-th
row. Condition λ ≥ ν ensures that the i-th row of MT,i belongs to P(T, i),
while condition λ /∈ Γ ensures that MT,i is non singular.

For each statement S, the first dS rows of the matrix PS,dS define the dS linear
parts E1

S , ...,E
dS

S of its schedule.
Note: the missing proofs and explanations can be found in [4].

6.3 Computation of the Constants

We have the linear parts of our schedule but not yet the constants. To build
them, we process each graph Gu(S, i) as follows (see [5, Section 7.1.2]):

1. Weight any edge e = (xe, ye) of Gu(S, i) with a new weight w′(e) = Xw(e)−
l(e), where l(e) = 1 if xe is actual and if e /∈ (Gu(S, i))′, and l(e) = 0
otherwise.

2. Add a node S0 and a zero-weight edge from S0 to each node of Gu(S, i).
3. Use a shortest path algorithm and let the constant ρi

S be the opposite of the
weight of the shortest path from S0 to S.

6.4 Algorithm Complexity

Algorithm Build Vectors has a complexity of O(s2n4(n+ s2)). The building
of the linear parts has a complexity of O(sn4 + Z), where Z is the complexity
of Darte-Vivien (see [5] for details). For the constant computations see [5].

414 Alain Darte et al.

7 Conclusion

We have presented an algorithm that produces, for a perfect loop nest, an affine
scheduling compatible with a given affine mapping of its computations. When
the representation of the dependences is a polyhedral approximation of distance
vectors, our algorithm succeeds whenever such an affine schedule exists. The
cases of success are defined by a necessary and sufficient condition which can
easily be checked. In this paper, in order to simplify things (!), we limited our-
selves by using an approximation of dependences by polyhedra. But with a few
tricks [4], our method can actually be extended to Feautrier’s algorithm [8]. This
algorithm works on an exact representation of dependences. Exact dependence
analysis is feasible for static control programs with affine array access functions,
which is the only type of programs most mapping algorithms work with.

References

[1] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector
form. ACM TOPLAS, 9(4):491–542, Oct. 1987.

[2] J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality
on scalable parallel machines. ACM Sigplan Notices, 28(6):112–125, June 1993.

[3] D. Bau, I. Kodukula, V. Kotlyar, K. Pingali, and P. Stodghill. Solving alignment
using elementary linear algebra. In K. Pingali, U.Banerjee, D. Gelernter, A. Nico-
lau, and D. Padua, editors, Languages and compilers for parallel computing - 7th
international workshop, volume LNCS 892, pages 46–60. Springer Verlag, 1994.

[4] A. Darte, C. Diderich, M. Gengler, and F. Vivien. Scheduling the computations
of a loop nest with respect to a given mapping. Technical Report 00-04, ICPS,
University of Strasbourg, France, 2000.

[5] A. Darte and F. Vivien. Optimal fine and medium grain parallelism detection
in polyhedral reduced dependence graphs. Int. J. Parallel Programming, 25(6),
1997.

[6] C. G. Diderich and M. Gengler. The alignment problem in a linear algebra frame-
work. In Proceedings of the Hawäı International Conference on System Sciences
(HICSS-30), Software Technology Track, pages 586–595, Wailea, HI, Jan. 1997.
IEEE Computer Society Press.

[7] M. Dion and Y. Robert. Mapping affine loop nests: New results. In B. Hertzberger
and G. Serazzi, editors, High-Performance Computing and Networking, Interna-
tional Conference and Exhibition, volume LCNS 919, pages 184–189. Springer-
Verlag, 1995.

[8] P. Feautrier. Some efficient solutions to the affine scheduling problem, part II:
multi-dimensional time. Int. J. Parallel Programming, 21(6):389–420, 1992.

[9] P. Feautrier. Towards automatic distribution. Parallel Processing Letters,
4(3):233–244, 1994.

[10] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing synchroniza-
tion with affine transforms. In Proceedings of the 24th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM Press, 1997.

[11] J. Ramanujam and P. Sadayappan. Compile-time techniques for data distribution
in distributed memory machines. IEEE TPDS, 2(4):472–482, Oct. 1991.

[12] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to
maximize parallelism. IEEE TPDS, 2(4):452–471, Oct. 1991.

	Introduction
	Compatibility of Mapping and Scheduling Functions
	Statement of the Problem
	Hypotheses and Notations
	The Underlying Scheduler

	Example
	Existence of a Compatible Schedule
	The Algorithm
	Construction of the Vectors
	Construction of the Schedule Linear Parts
	Computation of the Constants
	Algorithm Complexity

	Conclusion

