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Abstract. This work describes distributed protocols for oblivious trans-
fer, in which the role of the sender is divided between several servers, and
a chooser (receiver) must contact a threshold of these servers in order to
run the oblivious transfer protocol. These distributed oblivious transfer
protocols provide information theoretic security, and do not require the
parties to compute exponentiations or any other kind of public key op-
erations. Consequently, the protocols are very efficient computationally.

1 Introduction

Oblivious Transfer (abbrev. OT) refers to several types of two-party protocols
where at the beginning of the protocol one party, the sender, has an input, and
at the end of the protocol the other party, the chooser (sometimes called the
receiver), learns some information about this input in a way that does not allow
the sender to figure out what the chooser has learned. In this paper we are
concerned with 1-out-of-2 OT protocols where the sender’s input consists of two
strings (m0,m1) and the chooser can choose to get either one of these inputs
and learn nothing about the other string.

Distributed oblivious transfer protocols distribute the task of the sender be-
tween several servers. Security is ensured as long as a limited number of these
servers collude. The constructions we describe have three major advantages com-
pared to single server based oblivious transfer: (1) They are more efficient since
they only involve the evaluation of polynomials over relatively small fields (and
no exponentiations). (2) They provide information theoretic security, thus mak-
ing the task of composing such a protocol with other protocols easier. (3) They
also provide better security guarantee when applied to the multi party protocols
based on the auction architecture of of [21] (see below).
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The setting of distributed oblivious transfer involves, as in the basic 1-out-
of-2 protocol, a sender with two inputs m0,m1, and a chooser with an input
σ ∈ {0, 1}. There are also n servers S1, . . . , Sn. The sender generates for every
server Si a transfer function Fi, which is sent to the server. Apart from this
message there is no interaction between the servers and the sender, or between
the servers themselves. Server Si then uses the function Fi to answer a query
of the chooser. The sender never interacts with the chooser and can be offline
when the chooser sends his queries.

Related Work. The notion of 1-out-2 oblivious transfer was suggested by
Even, Goldreich and Lempel [13], as a generalization of Rabin’s “oblivious trans-
fer” [23]. Further generalization to 1-out-of-N oblivious transfer was introduced
by Brassard, Crépeau and Robert [7] under the name ANDOS (all or nothing
disclosure of secrets). For an up-to-date definition of OT and oblivious function
evaluation see Goldreich [16].

Reductions between various types of oblivious transfer protocols have been
investigated extensively and they all turn out to be information theoretically
equivalent (See [6,8,12,11,9]). These reductions emphasize the importance of
distributed oblivious transfer, since they enable other types of OT protocols
to be based on the efficient constructions of distributed OT presented in this
paper. In particular, a protocol for distributed 1-out-of-N OT can be constructed
using the (non-information theoretic) reduction of Naor and Pinkas [20] to OT 2

1 .
The protocol uses logN invocations of distributed OT 2

1 , and N invocations of a
pseudo-random function. The resulting OTN

1 protocol is very efficient and does
not require any public key operations.

Oblivious transfer protocols are the foundation of secure distributed compu-
tation. Since its proposal by Rabin [23] OT has enjoyed a large number of appli-
cations and in particular Kilian [19] and Goldreich and Vainish [17] have shown
how to use OT in order to implement general oblivious function evaluation, i.e.,
to enable parties to evaluate any function of their inputs without revealing more
information than necessary. Oblivious transfer can be implemented under a va-
riety of assumptions (see e.g. [6,13,5]). Essentially every known suggestion of
public-key cryptography allows also to implement OT (although there is no gen-
eral theorem that implies this state of affairs), and the complexity of 1-out-of-2
OT is typical of public-key operations [6,5]. OT can be based on the existence of
trapdoor permutations, factoring, the Diffie-Hellman assumption and the hard-
ness of finding short vectors in a lattice (the Ajtai-Dwork cryptosystem). On
the other hand, given an OT protocol it is a simple matter to implement secret-
key exchange using it. Therefore from the work of Impagliazzo and Rudich [18]
it follows that there is no black-box reduction of OT from one-way functions.
This result is quite discouraging if one attempts to improve the efficiency of OT
protocols, since one-way functions are typically more efficient than public key
operations by a few orders of magnitude.

There are many works which solve problems which are related (at least syn-
tactically) to ours. The work of Beaver et. al. [4] on locally random reductions
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enables to distribute a function between many servers, such that a user can com-
pute the function by contacting these servers. The construction guarantees that
the servers cannot learn which values the users compute, but on the other hand
it does not provide security against a user who attempts to compute the function
in many locations. This is also the case with PIR (private information retrieval)
protocols [10]. SPIR protocols [15] address the security of the sender as well, but
the emphasis of both these types of protocols is different than ours: they consider
communication overhead as the major resource that must be minimized (at the
cost of increasing the computation overhead). In the PIR context Gertner et.
al. [14] proposed a system where the database owner solicits the help of several
servers which are not fully trusted. A related line of work is that of “commodity
based cryptography” [3], where OT is treated as a resource, but our work puts
a much more stronger emphasis on simplicity and efficiency.

Very recently Rivest has considered a model with a “trusted initializers” who
(similarly to the sender in our scenario) participates only in and initial setup [24].
The difference with our setting (i) The trusted party should provide secret infor-
mation to the receiver/chooser as well; this is unacceptable in application such
as the privacy preserving architecture discussed below. (ii) the online sender
knows the the values m0 and m1, whereas the servers in our scenario do not
gain information about them.

Application to the Privacy Preserving Architecture An architecture for
executing auctions, economic mechanism design and negotiations was proposed
in [21]. The goal is to preserve the privacy of the inputs of the participants (so
that no nonessential information about them is divulged, even a posteriori) while
maintaining communication and computational efficiency. This goal is achieved
by adding another party, the auction issuer, in addition to the bidders and the
auctioneer. This party’s role is to generate the programs (“garbled circuits”) for
computing the auctions prior to the auction and to run a variant of OT called
proxy OT after the the bids have been submitted. Other than that it does not
take an active part in the protocol. The auction issuer is not a trusted party, but
is assumed not to collude with the auctioneer. In the original protocol of [21] the
privacy of bidders is preserved as long as the auction issuer and the auctioneer
do not collude.

Employing the distributed oblivious transfer protocols proposed in this paper
allows splitting the role of the auction issuer into two parts (this was the moti-
vation for our work). One of them needs a central server that acts only offline.
It prepares the garbled circuits and acts as the sender preparing the inputs for
the n servers in the distributed OT protocol. During the execution of the auc-
tion these n servers, called the online auction servers, operate after the bids are
submitted. The central auction issuer can be better safeguarded than the online
servers, since it operates offline. Privacy is guaranteed as long as the auctioneer
does not collude with a coalition of several (more than the given threshold) of
the online auction servers.
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2 Definitions

A distributed k-out-of-n OT 2
1 protocol involves three types of parties:

– A sender which has two inputs m0,m1. It is convenient to assume that both
these inputs are elements in a field F .

– A chooser that has an input bit σ ∈ {0, 1}.
– Additional n servers, S1, . . . , Sn.

The protocol is composed of the following functional steps:

– The sender generates for each server Si a function Fi, which depends on
(m0,m1) and on random coin tosses of the sender.

– The chooser contacts k different servers. She sends to server Si a query qi

which is a function of σ and of i, and of private random coin tosses. The
server answers the query with Fi(qi).

A distributed k-out-of-n OT 2
1 protocol must guarantee the following properties:

– Reconstruction: If the chooser receives information from k servers she can
compute mσ. That is, there is an efficient algorithm for computing mσ from
any set {ij, Fij (qij )}k

j=1.
– Sender’s privacy: Given any k values {ij, Fij (qij )}k

j=1 the chooser must
gain information about a single input mσ, and no information about the
other input of the sender. (A weaker requirement is that she can compute
at most a single linear combination of m0 and m1.)

– Chooser’s privacy: No coalition of less than t servers gains any information
about σ, where t is a parameter in the range 1 ≤ t ≤ k. The parameter t
should ideally be as close as possible to k.

– Chooser-servers collusion: A coalition of the chooser with � corrupt
servers cannot learn about m0,m1 more than be learned by the chooser
herself (where � is a parameter).

An additional requirement is that if the chooser receives information from less
than k servers she gains no information about m0 or m1. There might be ap-
plications in which this requirement is not important, since the emphasis might
be on the chooser having to contact at most k servers. This requirement is not
supported in all of the protocols that we present. Namely, in the protocol of Sec-
tion 3.2 the receiver can obtain information about a single input after receiving
information from less than k servers. However, in this case she compromises her
own privacy and risks that a coalition of fewer than k servers can learn σ.

Note that the privacy of both the sender and the receiver is based on infor-
mation theory and does not depend on any computational assumption. Further-
more, the protocol is very simple, the chooser simply asks server Si for a value
of Fi(·) and receives an answer, and this process is considerably more efficient
than a OT 2

1 protocol (since in all protocols Fi is simply a polynomial).
The privacy of the sender depends on the chooser getting shares from at most

k servers. We discuss in Section 5 how to ensure that this is indeed the case.
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The protocols use bivariate polynomials in a way which is similar to that
used by the oblivious polynomial evaluation protocols of [20]: The sender defines
a bivariate polynomial Q(x, y) which hides his input, and the chooser defines
a secret univariate polynomial S(x) and interpolates Q(x, S(x)) which reveals
to her one value of the sender’s input. However, in [20] a single sender knows
the polynomial Q and the chooser uses OTN

1 in order to learn the values of this
polynomial at different locations, without revealing them to the sender. In the
current work each server knows part of the polynomial, and the chooser simply
asks servers to reveal to her values of the polynomial at different points. The
chooser does not have to use OT in order to hide these points from the servers,
since as long as not too many of them collude they cannot learn her input.

Why Secret Sharing Isn’t Enough: The first naive approach for designing
a distributed OT 2

1 scheme is probably to suggest using simple k-out-of-n secret
sharing for sharing m0 and m1 between the servers. Namely, each input should
be divided into n shares, and each of the n servers is given a share. The chooser
should obtain k shares of one of the schemes to reconstruct one of the inputs.
The problem with this method is, of course, that the chooser must hide from
the servers the identity of the input whose shares it requires. This essentially
requires the chooser to run a OT 2

1 protocol with each of the servers.

3 Protocols for Distributed Oblivious Transfer

This section describes several protocols for distributed OT 2
1 . The protocols follow

the generic structure described in Table 1.

1. Input: The sender’s input is a pair m0, m1 ∈ F . The chooser’s input is
σ ∈ {0, 1}.

2. The sender generates a bivariate polynomial Q(x, y), s.t. Q(0, 0) =
m0, Q(0, 1) = m1.

3. The sender sends the univariate polynomial Q(i, ·) to server Si.
4. The chooser chooses a random polynomial S s.t. S(0) = σ, and defines a

univariate polynomial R to be R(x) = Q(x,S(x)). The degree of R is k − 1.
5. The chooser asks server Si for the value R(i) = Q(i, S(i)).
6. After receiving k values of R the chooser interpolates R and computes R(0).

Fig. 1. The basic steps of the distributed OT 2
1 protocol.

The main difference between the different protocols is the type of the poly-
nomial Q(x, y) that is generated by the sender. This choice affects all other
parameters of the protocol. In particular, the first type of protocols uses a poly-
nomial Q(x, y) which is defined as the sum of a polynomial in x and a linear
polynomial in y, and has no monomials which include both x and y. We denote
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such polynomials as sparse. Since the sender is only required to compute sparse
polynomials, his task is greatly reduced (compared to the computation of full
polynomials). This type of protocols is secure as long as there is no collaboration
between the chooser and a corrupt server. It is also possible to make it immune
against a collusion between the chooser and a single (or a few) servers.

We describe a different type of protocols which can protect the sender’s
privacy against a collusion between the chooser and a large set of servers. This
type of protocols uses full bivariate polynomials in which the coefficients of all
the monomials are non-zero (with high probability).

3.1 Using a Sparse Polynomial

The most basic and straightforward protocol employs a bivariate polynomial,
where the degree of y is 1 and there are no monomials which contain both x and
y. The protocol is described in Figure 2. It has the following properties.

– Reconstruction: After receiving information from k servers, the chooser
can learn mσ, by interpolating the polynomial R.

– Sender’s privacy: After receiving information from k servers, the chooser
cannot learn more than a single linear equation of m0 and m1 (this is proved
in theorem 1). We later show in Section 4 how to ensure that the chooser
learns exactly m0 or m1 and not any other combination of these values.

– Information from less than k servers does not reveal to the chooser any
information about m0 and m1 (since the degree of x in Q is k − 1).

– Chooser’s privacy: No coalition of at most t = k− 1 servers can learn any
information about σ (this is proved in Theorem 2 and is based on the degree
of S being k − 1).

– No security against chooser-server collusion: A coalition of the chooser
with one corrupt server reveals to the chooser both m0 and m1 (after running
the protocol). At the end of this Section we describe a method to address
this problem if the chooser colludes with a single corrupt server (or a small
number of corrupt servers). Section 3.2 describes a scheme which is secure
against a collusion between the receiver and a large number of servers.

– Overhead: The sender has to choose O(K) elements and has to send to each
server O(1) elements. Each server has to compute a linear polynomial a single
time. The chooser should contact k servers, and her total communication
overhead is O(k). The computation of mσ involves interpolation of a k − 1
degree polynomial in order to find its free coefficient. This can be done in
O(k2) multiplications using Lagrange’s interpolation formula, or O(k log2 k)
multiplications using FFT (see e.g. [1] p. 299). The operations are done
over the field F which can be rather small1 and are therefore efficient by
a few orders of magnitude compared to the public key operations required
(following [18]) for non-distributed oblivious transfer.

1 Typically the field should contain m0, m1. However, if these elements are large the
sender can choose two random keys k0, k1 (say, 128 bits long) and use them to
encrypt m0, m1, respectively. The OT protocol should be run for the inputs k0, k1,
and therefore the field F should only be large enough to contain them.
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Initialization: The sender generates a linear polynomial Py(y) = b1 · y + b0, s.t.

Py(0) = m0, Py(1) = m1. (I.e., m0 = b0, m1 = b1 + b0.)

The sender generates a random masking polynomial Px(x) of degree k − 1, s.t.

Px(0) = 0. Namely, Px(x) =
∑k−1

j=1
ajx

j . It also defines a bivariate polynomial

Q(x, y) = Px(x) + Py(y) =

k−1∑
j=1

ajx
j + b1y + b0

The sender provides server Si with the function Fi(y) which is the result of
substituting x = i in the polynomial Q. Namely,

Fi(y) = Q(i, y) =

k−1∑
j=1

aji
j + b1y + b0 = b1y + (

k−1∑
j=1

aji
j + b0)

Transfer: The chooser generates a random polynomial S(x) of degree k − 1,

subject to the constraint S(0) = σ. I.e, S(x) =
∑k−1

j=0
sjx

j where s0 = σ.

Consider the polynomial R(x) which is generated by substituting S(x) instead
of y in Q,

R(x) = Q(x, S(x)) =

k−1∑
j=1

ajx
j + b1

k−1∑
j=0

sjx
j + b0 =

k−1∑
j=1

(aj + b1sj)x
j + b1s0 + b0

The chooser’s goal is to interpolate R and compute R(0) = Q(0, S(0)) =
Q(0, σ) = mσ. The degree of R is k−1, and therefore the chooser should obtain k
values of R in order to interpolate it. She approaches k different servers and asks
server Si for the value Fi(S(i)) = Q(i, S(i)) = R(i). After receiving k answers
she can interpolate R and compute R(0) = mσ.

Fig. 2. A distributed OT 2
1 protocol using a sparse linear polynomial.

Proofs of Privacy

Theorem 1 (Sender’s privacy). After receiving information from k servers,
the chooser cannot learn more than a single linear combination of m0 and m1.

Proof: When the chooser sends to server i the query yi, she receives the answer
Fi(yi) = Q(i, yi) =

∑k−1
j=1 aji

j + b1yi + b0. The receiver therefore obtains the
following set of k equations:




ik−1
1 ik−2

1 · · · i1 yi1 1
ik−1
2 ik−2

2 · · · i2 yi2 1
...

...
...

...
...

ik−1
k ik−2

k · · · ik yik
1




︸ ︷︷ ︸
A

·




ak−1

...
a1

b1
b0


 =




Fi1 (yi1)
Fi2 (yi2)

...
Fik

(yik
)
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It should be shown that no matter what values the chooser assigns to the yi’s,
she does not learn more than a single linear combination of b0, b1. In other words,
that the rows of the matrix A do not span both the vector ek = (0, . . . , 0, 1, 0)
and the vector ek+1 = (0, . . . , 0, 0, 1). The matrix A has k + 1 columns and k
rows. Consider the matrix A′ with k+ 1 rows which is formed by taking the first
k − 1 rows of A and appending to them the vectors ek, ek+1. The determinant
of A′ is different than 0 (since the sub-matrix of size (k − 1) × (k − 1) in the
upper-left corner is Van Der Monde). Therefore, the first k− 1 rows of A do not
span any of ek, ek+1, and the matrix A which has just a single additional row
cannot span both vectors. 	

Theorem 2 (Chooser’s privacy). A coalition of k− 1 servers does not learn
any information about σ.

Proof: The coalition receives k − 1 values of S(i) for i �= 0. The polynomial
S is of degree k and is random except for S(0) = σ. The information that the
coalition learns could have been equally likely derived from a polynomial S with
S(0) = 0 as from a polynomial with S(0) = 1. 	


How to Protect against a Collusion between the Chooser and a Single
Server: The main drawback of the protocol is that a collusion between the
chooser and one of the servers reveals both m0 and m1. This happens since each
server Si knows a polynomial Fi(y) which reveals b1 = m1 − m0. We describe
below a simple solution against a collusion between a chooser and a single server.
This solution is general and is good for any distributed OT scheme. The aim of
the rest of the paper is to deal with larger collusions.

In order to protect against a coalition of the chooser with a single server,
the sender divides the n servers into all possible n subsets of n − 1 servers. It
defines n random shares {m0,i}n

i=1 that satisfy m0 = ⊕n
i=1m0,i, and similarly

shares {m1,i}n
i=1 that satisfy m1 = ⊕n

i=1m1,i. Next, it defines n schemes for
(k−1)-out-of-(n−1) distributed OT 2

1 . The ith scheme enables to transfer either
one of (mi,0,mi,1), and is assigned to the members of the ith subset of servers.

The chooser should contact k servers, and run the n distributed OT 2
1 proto-

cols, learning {mσ,i}n
i=1. She should then combine the results to compute mσ.

This protocol ensures that a coalition of t = k − 2 servers cannot learn
which element the receiver learned, and that any k servers enable the receiver to
learn only a single share. A coalition of the chooser with a single server cannot
learn any additional information, since this server has no information about one
of the OT 2

1 schemes. This method can be generalized to handle a collusion of
the chooser with t servers, but this would require running

(
n
t

)
distributed OT 2

1

protocols.

3.2 Using a Full Polynomial

In order to protect against large chooser-servers collusions, the sender should use
a bivariate polynomial which includes all possible monomials, and in which the
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degree of y is high. This approach yields a tradeoff between the number of servers
that can compromise the chooser’s privacy, and the size of a chooser-servers
collusion that can compromise the sender’s privacy. The protocol is described in
Figure 3.

Initialization: The sender generates a random bivariate polynomial Q(x, y) of
degree dx in x and degree dy in y, subject to the constraints

Q(0, 0) = m0, Q(0, 1) = m1.

Namely, Q(x, y) =
∑dx

j=0

∑dy

l=0
aj,lx

jyl, where a0,0 = m0 and
∑dy

l=0
a0,l = m1. It

should also hold that dx = (k − 1)/2 (the parameter k must be even).
The sender sends to server Si the function Fi(y) which is the result of substituting
x = i in the polynomial Q. Namely,

Fi(y) =

dy∑
l=0

(

dx∑
j=0

aj,l · ij) · yl.

Transfer: The chooser generates a random polynomial S(x) of degree ds, where
the degree satisfiesa dyds = dx = (k− 1)/2. The polynomial S is random subject
to the constraint S(0) = σ.
Consider the polynomial R(x) which is generated by substituting S(x) instead
of y in Q,

R(x) = Q(x,S(x))

The chooser should interpolate R and compute R(0) = Q(0, S(0)) = Q(0, σ) =
mσ. The degree of R is k − 1 = dx + dyds, and therefore the chooser should
obtain k values of R in order to interpolate it. She approaches k different servers
and asks server Si for the value Fi(S(i)) = Q(i, S(i)) = R(i). After receiving k
answers she can interpolate R and compute R(0) = mσ.

a We assume that the degrees are chosen such that this equality holds. Otherwise
it must hold that dyds < dx.

Fig. 3. A distributed OT 2
1 protocol using a full polynomial.

The protocol has the following properties:

– Reconstruction: As in the previous protocol, after receiving information
from k servers the chooser can learn mσ, since the degree of R is k.

– Sender’s privacy: After receiving information from k servers, the chooser
cannot learn more than a single linear equation of m0 and m1. This is proved
in Theorem 3 in the Appendix. We show in Section 4 how to ensure that she
learns exactly m0 or m1.

– Chooser’s privacy: No coalition of at most t = ds = (k − 1)/(2dy) servers
can learn any information about σ (if the chooser acts according to the
protocol). This follows from the degree of S.
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– Information from less than k servers might reveal to the chooser information
about m0 or m1 (e.g., if she sets S(x) to be of degree smaller than dx, the
degree of R = Q(x, S(x)) would be smaller than k). However, this affects the
chooser’s privacy, namely reveals σ to a coalition of less than (k − 1)/(2dy)
servers. If the chooser receives information from less than dx servers she
learns no information about either m0 or m1.

– Security against chooser-servers collusion: A coalition of the chooser
with dx − 2dx

dy+1 corrupt servers, does not reveal to the chooser more than
a single linear equation of m0 and m1. This is proved in Theorem 4 in the
Appendix.

– Overhead: The sender in preparing the polynomial has to choose O(kdy)
elements and send dy elements per server. Each server has to compute a
polynomial of degree dy a single time. The overhead of the chooser is as in
the sparse polynomial scheme.

This construction, therefore, gives a tradeoff between chooser privacy against a
coalition of corrupt servers, and sender’s privacy against a coalition between the
chooser and corrupt servers. Once n and k are fixed, The tradeoff depends on a
parameter dy. The size of a coalition of corrupt servers against which the chooser
is secure is (k−1)/(2dy) = dx/dy, whereas the size of a coalition of corrupt servers
that can help the chooser learn more than a single input is dx − 2dx

dy+1 .

4 Preventing the Chooser from Learning Linear
Combinations

Suppose that the chooser must be forced to learn either m0 or m1, and it is
required to prevent her from learning linear combinations of the two inputs2.

The following method can be used to ensure that the chooser learns either
m0 or m1, but not any other linear combination of the two inputs. We describe
it for the protocol of Section 3.1 which uses a sparse bivariate polynomial.

The protocol is run simultaneously with two polynomials P 1
y = (a ·m1 − b ·

m0)y+m0 · b, and P 2
y = (a− b)y+ b, and corresponding polynomials Q1 and Q2.

(The first polynomial hides m1 multiplied by a, and m0 multiplied by b, whereas
the second polynomial hides a and b). The chooser sends a single value S(i) to
server i and receives the values Q1(i, S(i)) and Q2(i, S(i)).

If the chooser operates according to the protocol, she learns the values m0 · b
and b if S(0) = 0, and can then compute m0. Similarly, she can compute m1 if
she sets S(0) = 1.

2 A heuristic approach for achieving this property might encrypt the inputs m0 and
m1 using two random keys k0 and k1, respectively, and run the distributed OT
protocol to let the chooser learn either k0 or k1. If the chooser chooses to learn a
linear combination of both keys then presumably she would not be able to decrypt
any of the encryptions. This approach can be proved to be secure in the random
oracle world, i.e. if a function H which is modeled as a random oracle is used to
encrypt each mi using ki.
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The chooser cannot learn any other linear combination of m0 and m1. The
important property of the protocol is that the chooser learns the same linear
combination of the coefficients of both P 1

y and P 2
y . Suppose that in this combi-

nation the coefficient of y is multiplied by α and the free coefficient is multiplied
by β. The chooser therefore learns the following equations:

(
m1α m0(β − α)
α β − α

) (
a
b

)

If this matrix is non singular then any value of m0,m1 corresponds to a different
pair a, b, and no information is divulged about m0 or m1. The matrix is singular
only if m0 = m1 (but we can ensure that this does not happen if we append a
different prefix to each input), or if α = 0 or α = β. These last two cases reveal
to the chooser the value of m0 or m1, respectively, and are therefore legitimate.

5 Ensuring that a Chooser Does Not Obtain More than
k Shares

Distributed oblivious transfer prevents the chooser from learning more than
a single input as long as she does not obtain information from more than k
servers. This property raises the following question: how should we ensure that
the chooser receives information from at most k servers? (note that this problem
does not exist if the system implements an n-out-of-n access structure). This
issue might be regarded as orthogonal to the schemes themselves. Alternatively,
there might be some centralized mechanism for limiting the number of servers
that send information to the chooser. However, it might be difficult to operate
such a mechanism in a distributed setting.

We now describe two solutions that are applicable for the case k > n/2 (or
any other quorum system). The solutions can be combined with any protocol for
distributed OT. Therefore there is no need to postulate any external mechanism
enforcing the limit on the number of servers accessed in this case.

A solution for k > n/2 (or any other quorum system): The servers share a key
K for a pseudo-random function F (pseudo-random functions are commonly
modeled by block ciphers). The key K is known to each of the servers. Denote
the subset of k servers that the user approaches as S, |S| = k. The user sends
the names of all servers in S to each of the servers she contacts.

Each such server, Si, operates as follows:

– It verifies that S contains the names of k servers including Si, and that it
did not previously send an answer to the chooser for a different set S′ which
contains Si (for the same OT).

– It computes αS = ⊕Si∈SFK(S, Si), where FK is a pseudo-random function
F keyed by K.

– It sends to the chooser its answer, as defined in the distributed OT protocol,
encrypted by αS . In addition it sends her FK(S, Si).
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After receiving answers from all servers in S the chooser can compute αS

and decrypt the answers. Since k > n/2, every two different subsets of k servers,
S and S′, intersect, and therefore the chooser cannot compute both αS and αS′ .

The above solution can be generalized to any access structure which is based
on a quorum system3. Assume, for simplicity, that each quorum contains the
same number of servers, k. The system should use a k-out-of-n threshold access
structure. In addition each server Si should verify that S is a legitimate quorum
which contains Si, and encrypt its answer with αS as described above. Since
each two quorums intersect, the chooser can only decrypt k answers of a single
quorum.

A solution for k > n/2 (and any other quorum system) secure against chooser-
servers coalition: The drawback of the previous solution is that even a single
server cooperating with the chooser can reveal K and enable the chooser to
decrypt messages from more than k servers. The following solution solves the
problem chooser-server coalition, provided the size of the coalition is less than
2k − n.

The sender defines in advance n(n − 1) strings {αi,j}1≤i,j≤n,i�=j for every
ordered pair of servers, and gives server Si the 2(n−1) strings {αi,j, αj,i | i �= j}.
The chooser sends to server Si the set S of k servers which she is querying.
The server first verifies that Si ∈ S and that it was not asked to answer the
chooser using a different set S′ of servers. It then sends its answer encrypted by
⊕Sj∈S, j �=iαi,j . It also sends to the chooser the values {αj,i | Sj ∈ S, j �= i}. The
chooser must receive answers from all the servers in S before she can decrypt
them. This method can be applied to any access structure which is based on a
quorum system, provided a coalition does not cover any intersection of quorums.
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A Privacy for the Protocol Which Uses Full Polynomials

A.1 Sender’s Privacy

We first prove that if dy = 1 then the chooser can learn only a single linear
equation of m0 and m1, and then prove this for any degree dy .

Lemma 1. Let Q(x, y) be a bivariate polynomial in which x is of degree dx and
y is linear. Denote by P (y) = ay + b = Q(0, y) the polynomial which is equal to
Q constrained to the line x = 0 (i.e. to the y axis). Any 2dx + 1 values Q(xi, yi)
where all the xi-s are distinct and different from 0 do not yield more than a
single linear equation on the coefficients a and b.
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Proof: Denote the polynomial as Q(x, y) =
∑dx

i=0

∑1
j=0 ai,jx

iyj (i.e. a = a0,1

and b = a0,0). The 2dx +1 values of Q(x, y) define 2dx +1 linear relations for the
2dx + 2 coefficients ai,j . Assume wlog that these equations are linearly indepen-
dent (otherwise Alice has made redundant queries). Note that this implies that
not all yi values are the same (if all yi were the same then for all 1 ≤ i ≤ dx + 1
columns i and dx + 1 + i would have been linearly dependent).

The equations can be represented by a matrix A with 2dx + 1 rows and
2dx + 2 columns,




1 x1 · · · xdx
1 y1 y1x1 · · · y1xdx

1
1 x2 · · · xdx

2 y2 y2x2 · · · y2xdx
2

.

.

.
.
.
.

1 x2dx+1 . . . xdx
2dx+1 y2dx+1 y2dx+1x2dx+1 . . . y2dx+1xdx

2dx+1







a0,0

.

.

.
adx,0
a0,1

.

.

.
adx,1


 =




P (x1, y1)
P (x2, y2)

.

.

.
P (x2dx+1,
y2dx+1)




We will prove that it cannot be the case that both e0,0 and e0,1 are defined
by these equations. In other words, let ei,j be the 2dx + 2 entry vector in which
all entries are 0 except for the (i + 1 + j · (dx + 1))’th entry which is 1 (i.e. only
the coefficient of ai,j is 1). We will prove that the rows of the matrix A cannot
span both e0,0 and e0,1.

The vector space is of dimension 2dx + 2, the vectors e0,0 and e0,1 are or-
thogonal and the rank of A is 2dx + 1 (all its rows are linearly independent).
Therefore A spans a vector in the linear subspace generated by e0,0 and e0,1.
Assume wlog that this vector is of the form v = (α, 0, . . . , 0, 1, 0, . . . , 0), i.e. that
its first entry equals α and its (dx + 2)’th entry equals 1. The vector v can be
represented as a linear combination of the rows of A, and we can therefore re-
place one of the rows of A (say the last row) with v. Wlog we prove that this
revised matrix (and therefore also A) cannot span e0,0 in addition to v. Consider
the matrix B′ which is constructed by adding to the revised matrix the row e0,0.
It has 2dx + 2 rows and 2dx + 2 columns.

B′ =




1 0 · · · 0 0 0 · · · 0
α 0 · · · 0 1 0 · · · 0
1 x1 · · · xdx

1 y1 y1x1 · · · y1x
dx
1

...
...

1 x2dx . . . xdx

2dx
y2dx y2dxx2dx . . . y2dxx

dx

2dx




The lemma is proven by the following claim, which shows that all the rows of
B′ are linearly independent. The proof appears in the full version of the paper.

Claim: The determinant of a matrix B′ in which all the xi-s are distinct and
different from 0 and not all yi values are equal, cannot be 0.

Following is a privacy theorem for polynomials in which the degree of y is
greater than linear. The proof is similar to that of Lemma 1.

Theorem 3. Let Q(x, y) be a bivariate polynomial in which x is of degree dx and
y of degree dy. Denote by P (y) =

∑dy

j=0 a0,jy
j = P (0, y) the polynomial which is
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equal to Q constrained to the line x = 0 (i.e. to the y axis). Denote the coefficients
of the elements free of x, i.e. a0,0, a0,1, . . . , a0,dy , as the y coefficients. Then given
any 2dx + 1 values Q(xi, yi) where all the xi-s are distinct and different from 0,
at most a single linear relation is defined between the y coefficients.

A.2 Chooser-Servers Collusion

The following theorem demonstrates that a collusion between the chooser and
dx − 2dx

dy+1 servers (in addition to the k servers that were contacted by the
chooser), cannot learn about m0,m1 more than can be learned by the chooser
herself. The proof appears in the full version of the paper.

Theorem 4. Let Q(x, y) be a bivariate polynomial in which x is of degree dx and
y of degree dy. Denote by P (y) =

∑dy

j=0 a0,jy
j = P (0, y) the polynomial which is

equal to Q constrained to the line x = 0 (i.e. to the y axis). Denote the coefficients
of the elements free of x, i.e. a0,0, a0,1, . . . , a0,dy , as the y coefficients. Then given
any 2dx + 1 values Q(xi, yi) where all the xi-s are distinct and different from 0,
and given the restrictions of Q(x, y) to � different x values, where � ≤ dx− 2dx

dy+1 ,
at most a single linear relation is defined between the y coefficients.
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