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Abstract. To solve large systems of linear equations with sparse
matrices in parallel, there are three factors that contribute to the com-
puting time: the numerical efficiency, the floating point performance,
and the scalability. In this paper, we mainly consider the floating point
performance. For large linear systems, multi-level techniques, like the
cascadic conjugate gradient method (CCG), require significantly less
operations than single-level methods. On the other hand, they are
considered less efficient with regard to performance and limited in
parallelization. Therefore, to achieve an efficient, massively parallel
multi-level solver, we used the fastest available communication and
revised the whole computation. The performance improvements led to
a parallel solver which is able to solve a linear system with more than
16 million unknowns in 0.77 seconds on 256 PEs of Cray T3E. This
corresponds to an overall performance of 10.34 GFLOPS.

Keywords. Floating Point Performance, RISC Processors, Matrix
Sparsity Pattern, Cascadic Conjugate Gradient Method

1 Introduction

The solution of large systems of linear equations with sparse matrices plays
an important role in many simulation applications and in some of the so-called
‘grand challenge’ problems. Three components can be identified which determine
the necessary time to solve a linear system in parallel: the numerical efficiency,
the floating point performance, and the scalability.

First of all, one should examine whether it is possible to apply a multi-level
solver – like multigrid or cascadic conjugate gradient method – to the investi-
gated problem. Single-level solvers – like Gauss-Seidel – most often converge
poorly for large linear systems. Though the floating point performance and the
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parallel efficiency is sometimes better, this cannot compensate for the numeri-
cal deficiencies. The usually better parallelism is explained by the larger ratio
between the number of operations and the size of transferred data between the
processors because multi-level methods work on several linear systems with dif-
ferent dimensions.

Multi-level techniques use single-level methods on the individual levels.
Therefore, the floating point performance on several levels is similar to that of
the single-level techniques used. On the smaller linear systems, the performance
is sometimes even higher because of better cache reuse. On the other hand, the
additional operations on multi-level techniques – the transfer operations between
the grids – perform poorly due to indirect and irregular memory accesses. Nev-
ertheless, the computing time of the transfer operations is usually quite short.
For that reason, a multi-level technique can sometimes perform similarly as the
containing single-level method.

The systems of linear equations, which we considered in our investigations,
originate from the discretization of the ground-water flow equation. The strong
variation of the parameters of this partial differential equation causes strongly
varying coefficients in the matrix of the linear system. Despite the variation of
the coefficients and the largeness of the linear system, the cascadic conjugate
gradient method with an algebraically generated hierarchy of linear systems
enables good convergence [5].

The paper is organized as follows. In section 2, we consider different types
of sparse matrices. For these matrix types, the counter-movement of the appli-
cability of discretization schemes and the possibilities of performance tuning is
shown. The communication expense is covered in the subsequent section. Sec-
tion 4 presents the optimization targets for the arithmetic part used in the
parallel solver. Different implementations of the matrix vector multiplication
are compared in section 5. The last section describes the optimization of the
conjugate gradient method.

2 Sparsity Patterns of Matrices

Often, systems of linear equations with sparse matrices originate from discretized
partial differential equations. The type of discretization determines the sparsity
pattern of the matrix. In this paper, we distinguish three types of matrices.

Structured Matrices: These matrices (fig. 1a) are characterized by a set
of constants C = {c1, c2, . . . cm} so that j − i /∈ C → aij = 0. This means
that only matrix elements with a certain distance from the diagonal can be
non-zero. Matrices of this form arise in equidistant discretizations of rect-
angular or cuboid domains. Matrix vector products with this type can be
programmed with simple loops using constant offsets. Therefore, different
optimizations like loop unrolling and blocking (cf. [4]), are applicable.

Locally Structured Matrices: For the second type of sparsity, the expres-
sion ‘locally structured’ matrices (fig. 1b) is introduced. Here, several sets
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of differences C1, C2, . . . can be defined where each set is valid for a certain
interval of lines. The sparsity pattern can be expressed in an implementation
by structural specifications that correspond with these intervals of matrix
lines. This representation at least allows floating point optimizations within
the intervals. Locally structured matrices originate, for instance, from the
equidistant discretization of domains with irregular borders.

Unstructured Matrices: The most general kind of sparse matrices are un-
structured matrices (fig. 1c, from [6]). No assumptions about the sparsity
pattern are made here. Thus, arbitrary discretizations are permitted. On
the other hand, each matrix element must be treated separately in a matrix
vector multiplication and the performance is lower for that reason. Never-
theless, discretizations that are adapted to the problem are often necessary
and the lower speed is justified by a significant reduction of the equation
size.
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Fig. 1. Types of sparsity patterns

In our work, we consider locally structured matrices because of their impor-
tance in ground-water flow simulations. The two other matrix types are used in
numerous other projects (structured matrices e.g. in [1] and unstructured ones
e.g. in [10]).

3 Communication Expense

The computation of one step of the conjugate gradient method involves one
exchange of the inner borders in the matrix vector multiplication and two re-
ductions in dot products. Further exchanges of the inner borders are necessary
in some preconditionings (e.g. incomplete Cholesky factorization). Moreover,
the implementation of the termination criterion requires an additional reduction
unless the values of the conjugate gradient method (CG) are used (cf. [2]).

The data dependencies in the conjugate gradient method allow the simul-
taneous reduction of the termination criterion and of the first dot product in
the next iteration step of the CG method. Since the communication latency is



An Efficient Parallel Linear Solver with a CCG Method 787

rather large compared to the bandwidth on every parallel computer and com-
puter network the global reduction of two values takes roughly the same time as
the reduction of one value.

To minimize the expense of the partitioning, the domain (on the fine grid)
was decomposed by coordinate section in Px × Py subdomains on P = Px ·
Py processors. The decomposition was passed to the coarser grid where the
boundaries were slightly adapted to conserve the load balance (cf. [5]).

A significant decrease of the communication time can sometimes be es-
tablished by replacing portable communication procedures with proprietary
ones. Figure 2 shows the time line, visualized by VAMPIR [7], of two itera-
tions of the CG-method on a linear system with about 16,000 unknowns on
Cray T3E. In this implementation based on the MPI library, the interproces-
sor communication, represented by lines, is the dominant part. Implementing
the communication with equivalent shmem functions (shmem double get and
shmem double sum to all) clearly shortens the communication time so that the
execution time of one iteration is reduced from 1.437ms to 0.632ms (figure 3).

            

Fig. 2. Two iteration steps with MPI communication

Although solving a linear system with 16,000 unknowns is not very interesting
to parallel computing, there are two reasons for accelerating the communication.
Firstly, the communication becomes more important for increasing numbers of
processors, even for large problems, and secondly, multilevel solvers spend most
of their time on communication (delay mainly due to latency issues) while solving
the coarse grid equations. Since we are interested in multilevel solvers on many
processors, an optimized communication is very important.

4 Optimization Targets to Improve the Floating Point
Performance on RISC Processors

To increase the floating point performance of a RISC processor for our applica-
tion, we followed four goals. We focused on the DEC Alpha 21164 of Cray T3E,
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Fig. 3. Two corresponding iterations with shmem communication

nevertheless, the optimization steps should be helpful on other superscalar RISC
processors, too.

Decrease of the Memory Accesses by Cache Reuse: The main bottle-
neck of fast RISC processors is the rather slow main memory access. On Cray
T3E, for instance, processors with 300-600MHz and 600-1200MFLOPS face
main memories with 75MHz. To yield floating point performance near peak
performance, it is necessary (but not sufficient) to reuse data in registers or
in the primary cache as often as possible so that memory accesses are not
relevant to the execution time. Seidl [9] has shown by examples that the ac-
celeration of algorithms can be predetermined from the reduced probability
of memory accesses.

Consecutive Memory Accesses in Increasing Order: Loading a data
item into the cache is realized by loading a certain amount of memory, called
cache line, which is typically larger than the data item itself. If referred sub-
sequently, the next data items are already in the cache with some probability.
On Cray T3E, additional benefit can result from the stream buffers. This is
a mechanism that looks for increasing memory accesses and, if recognized,
loads successive cache lines into a special register where they can be rapidly
loaded into the second level cache (cf. [8]). Operations on large vectors are,
from the authors’ experience, typically computed twice as fast with stream
buffers.

Independent Operations: Implementations with many independent opera-
tions allow the efficient use of multiple pipelines. The number of independent
operations is very often increased by loop unrolling.

Reduction of Divide Operations: The divisions of floating point num-
bers are not as fast as additions and multiplications on most processors. In
addition, they cause pipeline blocking on the DEC Alpha 21164.
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5 Matrix Vector Multiplication

The importance of the matrix vector multiplication is based on the fact that in
our solver half of the floating point operations are performed in this section.

In the original implementation, the multiplication was calculated in two steps.
At first, the result vector was initialized with the product of the input vector
and the diagonal of the matrix. Then, the components of the result vector were
incremented by non-zero matrix entries outside the diagonal multiplied with the
elements of the input vector. In this way, sub-vectors of maximal length were
used and the loop overhead was minimized.

As an example, we considered a multiplication with a vector containing
about 126,000 elements and an appropriate matrix, so that about 1,134,000
floating point operations had to be executed. The original implementation re-
quired 34.9ms to compute the multiplication on the 600MHz processor applying
stream buffers. This corresponds to 32.5MFLOPS.

While in the second section approximately 8 floating operations per unknown
were computed in relation to 4 to 6 memory accesses (depending on the extension
and form of the domain and the size of the second level cache), there are three
memory accesses per unknown with only one operation performed in the first
section. This unfavorable ratio between operations and memory accesses resulted
in a very slow computation. Once more looking at Cray T3E, on the 600MHz
processor the initialization step performed with 8.4MFLOPS without stream
buffers where the performance was only augmented to 18.3MFLOPS by using
the stream buffers. To emphasize the importance of the memory bandwidth, the
same operation was performed with 7.5MFLOPS and 15MFLOPS respectively
on a 300MHz processor.

To avoid this slow computation, the initialization of the output vector was
included in the incrementing step. The product of the diagonal and the input
vector was then only computed for those elements where the output vector was
incremented in the next moment. This modified implementation saved 2 memory
accesses per unknown for loading the vectors (unless the sub-vectors involved in
the incrementing section were too large for the cache) but additional overhead
was produced to control which components of the result vector must be initialized
and due to dividing the initialization into several sections. On the example prob-
lem, this implementation took 26.9ms for the multiplication (42.2MFLOPS).

Experiments with structured matrices have shown that matrix vector mul-
tiplications were significantly faster if the elements of the result vector were
computed explicitly (v[i]= a[i][i]*q[i] + a[i][j]*q[j] + · · ·) instead of
by incrementing as described above. For locally structured matrices, it is more
complicated to apply the explicit calculation. In comparison with the former
implementation, the loops are shorter and they need more preparations. Alto-
gether, the loop overhead is more than doubled, although the computing time is
decreased by 59.5 per cent to 14.1ms on the example problem (80.2MFLOPS).

Another performance optimization is applicable if the multiplication is part
of the conjugate gradient method. There, the dot product of the input and the
output vector is used. Since two memory accesses are necessary per floating point
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operation this calculation is slow (there is a bottleneck on the scalar value, too).
For the considered vector size, the dot product requires 5.1ms.

Including this dot product in the matrix vector multiplication, as proposed
in [3], saves the memory accesses. Consequently, most of the computing time for
the dot product is saved (the scalar value is less critical here because several
floating point operations are performed between two increments).

In a parallel implementation, attention has to be paid to the inner bound-
aries. To enable a multiplication with a symmetric matrix, vector components
q[j] that are assigned to other processors are considered in an extra computa-
tion (v[i]+= a[i][j]*q[j]). In this section, the dot product is calculated as
dot+= a[i][j]*q[j]*q[i] while the computation with the symmetric part of
the matrix is dot+= v[i]*q[i]. Altogether, the execution time of the combined
computation was 14.7ms which corresponds to 93.9MFLOPS.

6 Iteration Steps of the Conjugate Gradient Method

The conjugate gradient method itself only consists of vector operations. Since
vector operations are characterized by a poor ratio between the number of float-
ing point operations and the number of memory accesses, the performance is
rather low. To improve this ratio, the vector operations have to be combined to
compute as many floating point operations as possible on a vector component
while it resides in the cache. Whereas calculations depending on a vector can
start as soon as a part of the vector is available, calculations depending on a
scalar value resulting from a vector reduction must wait until the reduction is
finished.

Although the conjugate gradient method is well known, we present the iter-
ation step as a C++ program in table 1 for a better illustration. The startup
phase is omitted because it does not provide further optimization opportunities.
The extension of the CG method to the cascadic conjugate gradient method is
quite simple. Starting on the coarsest grid, the CG method is computed on every
grid. When the termination criterion is fulfilled on a certain grid the vector x
is interpolated to the next finest grid and is used as an initial guess for the CG
method on that grid.

The program can be implemented in this form by using templates in C++.
The use of templates is critical because each operator is computed separately.
For this reason, temporary vectors are required, which produce overhead for
additional memory allocations and memory accesses, unless advanced numerical
template libraries like Blitz++ [11] are used.

In the calculation of dot products, the scalar value represents a bottleneck for
superscalar processors. Since the addition is associative (in exact arithmetic), the
products of the vector components can be summed into several values within the
loop and added at the end. For the vector size considered in the previous section,
the computing time was reduced from 5.1ms to 3.1ms, which corresponds to
an increase of the performance from 49.2MFLOPS to 77.8MFLOPS. In our
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vector<double> x, v, q, r, w;
double alpha, delta, gamma, gamma old;

int cg iteration ()
{ double delta local, gamma local;

q= (gamma/gamma old) ∗ q + w;
exchange inner borders (q); // requires communication
v= a mult (q);
delta local= dot (v, q);
delta= reduce (delta local); // requires communication
alpha= gamma / delta;
x+= alpha ∗ q;
r-= alpha ∗ v;
w= thepc→f (r); // chosen preconditioning (possibly requires comm.)
gamma local= dot (w, r);
gamma= reduce (gamma local); // requires communication
return thepc→f (); // chosen termination criterion (usually requires comm.)

}

Table 1. Iteration of the conjugate gradient method

investigations, changing the order of the summation did not noticeably influence
the exactness of the floating point arithmetic.

Inlining a particular preconditioning and a particular termination criterion
saves the function calls and allows further optimization. For the investigated
systems of linear equations, the diagonal preconditioning w = D−1r represented
the best compromise between the numerical properties and the computational
and communicational expense. Among different termination criteria, it has been
shown that for equations with strongly varying coefficients, the diagonally pre-
conditioned residualD−1r enables the best error estimation. So, the commitment
to this combination permits the elimination of redundant calculations.

Since the element-wise division is rather slow and the vector components are
divided by constant values, it is worthwhile to store the inverse of the diagonal
matrix. An element-wise multiplication then replaces the element-wise division
at the price of an extra vector and some additional computation before starting
the linear solver.

To reduce the number of memory accesses, the calculations of r-= alpha ∗
v, w= adinv ∗ r, dot (w, r) and dot (w, w) can be combined in one loop,
where adinv is a vector with adinv[i] = 1/aii. Of course, this loop can be
unrolled, too. With the simultaneous reduction of the local computations of
dot (w, r) and dot (w, w) and the modifications described above, the itera-
tion of the conjugate gradient method looks as shown in table 2.

As an example, a linear system with more than 16 million unknowns was
solved on 32 processors. Here, the execution time of a single iteration step on
the finest level was decreased from 432ms in the original version to 206ms in
the accelerated one. Furthermore, it has been shown that the variations of the
computing time between the different processors gain in significance due to the
performance tuning. Although the number of operations are equally distributed
among the processors, the computing time varies noticeably. As a consequence,
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int nupo; // number of points corresponds to vector size

int cg iteration jacobi ()
{ double delta s, delta a, delta local, stop gamma local [2], stop gamma [2],

s0, s1, s2, s3, g0, g1, g2, g3, tmp0, tmp1, tmp2, tmp3;
int i, nupo4= nupo � 2 � 2;

scadd (gamma/gamma old, q, w);
exchange inner borders (q); // requires communication
delta local= a mult (v, q);
delta= reduce (delta local); // requires communication
alpha= gamma / delta; scadd (x, alpha, q);
s0= s1= s2= s3= g0= g1= g2= g3= 0.0;
for (i= 0; i < nupo4; i+= 4)

{tmp0= (r [i]-= alpha ∗ v [i]) ∗ adinv [i]; s0+= tmp0 ∗ tmp0; g0+= r [i] ∗ tmp0;
tmp1= (r [i+1]-= alpha ∗ v [i+1]) ∗ adinv [i+1]; s1+= tmp1 ∗ tmp1; g1+= r [i+1] ∗ tmp1;
tmp2= (r [i+2]-= alpha ∗ v [i+2]) ∗ adinv [i+2]; s2+= tmp2 ∗ tmp2; g2+= r [i+2] ∗ tmp2;
tmp3= (r [i+3]-= alpha ∗ v [i+3]) ∗ adinv [i+3]; s3+= tmp3 ∗ tmp3; g3+= r [i+3] ∗ tmp3;
w [i]= tmp0; w [i+1]= tmp1; w [i+2]= tmp2; w [i+3]= tmp3;}

for (i= nupo4; i < nupo; i++)
{w [i]= tmp0= (r [i]-= alpha ∗ v [i]) ∗ adinv [i]; s0+= tmp0 ∗ tmp0; g0+= r [i] ∗ tmp0;}

stop gamma local [0]= s0 + s1 + s2 + s3; stop gamma local [1]= g0 + g1 + g2 + g3;
reduce2 (stop gamma local, stop gamma); // requires communication
gamma old= gamma; gamma= stop gamma [1];
return sqrt (stop gamma [0]) < thetc→epsilon;

}

Table 2. Iteration of the specialized and accelerated version

the parallel execution time was affected more by the loss of synchronism than
by the communication expense on Cray T3E.

On two processors, where the balance of the computing time and the com-
munication are less significant, the accelerated implementation achieved a per-
formance of 66.2MFLOPS per processor. On 256 processors,1 the performance
per processor was more than 40MFLOPS, leading to an overall performance of
10.34GFLOPS. To solve the linear system with 16 million unknowns, the solver
based on the cascadic conjugate gradient method and on algebraically generated
coarse grid equations required 9 iterations of the CG method on the finest grid
and 15 iterations on the other grids [5]. So, the linear system was solved in 0.77
seconds. Since many simulations of physical processes – like ground-water flow –
are based on the solution of many large linear systems, a fast parallel multi-level
solver can save a lot of computing time. On the other hand, the acceleration of
the solver may also be used to increase the simulation complexity in order to
improve the simulation results.

7 Conclusion

Although on modern computer architectures the memory bandwidth is still by
far too low with regard to the processor speed, this relation is expected to get
worse in the near future (cf. [4, p. 34]). For this reason, the primary performance
optimization target is reducing the number of main memory accesses. Therefore,
1 The authors would like to thank Prof. Hoßfeld from John von Neumann-Institute

for Computing (NIC-ZAM) for providing capacity on Cray T3E.
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the computations have to be reordered so that as many operations as possible
are performed on a data item while it resides in cache.

Fortunately, there is a relatively small kernel in many numerical applications
where most of the computing time is spent. In this case, the performance tuning
efforts can be restricted to this kernel so that the expense to improve the perfor-
mance is usually low compared with the expense for the program development.

In scientific applications described by partial differential equations most of
the execution time is usually spent on the solution of linear systems. Therefore,
the acceleration of the linear solver can yield a great profit. First of all, it should
be examined whether a multi-level method can be applied to the respective type
of the linear system. In this case, the number of operations can often be de-
creased by several orders of magnitude by using a different algorithm. For the
considered linear systems, which originate from the ground-water flow equation,
the difficulty lies in the strong variation of the coefficients (up to 108). Neverthe-
less, the cascadic conjugate gradient method with algebraically generated coarse
grid equations converged well for the examined linear systems.

To implement the parallel CCG solver efficiently, the whole iteration step of
the CG method was optimized with regard to the performance, including the
preconditioning and the termination criterion. A special matrix type is intro-
duced which allows the demanded applicability of discretization schemes and
provides more performance optimization possibilities than unstructured matri-
ces. In addition, the communication time was significantly shortened by changing
from the portable MPI library to the proprietary shmem library. So, even multi-
level solvers can work efficiently on up to several hundred PEs on Cray T3E.
Altogether, the fast communication, the high floating point performance and the
good convergence enabled the solution of a linear system with over 16 million
unknowns in less than a second.
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