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Abstract. The event based architectural style has been recognized as
fostering the development of large-scale and complex systems by loosely
coupling their components. It is therefore increasingly deployed in va-
rious environments such as middleware for mobile computing, message
oriented middleware, integration frameworks, communication standards,
and commercial toolkits. The development of applications based on this
paradigm is, however, performed in such an ad-hoc manner that it is
often difficult to reason about their correctness. This is partly due to the
lack of suitable specification and verification techniques. In this paper,
we review the existing theory of specifying and verifying such applicati-
ons, argue that it cannot be applied for the development of large-scale
and complex systems, and finally propose a novel approach (LECAP)
for the construction of correct event based applications. Our approach
is superior to the existing approaches in many respects: 1) we assume
a while-parallel language with a synchronization construct, 2) neither
a pending event infrastructure nor a consume statement are required,
3) a dynamic (instead of static) binding is assumed, 4) no restriction is
made on the number of simultaneous executions of the same program 5)
our approach is oriented towards top-down development of systems. The
paper also presents two examples for illustrating the approach.

1 Introduction

The increasing complexity of (distributed) software systems has led to the inve-
stigation of new methods that can ease their development. Such methods include
formal methods, object orientation, extreme programming, component based
software engineering. These approaches are supported by emerging paradigms
such as objects, encapsulation, polymorphism, concurrency, communication, sha-
red variables, or mobile agents. Each of these paradigms comes with its set of
features that challenge existing specification and verification techniques.
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M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 67–86, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



68 P. Fenkam, H. Gall, and M. Jazayeri

The event based architectural style is one such paradigm. Essentially, an event
based (EB) system consists of allowing some components called subscribers to
express their interests in some kind of information, while allowing other compo-
nents called publishers to publish this information. The EB system is responsible
for matching publications to subscriptions and forwarding them to interested
subscribers. An application that includes such subscribers and publishers is cal-
led an event based application. The importance of the EB paradigm is witnessed
by the increasing number of domains and tools in which it is exploited. Examples
of such domains/tools are programming environments (e.g. Smalltalk), operating
systems (e.g. AppleEvents [3]), communication middleware (e.g. Corba [14], Si-
ena [7], JEDI [9], Elvin [29]), integration frameworks (e.g. OLE [5], JavaBeans
[26], FIELD [25], SunSoft [28], Polylith [24], ISIS [4], Yeast [19]), and message
oriented middleware (e.g. see [21]).

While considerable effort has gone into techniques for composition of software
based on procedure invocation [10,15], shared data [8,22], and message passing
[6,20], there is no established method for developing correct applications based
on the EB paradigm. As a result, applications based on this paradigm are often
developed in an ad-hoc and informal manner. Although it is not expected that
all developers carry out formal techniques throughout the whole design and
implementation process, they may use the intuition that has been built up during
the development of the supporting techniques [12]. Further, formal techniques
can be applied in relaxed versions as lightweight formal methods [2,6].

This paper proposes a novel formal approach for building correct applicati-
ons using the EB paradigm. This approach is called LECAP: Logic of Event
Consumption And Publication. This logic is compositional; hence, intrinsi-
cally oriented towards construction of complex systems. LECAP is based on
Jones’s rely/guarantee [17,27,32] program derivation technique which is exten-
ded in two respects. First, we extend the specification of a program to include
announcement-conditions (ann-conditions). These are conditions that specify
which events a program is allowed to announce. Next, we provide a rule for
composing separately developed specifications into one large specification.

Let us assume that we want to build a software system that satisfies the
requirements φ 1, ..., φn. Our methodology consists of four steps:

1. Identify components necessary for constructing the system.
2. Develop the formal specifications S1, ..., Sm of these components and verify

some local properties of these specifications. These formal specifications con-
sist in pre-conditions, post-conditions, rely-conditions, guarantee-conditions
(guar-condition), wait-conditions, and ann-conditions.

3. Compute the formal specification S of the whole system using the specifi-
cations S1, ..., Sm and our composition rule. The specification S is com-
puted such that any application which refines it satisfies the requirements
φ 1, ..., φn.

4. Separately refine the specifications S1, ..., Sm to some implementations
I1, ...., Im.
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It is important to stress that the development of I1, ...., Im can be performed
by different teams that know nothing about each other. Each of them simply
receives some specification Si and is required to deliver some code that satisfies
this specification. In other words, I1, ..., Im might be off-the-shelf components
that satisfy the requirements S1, ..., Sm. Indeed, this is one of the expected
benefits of the loose coupling of components.

The contribution of the paper is following:

1. We provide a formal definition of a language that supports development of
event based applications. This language is called the LECAP programming
language. The presentation of this language is important since it provides
some added value compared to the specification provided in [12,11]. In par-
ticular, the LECAP programming language is a parallel programming lan-
guage with synchronization constructs while that of Dingel et al. [12,11] is
a sequential while-language. Further, the LECAP programming language
doesn’t require constructs such as the “consume” statement introduced in
[12,11].

2. We provide a formal specification and semantics of an event based system.
We believe that this specification is simpler compared to [12,11]: no pending
event infrastructure is required. The capability of delaying events is obtai-
ned naturally from the programming language through the synchronization
construct.

3. A method for the specification of event based applications is provided. Be-
sides the pre-, post-, rely-, guar-, and wait-conditions, we introduce the
ann-conditions that specify the kind of events a component is allowed to
announce.

4. We present a rule for composing specifications (of components) into specifi-
cation of systems.

5. We present two examples that illustrate the application of the technique.

The remainder of the paper is organized as follows. The next section (Sect. 2)
presents related approaches. Section 3 provides the formal definition of the LE-
CAP programming language. Section 4 presents a logic of specifying event based
programs and a rule for composing these specifications. Section 5 presents some
discussions. Section 6 presents two examples that illustrate our approach and
Section 7 concludes the paper.

2 Related Work

Although the event based paradigm is at the heart of countless software systems,
not much work has been presented on building correct applications using this
paradigm. There are three main research areas that are related to our work.

The first related area concerns event broadcasting. A significant amount of
work has been done on this topic that led to a number of theories such as calculi
of broadcasting systems. Examples of such calculi are the bπ -calculus [13] and
the CBS [23] (calculus of broadcasting systems). The issue in such works is
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how to achieve fault tolerance through replication. All the components in such
a system are interested in all events. The requirements are thus different from
that of event based systems where each component specifies the kind of events
it is interested in.

The second related area of research concerns construction of parallel pro-
grams. Jones’s rely/guarantee [17] (extended e.g. by Stolen [27] and Xu [32])
and the work of Owicki/Gries [22] are among the approaches that have influen-
ced this area. Our work is strongly based on these two works. We extend the
concept of rely/guarantee specification technique through ann-conditions. We
also borrow auxiliary variables from Owicki/Gries and Stolen [27] to formulate
ann-conditions.

The third area of work is about verifying the correctness of event based
applications. The only work we are aware of is by Dingel et al. [12,11]. A method
for reasoning about event based applications is proposed. This approach, which
we call Dingel’s approach is also based on Jones’s rely/guarantee paradigm. To
illustrate the contribution of the paper, we give a summary of Dingel’s approach
and some of its shortcomings.

Let S = (M, V, EM, Ex) denotes a system consisting of a set of methods
M , a set of global variables V , a binding of methods to events EM , and a set
of external events Ex. Further, a specification is a 4-tuple (P, R, G, Q), where
P, R, G, Q denote the pre-, rely-, guar-, and post-conditions. To show that the
system S satisfies some partial correctness property T , 4 steps are required:

1. Define the pre-, rely, and post-conditions of the system: P, R, Q.
2. For each method m ∈ M , define the guarantee conditions Gm and GM\{m}

such that
(m, V, EM, Ex) and (M \ {m}, V, EM, Ex) satisfy (P, R ∨ GM\{m}, Gm, Q)

3. Conclude using rely/guarantee soundness that (M, V, EM, Ex) satisfies
(P, R,

∨
m∈M Gm, Q)

4. Show that any system that satisfies (P, R,
∨

m∈M Gm, Q) also satisfies T .

This approach has a number of shortcomings.

1. It assumes a programming language with a consume construct. Each method
must start with this statement that specifies which events the method is
interested in. Dingel et al. use the consume construct to model invocation
of methods by the EB system and to trace changes in the pending event
infrastructure. They, however, recognize that this construct “introduces an
unnecessary dependency between the event-method binding and the program
of a method.[12,11]” Further, no real programming language or event based
system needs such a construct.

2. The underlying specification technique is based on a pending event infra-
structure. The primary intent of an EB system is not to queue events, but to
dispatch them to subscribers. Queuing events results from the fact that an
EB system might not be able to forward events at the speed at which they
are received. Hence, we suggest that, although it may be important to take
it into consideration at the implementation level, a mechanism for queuing
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events should only influence the abstract model in a such a way that it does
not complicate the reasoning too much.

3. Dingel et. [12,11] assume in their work that when a program is running it
cannot be triggered anymore. No mechanism is however given for achieving
this. On the other hand there are applications where such a limitation is not
acceptable (e.g. reservation systems).

4. The approach doesn’t take the definition of new subscriptions into conside-
ration. A static binding EM is assumed. In this sense, the approach seems
to miss a fundamental aspect of the event based paradigm which is (because
of loose coupling) to ease the integration of new components.

5. Dingel’s approach is intended for a-posteriori verification of systems instead
of stepwise construction of systems: components of the completed programs
are verified in isolation and then put together where general properties are
proved. Jones [17] argues that such approaches are unacceptable as program
development methods: erroneous design decisions taken in early steps are
propagated until the system is implemented and proven.
Although Dingel et al. [12,11] do not claim to propose a method for the
stepwise construction of systems, the fact that their approach is based on
Jones’s rely/guarantee method for the construction of interfering programs
may lead one to expect that it can also be used for such a purpose. To
see why this is difficult, let us consider the following development method
naively derived from the above reasoning technique:
To construct a system S that satisfies some partial correctness property T ,
6 steps must be followed:
a) Define the pre-, rely, and post-conditions P, R, Q of the system.
b) Identify the set of methods M of the system.
c) For each method m ∈ M (not yet implemented), define the guaran-

tee conditions Gm and GM\{m} such that (m, V, EM, Ex) and (M \
{m}, V, EM, Ex) satisfy (P, R ∨ GM\{m}, Gm, Q)

d) Conclude that (M, V, EM, Ex) satisfies (P, R,
∨

m∈M Gm, Q)
e) Show that any system that satisfies (P, R,

∨
m∈M Gm, Q) also satisfies

T .
f) Now, refine each method m to some implementation.

This approach, however, doesn’t work since there is nothing that relates
the specifications (P, R ∨ GM\{m}, Gm, Q) of the different methods to each
other. This relation should be provided by the event based system. The me-
thods should communicate with each other through the event based system
by announcing and consuming events. This notion of announcement and
consumption of events is, however, absent from the specification, hence the
insufficiency of the specification and the inadequacy of the approach.

We propose an approach that overcomes these shortcomings.

3 The LECAP Programming Language

This section introduces the LECAP programming language. This language is
used for the development of while-parallel programs with shared variables. The
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particularly of LECAP programs is that they may communicate through an
event based system. We define the syntax of the language and its operational
semantics. We also give a definition of the concept of event based systems.

3.1 Syntax

A LECAP program is a while-program augmented with parallel, synchroniza-
tion, and event publication constructs. Its syntax can be defined as follows:

P ::= x := e | P1;P2 | if b then P1 else P2 fi | while b do P od | await
b then P end | P1‖P2 | announce(e) | skip.

Three constructs in this language need some explanations: the parallel con-
struct, the await construct, and the announce construct. The first models non-
derministic interleaving of the atomic actions of P1 and P2. Synchronization and
mutual exclusion are achieved using the await construct. The announce construct
allows announcement of events. It is intended for the notification of the EB sy-
stem which in turn triggers some other programs. The execution of announce
is limited to sending the event to the EB system. The sequential composition
P1;P2 can thus be defined in the usual way as a program that first behaves as P1

and follows as P2 if P1 terminates. To simplify the deduction rules, it is required
that variables used in the boolean test cannot be accessed by programs running
in parallel. This constraint can be removed as discussed in [27]. We say that a
program z0 is a subprogram of another program z iff z can be written in one the
following forms:

– z1; z0; z2;
– if b then z1 else z2 fi, with z0 a subprogram of z1 or z2;
– while b do z1 od, with z0 a subprogram of z1;
– z1‖z2, with z0 a subprogram of z1 or z2;
– await b do z1 od , with z0 a subprogram of z1.

3.2 Event Based System

Although there are various paradigms that make up an event based system
in practice, not all of them are needed at the abstract level. We construct an
abstract model based on a set of programs, a set of events, a binding, and a set
of variables. An event is a piece of data that may be published by a program.
Subscriptions are templates for allowing categorization of events. The set of
programs is the set of handlers of events. Such programs are triggered when an
event is announced that matches one of their subscriptions. The programs in an
event based systems may not only communicate (by announcing and consuming
events), but they may also share some variables.

Definition 1. An event based system is a 4-tuple (E,M, ϑ, B) composed of a
set of events E, a set of programs M, a set of global variables ϑ shared among
programs in M, and a binding B which maps each program to its set of subscrip-
tions.
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The behavior of an EB system consists of providing facilities for announcing and
receiving events. Programs announce events that are dispatched to some other
programs. The purpose of an event is thus to trigger some programs. The process
of determining which programs are interested in an event is called matching. A
matching is performed between an event and a subscription. This is a query that
describes the interest of a program in receiving some events. Such subscriptions
are typically assertions that characterize events. They can be viewed as total
functions defined on the set of events and returning true or false. An example of
subscription is: λx : x starts with ’John’. An example of event that matches this
subscription is: ’John is leaving the office’.

Definition 2. Assuming an EB system (E,M, ϑ, B), a subscription s is a total
function from E to {True, False}.

B(z) denotes the set of subscriptions of a program z and determines the set of
events z is interested in.

Definition 3. Given an event e, we define subscribers(e) = {z ∈ M |∃s ∈
B(z), s(e) = true} as the set of programs that are interested in the event e.

Among the set of events E , there may be some external events. These are
events that are announced by programs not in M. We denote the set of external
events as Ex and the set of programs that subscribed to some of these events as
Mx. Formally, Mx =

⋃
e∈Ex

subscribers(e).

3.3 Operational Semantics

We give the operational semantics of the LECAP programming language in the
style of [1]. A state maps all programming variables to values and a configuration
is a pair 〈p, s〉 where p is a program and s is a state. The semantics of the LECAP
programming language is given relative to an EB system (E,M, ϑ, B). In the
sequel z denotes a program that is different from the empty program ε.

An environment transition v→ is the least binary relation on configurations
such that:

– 〈z, s1〉
v→ 〈z, s2〉, environment transitions are only allowed to modify the

state of EB systems.

A program transition i→ is the least binary relation on configurations such that
one of the following holds:

– 〈skip, s〉 i→ 〈ε, s〉,

– 〈u := r, s〉 i→ 〈ε, s[u/r ]〉, where s[u/r ] denotes the state obtained from s by
mapping the variable u to the value r and leaving all other state variables
unchanged,
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– 〈announce(e); z, s〉 i→ 〈‖subscribers(e) ∪ {z}, s〉. The effect of announcing
an event is to trigger the set of programs that subscribed to this event and
execute them in parallel with the remainder of the announcing program.
Programs triggered by an event are part of the running program and their
transitions are therefore internal transitions.

– 〈z1; z2, s1〉
i→ 〈z2, s2〉 if 〈z1, s1〉

i→ 〈ε, s2〉 and announce(e) is not a
subprogram of z1,

– 〈z1; z2, s1〉
i→ 〈z3; z2, s2〉 if 〈z1, s1〉

i→ 〈z3, s2〉, z3 	= ε and announce(e)
is not a subprogram of z1,

– 〈if b then z1 else z2, s〉 i→ 〈z1, s〉 if s |= b,

– 〈if b then z1 else z2, s〉 i→ 〈z2, s〉 if s |= ¬b,

– 〈while b do z od, s〉 i→ 〈z; while b do z od, s〉 if s |= b,

– 〈while b do z od, s〉 i→ 〈ε, s〉 if s |= ¬b,

– 〈{z1 ‖ z2}, s1〉
i→ 〈z2, s2〉 if 〈z1, s1〉

i→ 〈ε, s2〉,

– 〈{z1 ‖ z2}, s1〉
i→ 〈z1, s2〉 if 〈z2, s1〉

i→ 〈ε, s2〉,

– 〈{z1 ‖ z2}, s1〉
i→ 〈{z3 ‖ z2}, s2〉 if 〈z1, s1〉

i→ 〈z3, s2〉, z3 	= ε.

– 〈{z1 ‖ z2}, s1〉
i→ 〈{z1 ‖ z3}, s2〉 if 〈z2, s1〉

i→ 〈z3, s2〉, z3 	= ε.

– 〈 await b do z1 od , s1〉
i→ 〈ε, sn〉 if s1 |= b, and there exists a list of

configurations
〈z2, s2〉,...,〈zn−1, sn−1〉, such that 〈zn−1, sn−1〉

i→ 〈ε, sn〉 and for all
1 < k < n,〈zk−1, sk−1〉

i→ 〈zk, sk〉,

The meaning of an await statement is not very clear when its body does not
terminate [31]. When it however terminates the final state is required to sa-
tisfy the post-condition. Given that we are not interested (in this work) in
non-terminating programs we can stipulate that any computation of an await-
statement has a finite length.

Besides the state of the system that programs may read and update, they
also have local variables that are hidden such that environment transitions are
not allowed to access them. We do not model this concept in our work since it
has no impact on our rules.

Definition 4. A configuration c1 is disabled if there is no configuration c2 such
that c1

i→ c2.
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Definition 5. A computation is a possibly infinite sequence of environment and

program transitions: 〈z1, s1〉
l1→ ...

lk−1→ 〈zk, sk〉 lk→ ... such that the final
configuration is disabled if the sequence is finite. A computation is blocked if it is
finite and the program of the last computation is different from ε. A computation
terminates iff it is finite and the program of the last configuration is ε.

The above operational semantics doesn’t explicitly discuss the case of events an-
nounced by the environment (including external events). The programs triggered
by these events are part of the environment and their transitions are environment
transitions.

Given a computation σ , then Z(σ ), S(σ ) and L(σ ) are the projections to
sequences of programs, states and transition labels, while Z(σ k), S(σ k) and
L(σ k) and σ k denote respectively the k’th program, the k’th state, the k’th
transition label and the k’th configuration. The number of configurations in σ is
denoted len(σ ). If σ is infinite, then len(σ ) = ∞.

In the sequel, cp[z] denotes the set of computations σ such that Z(σ 1) = z.
These computations are called computations of z.

4 Specification Language

We show how rely- and guar- conditions can be extended and used for the speci-
fication of LECAP programs. These programs are parallel programs that might
use synchronization constructs and are based on the event paradigm. Specifi-
cally, we show that the quintessence of the logic of specified programs proposed
by Stolen [27] can be reused.

In the style of VDM [18], hooked variables are used to denote an earlier state.
For any variable v of type T , there exists a corresponding hooked variable

↼
v of

type T . Hooked variables cannot appear in programs.
An assertion is a boolean formula on states. Let P be an assertion and s1 and

s2 be two states. We write (s1, s2) |= P if P is true when each hooked variable
v in P is assigned the value s1(v) and each unhooked variable is assigned the
value s2(v). If P has no hooked variable, it may be thought of as the set of all
states, such that s |= P . We write |= P if P is valid in the actual structure.

4.1 Specification

If (L,M, ϑ, B) is an EB system, a specification is of the form (L,M, ϑ, B) ::
(P, R, W, G, E, A), where the pre-condition P and the wait-condition W are un-
ary assertions while the rely-condition R, the guar-condition G, and the post-
condition E are binary assertions. The ann-condition A is a set of assertions
defined on computations. It characterizes the kind of events a program may
announce.

Definition 6. Given a computation σ , an assertion Q, and an event e, Q con-
ditions the announcement of e in σ (or σ satisfies Q ≺ e) iff for any state s
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found along σ that satisfies Q there is a program transition in the remainder of
σ of one of the following forms:

– 〈announce(e); z, s〉 i→ 〈‖subscribers(e) ∪ {z}, s〉.
– 〈announce(e)‖z, s〉 i→ 〈‖subscribers(e) ∪ {z}, s〉.
– 〈z‖announce(e), s〉 i→ 〈‖subscribers(e) ∪ {z}, s〉.

There should be exactly one such configuration.

Definition 7. An ann-condition is a set of formula of the form Q ≺ e. A compu-
tation satisfies an ann-condition A = {Qi ≺ ei}i iff it satisfies each Qi ≺ ei ∈ A

The restriction on the number announcements of an event e along a computation
can be surmounted by labelling events.

If X is a set of variables and s1, s2 are two states, then s1
X= s2 signifies that

for all variables x in X, s1(x) = s2(x) while s1
X

	= s2 means that there exists x
in X such that s1(x) 	= s2(x).

Definition 8. Given an EB system (L,M, ϑ, B), a pre-condition P, and a rely-
condition R, then ext[ϑ, P, R ] denotes the set of computations σ such that:

– S(σ 1) |= P ,

– for all 1 ≤ j < len(σ ), if L(σ j) = e and S(σ j)
ϑ

	= S(σ j+1) then
(S(σ j), S(σ j+1)) |= R.

The previous definition characterizes computations that satisfy the pre-condition
and are subject to environment transitions. Informally, 1) the initial state must
satisfy the pre-condition, and 2) any environment transition which changes the
global state must satisfy the rely-condition.
A specification also characterizes commitments of the implementations:

Definition 9. Assuming an event based system (L,M, ϑ, B), a guar-condition
G, and a post-condition E, a wait-condition W , and an ann-condition A then
int[ϑ, G, E, W, A] denotes the set of computations σ such that:

– for all 1 ≤ j < len(σ ), if L(σ j) = i and S(σ j)
ϑ

	= S(σ j+1) then
(S(σ j), S(σ j+1)) |= G,

– if Z(σ len(σ)) = ε then (S(σ 1), S(σ len(σ))) |= E,
– if Z(σ len(σ)) 	= ε then Z(σ len(σ)) |= W
– len(σ ) 	= ∞
– σ satisfies the ann-condition A.

The above definitions implicitly take into consideration the case of a program
ze triggered by an event e announced by z. The triggered program ze is in fact
part of the running program which becomes ze‖z1 where z1 is the remainder of
z (after the the announcement). However, in the parallel composition ze‖z1, ze

and z1 are part of the environment of each other. They are therefore required to
satisfy the rely-condition of each other. An interference free composition must
hence require that they coexist.
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4.2 Judgments

Definition 10. Given an event based system (L,M, ϑ, B), a judgment is a
pair consisting of a program z ∈ M and a specification (L,M, ϑ, B) ::
(P,R,G,E,W,A). Such a judgment is denoted z |= (L,M, ϑ, B) ::
(P, R, G, E, W, A).

Definition 11. Let us assume an event based system (L,M, ϑ, B); A judg-
ment z |= (L,M, ϑ, B) :: (P, R, G, E, W, A) is valid iff cp[z] ∩ ext[ϑ, P, R ] ⊆
int[ϑ, G, E, W, A] .

We extend the concept of judgment to the whole event based system and say that
|= (L,M, ϑ, B) :: (P, R, G, E, W, A) is valid iff the judgment z |= (L,M, ϑ, B) ::
(P, R, G, E, W, A) is valid for any program z ∈ M.

4.3 Composition

This section aims at formulating the rule for the composition of LECAP spe-
cifications. A LECAP program that satisfies its specification is called a correct
program (w.r.t. its specification).

In the remainder, if B is a binding, z a program, and e an event, B†{z �→ e}
represents the binding obtained from B by subscribing the program z to the event
e. By extension of this notation, if S is an EB system, S†{z �→ e} represents S
with its binding B replaced by B†{z �→ e}. Iϑ denotes the assertion

∧
x∈ϑ x =

↼
x .

Iϑ is thus an assertion that states that the value of no variable in ϑ changed. If A,
B, and C are some binary assertions, B | C denotes the assertion characterizing
the relational composition of B and C i.e. (s1, s3) |= B | C iff there exists s2
such that (s1, s2) |= B and (s2, s3) |= C. B∗ denotes the transitive closure of B.
AB denotes an assertion that characterizes any state that can be reached from
a state A by a finite number of B steps. S represents the event based system
(L,M ∪ {z1, z2}, ϑ, B) and S0 represents the event based system (L,M, ϑ, {})
with an empty binding. This means that no program in S0 is subscribed to any
event. Announcing an event has an effect neither on the state of the system nor
on running programs. In this case, the ann-condition A in a specification such
as (P, R, G, E, W, A) is not relevant (denoted ⊥). The set of deduction rules
proposed by Stolen [27] is thus applicable. We illustrate the consequence, the
parallel and the await rules below. They are further used for the construction of
our composition rule.

Consequence rule: Parallel rule:
P2 ⇒ P1

R2 ⇒ R1

W1 ⇒ W2

G1 ⇒ G2

E1 ⇒ E2

z |= S0 :: (P1, R1, G1, E1, W1, A1)
z |= S0 :: (P2, R2, G2, E2, W2, ⊥)

¬(W1 ∧ W2) ∧ ¬(W2 ∧ E1) ∧ ¬(W1 ∧ E2)
G1 ⇒ R2

G2 ⇒ R1

z1 |= S0 :: (P, R1, W ∨ W1, G1, E1, A1)
z2 |= S0 :: (P, R2, W ∨ W2, G2, E2, A2)
{z1‖z2} |= S0 :: (P, R1 ∧ R2, W, G1 ∨ G2, E1 ∧ E2, ⊥)
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The consequence rule allows refinement of specifications by strengthening the
assumptions and weake-ning the commitments.

The parallel rule ensures parallelization of programs. The program z1‖z2 can
be derived from z1 and z2 if they satisfy the above specifications. An important
requirement for z1 and z2 to coexist is that the guar-condition of one implies the
rely-condition of the other. Further, not both processes should be in a waiting
status as well as if the execution of one of them is completed, the other should
not be waiting.

Sequential Rule Await Rule:
↼
P1 ∧E1 ⇒ P2

z1 |= S0 :: (P1, R, W, G, E1, A1)
z2 |= S0 :: (P2, R, W, G, E2, A2)
z1; z2 |= S0 :: (P1, R, W, G, E1|E2, ⊥)

z |= S0 :: (P R ∧ b, false,false,true ,(G ∨ Iϑ) ∧ E, A)

await b do z od |= S0 :: (P, R, P R ∧ ¬b, G, R∗|E|R∗, ⊥)

The sequential rule is quite similar to that of sequential programming. It
essentially requires that the post-condition of the first program implies the pre-
condition of the second. The resulting specification is that of a program whose
computations start in a state satisfying the first pre-condition, ends in a state
satisfying the second post-condition, and is such that it contains a state satisfying
the first post-condition.

The intent of the await-rule is to allow programs to synchronize on resources.
Assume we want to construct a synchronizing program that satisfies (P, R, PR ∧
¬b, G, R∗|E|R∗). This program needs to block when b is false. Hence, it executes
when b is true. However, if the await-program executes when b is true, the await-
body needs to have b as conjunct in its pre-condition. Further, if the await-
program has P as pre-condition, the await-body needs to have PR as conjunct
in its pre-condition. The reason for this is that while the program is waiting for
b to be true, some environment transitions may be performed that modify the
state of the system in a way that satisfies the rely condition. The pre-condition
of the await-body is thus PR ∧ b. The rely- and wait-conditions of the wait-body
results from the fact that we want the program to be executed in an atomic step
(without any interference). Since the program is executed in an atomic step, if
we want the await-program to guarantee G, the post-condition of its unique step
(the await-body) needs to either leave all variables unchanged or satisfy G. Of
course, the post-condition of the await-body also needs to satisfy E.

We now consider the above rules; still with an empty binding, but taking
ann-conditions into consideration. The computations of rely- guar-, pre-, post-
and wait-conditions remain the same as above. In the following, Q1, Q2 and
Q designate some assertions, while ei are events. Fr(Q) denotes the set of free
variables in the assertion Q.

Parallel Rule

Fr(Qi) ∩ Fr(Qj) = Fr(Qi) ∩ ϑ = Fr(Qj) ∩ ϑ = ∅
ei �= ej , i ∈ [1, n], j ∈ [n + 1, m]
¬(W1 ∧ W2) ∧ ¬(W2 ∧ E1) ∧ ¬(W1 ∧ E2)
G2 ⇒ R1

G1 ⇒ R2

z1 |= S :: (P, R1, W ∨ W1, G1, E1, {Qi ≺ ei}n
1 )

z2 |= S :: (P, R2, W ∨ W2, G2, E2, {Qj ≺ ej}m
n+1)

{z1‖z2} |= S :: (P, R1 ∧ R2, W, G1 ∨ G2, E1 ∧ E2, {Qi ≺ ei}m
1 )
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Sequential Rule

Fr(Qi) ∩ Fr(Qj) = Fr(Qi) ∩ ϑ = Fr(Qj) ∩ ϑ = ∅
ei �= ej , i ∈ [1, n], j ∈ [n + 1, m]
↼
P1 ∧E1 ⇒ P2

z1 |= S :: (P1, R, W, G, E1, {Qi ≺ ei}m
n+1)

z2 |= S :: (P2, R, W, G, E2, {Qi ≺ ei}n
1 )

z1; z2 |= S :: (P1, R, W, G, E1|E2, {Qi ≺ ei}m
1 )

If Q1 (resp. Q2) conditions the announcement of e1 (resp. e2) in z1 (resp.
z2), the parallel composition of z1 and z2 is such that Q1 (resp. Q2) conditions
the announcement of e2 (resp. e1) in z1‖z2. There are two reasons why this is
true:

– no event is announced by both programs. If an event was announced by both
programs, the parallel composition would yield a program that announces
the same event twice. This is not compatible with the definition of Q ≺ e.

– the set of variables in any assertion in the ann-condition of z1 is disjoint
from the global state and from the set of variables of any assertion in the
ann-condition of z2 (and vice-versa). To understand the necessity of this re-
striction, assume a program z1 that satisfies x > 2 ≺ e1 and some of its
computations σ 1 have a configurations such that its state satisfies x > 2
holds. By the definition of announcement conditions there is an announce-
ment transition in σ 1. On the other hand there may be a program z2 such
that when composing in parallel with z1 there is no state any more that
satisfies x > 2. The resulting program z1‖z2 announces a program although
the condition x > 2 is not satisfied. This doesn’t happen when the assertions
are based on auxiliary variables that appear only in one program.

The enhancement of the await-rule is trivial: if the announcement of an event
is conditioned by Q in z, this event remains conditioned by Q when we embed
z in an await construct.

Await rule:

z |= S0 :: (P R ∧ b, false,false,true ,(G ∨ Iϑ) ∧ E, {Qi ≺ ei}m
1 )

await b do z od |= S0 :: (P, R, P R ∧ ¬b, G, R∗|E|R∗, {Qi ≺ ei}m
1 )

Starting from an empty binding, we now need to successively add subscrip-
tions to the EB system. Before investigating the composition rule, we give one
more definition. Let us denote the set of events that a program possibly anno-
unces as events(z); let also the set γ (z) =subscribers(events(z)) be the set of
programs subscribed on the events that the program z announces. γ ∗(z) denotes
the transitive closure of γ defined as γ (z) ∪

⋃
s∈γ(z)

γ ∗(s)

Definition 12. The binding B of an EB system (L,M, ϑ, B) is well founded iff
for any program z, z 	∈ γ ∗(z). A well founded binding will be denoted wf B.

The intent of the above definition is to avoid infinite loops in EB systems. The
simplest such case is when a program subscribes to the events that itself anno-
unces. This restriction seems to be strong: a program may subscribe on events it
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announces without producing infinite loops. We doubt on the necessity of such
configurations and exclude them as may complicate the composition rule.

Computing the specification of a system out of those of its components con-
sists of successively adding new subscriptions to the EB system. The process
starts with a system with an empty binding. After adding a new subscription,
the composition rule is applied and new specifications are derived. The algorithm
is following:

To subscribe program z2 to event e do:
add the entry (z2 , e) to the the binding;
for each program z that announces e, do:

apply the composition rule
if necessary, update any specification that depends on z

The composition rule can now be given. For each subscription that is perfor-
med, it is required that the binding remains well founded. The claim of this rule
is that if the programs z and z2 are specified as shown in the premises while z2
is not interested in e1, subscribing z2 to e1 results in a program that behaves
like z first and eventually (from a state satisfying IR1), behaves like z2‖z. This
is a natural consequence of the semantics of event announcement.

Composition rule:

Fr(Qi) ∩ Fr(Qj) = Fr(Qi) ∩ ϑ = Fr(Qj) ∩ ϑ = ∅
¬(W1 ∧ W2) ∧ ¬(W2 ∧ I|E1) ∧ ¬(W1 ∧ E2)
ei �= ej , i ∈ [1, n], j ∈ [n + 1, m]
wf B†{z2 → e1}
↼
P ∧I|R∗ ⇒ P2 ∧ Q1

z �∈ subscribers(e1)
y |= S :: (P, R1, W1, G1, I|E1, {Qi ≺ ei}n

1 )
z2 |= S :: (P2, R2, W2, G2, E2, {Qi ≺ ei}m

n+1)

z |= S†{z2 → e1} :: (P, R1 ∧ R2, W1, G1 ∨ G2, I|E1 ∧ P2|E2, {Qi ≺ ei}m
1 )

4.4 Cause of Events

Before subscribing a program to an event, one needs to know the meaning of this
event. The cause of an event is an assertion that characterizes the announcement
of an event in the whole system. An event is announced in the system iff this
assertion is true. Let (M,L, ϑ, B) be an EB system and Az be the ann-condition
of a program z in M. We further denote the union of all ann-conditions as A =.
The following formula gives a formal definition:

cause(e) =
∨

Q∈S

Q,where S = {Q, Q ≺ e′ ∈
⋃

z∈M
Az}.

The formula says that the cause of an event is the disjunction of the assertions
Q that condition the announcement of events with the same semantics as e. The
formula is not applicable to events that may be announced by the environment
since the environment may be non-deterministic.
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5 Discussion

An important issue is the tractability of our logic. Let us consider a system in
which z, and y announce the events e1, and e2 respectively while y is subscribed
to e1. If we further subscribe z3 to e2, y needs to be re-computed. Worst, all
specifications that depend on y (in our case only z) need also be updated. In
real project, the chain may be long and the composition can become painful.
Fortunately, the difference between the different programs are syntactically clear.
For instance after subscribing z3 to y only a conjunct of the form QP |T needs
to be added to specifications that depend on y. Updating the specifications is
thus a copy-paste process that can be easily mechanized. We believe that CASE
tools for composing specifications can help solve this problem.

Another factor that influences the tractability of our approach is the order
in which subscriptions are performed. It is obvious that if z3 is subscribed to e2
before y is subscribed to e1, the changes are less significant. Thus, an initial step
in composing the specification of a system out of those of its components is to
find a suitable sequence of application of the composition rule.

This issue of tractability is not specific to our composition approach. Techni-
ques of composition based on procedure invocation have comparable problems.
The manifestation of such problems in practice is e.g. regression testing that
tackles the issue of detecting which part of a system must be tested following
the modification in another part of the system.

We argued at the beginning of this document that our approach does not
require a pending event infrastructure. The question is thus, how to model such
a requirement since it might be important in some cases to show e.g. that the
result of an operation doesn’t depend on the ordering of events. This can be done
in our approach using the synchronization construct. Queuing or delaying an
event until a condition Q is fulfilled means embedding the subscribed programs
in an await construct conditioned by Q.

Our composition rule requires that bindings be well-founded. There are, ho-
wever, cases where a program announces an event, and waits for another program
to consume the event and send a result back. A typical such scenario is to si-
mulate method invocation using the event based paradigm, which would make
“caller” less strongly coupled to the “callee”. To achieve this, we need an auxi-
liary program p and an auxiliary variable v. The purpose of p is simply to store
the event it receives in v. Now, for achieving our method invocation, the caller
first subscribes the auxiliary program p to events it would like to wait for. Next,
the caller announces the event containing the parameters of the call and blocks
(by means of the await construct). On the other side the callee is triggered by
the event based system. After processing the event, the callee publishes an event
to which the auxiliary program p is subscribed for which the caller is waiting.
Once the auxiliary program is triggered it stores the received event in the related
auxiliary variable such that the wait-condition of the caller now holds. The caller
can continue its execution by reading the content of the auxiliary variable. We
are working on generalizing this solution to make the various details transparent
to the designers.
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6 Examples

We consider an example similar to that of Dingel et al. [12,11]. The goal is to
develop a system consisting in a buffer and a counter. Each time an element
is added to the buffer, the counter must be incremented. Similarly, each time
an element is removed from the buffer, the counter has to be decremented. We
adopt two approaches for designing this system.

6.1 Example 1

We design a system with four programs. The first program (add) adds elements
of type T to the buffer while the second program incr increments a counter
Count. Similarly, remove removes elements from the buffer and decr decrements
the counter. The global state is thus composed of Buf and Count.

Let us construct the event based system S0 = (L, M, ϑ, B) first. We already have
ϑ = { Buf, Count} and M = {add, incr, remove, decr}. We deduce the empty binding
B = {add → ∅, incr → ∅, decr → ∅, remove → ∅}. We further extend the event based
system with the set of auxiliary variables ϑa = { Bufa1, Bufa2} used in the ann-
conditions. An event is a tuple consisting of an identification number and an
element of type T . The set of event is thus E = {(id, elt)|id ∈ N ∧ elt ∈ T }. We
access the identifier (resp. element) of an event evt using the notation evt.id
(resp. evt.elt). A subscription is a total function defined on the set of events. An
example of subscription (using the lambda notation) is: s = λe : e.id > 40

The next step in the example is to give the formal specification of the pro-
grams add and incr denoted as Sa and Si. In this example, we want each program
to run alone à-la sequential programming. The rely-conditions of the programs
are false while their wait-, and guar-conditions are true. If we assume Buf to
be an unbounded buffer, then elements can always be inserted, hence the pre-
condition is true. The post-condition can be defined as Buf = e.elt+

↼

Buf. Each
program that is started is done so with an event as input. We want the program
add to announce the event (1, e.elt) whenever an element is added in the buffer.
The ann-condition is thus { Bufa1 = {e.elt} ≺ (1, e.elt)}. For this ann-condition to
be satisfied when an element is added to the buffer the conjuncts Bufa1 = ∅ and
Bufa1 = {e.elt} must be added to the pre- and post-conditions respectively. Sa

is thus expressed as: Sa = S :: ( Bufa1 = ∅, false, false, false, Bufa1 = {e.elt} ∧ Buf =

e.elt+
↼

Buf, { Bufa1 = {e.elt} ≺ (1, e.elt)}).
Similarly, we define the following specification of incr: Si = S0 ::

( true, false, false, false, Count =
↼

Count +1, ∅). Using the consequence rule
we can refine it by strengthening the pre-condition: Si = S0 :: ( Buf =

e.elt+
↼

Buf, false, false, false, Count =
↼

Count +1, ∅).
We now subscribe incr to events with identifier equals to 1. This is done with

the subscription query λx : x.id = 1. Applying the composition rule we obtain the
new definition of Si: Sa = S :: ( Bufa1 = ∅, false, false, false, Bufa1 = {e.elt} ∧ Buf =

e.elt+
↼

Buf ∧ Count =
↼

Count +1, { Bufa1 = {e.elt} ≺ (1, e.elt)}).
A similar reasoning yields the following specifications Sr, and Sd of remove

and decr respectively:
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Sr = S :: ( Bufa1 = {e.elt} ∧ e.elt ∈ Buf, false, false, false, Bufa2 = ∅ ∧ Buf =
↼

Buf

−e.elt, { Bufa2 = ∅ ≺ (2, e.elt)}),
Sr = S :: ( Count > 0, false, false, false, Count =

↼
Count −1, ∅).

Subscribing decr to events with identifiers equal to 2 (subscription query λx :

x.id = 2) and applying the composition rule (strengthening the pre-condition of
decr first) yields the following specification:
Sr = S :: ( Bufa2 = {e.elt}∧e.elt ∈ Buf∧ Count > 0, false, false, false, Bufa2 = ∅∧ Buf =

↼

Buf

−e.elt ∧ Count =
↼

Count −1, { Bufa2 = ∅ ≺ (2, e.elt)}).
We now specify the kind of interactions we expect from the environment: 1)

the environment may not publish events such that the identifier is equal to 1
or 2. This would lead to invalid incrementation/decrementation of the counter.
2) the environment may announce any other event. Various techniques can be
applied for implementing these constraints on the environment. An example of
such techniques is access control.

At this stage, the system is almost useless: the programs add and remove
are not accessible to the environment. We subscribe them to the events with
identifiers equal to 3 (λx : x.id = 3) and to events with identifiers equal to 4
respectively. The environment can thus remove elements from or add elements
to the buffer as it wills. However, since the programs add and remove do not
allow interference, any event that is announced while one of these programs is
running will simply be ignored.

Various properties of the system can be proved based on this specification.
For instance, one can verify that each computation of the system conserves the
property # Buf = Count. This is, if the number of elements in the buffer is equals
to the value of the counter before a computation, this will also be the case when
the computation is completed. After proving some desirable properties of the
system, the different components can be implemented such that they are correct
w.r.t. their specifications.

6.2 Example 2

In the previous example, if an event arrives while a program is running, the event
will simply be discarded. We extend the previous example such that if an event
arrives while a program is running, the triggered program has to wait until it is
save to run.

We consider the same system S0 as in the previous example. We enrich the
global state with a boolean variable called sentinel. We want add to be of the
form: await sentinel do addbody. A specification of add is Sa = (P1, R1, P

R1
1 ∧

sentinel, G1, R∗
1 |E1|R∗

1 , A1) with P1
def
= Bufa1 = ∅, R1

def
= Count =

↼
Count, G1

def
= Buf =

↼

Buf

+e.elt, E1
def
= G1 , and A1 = { Bufa1 = {e.elt} ≺ (1, e.elt)} . The specification of the

body related to Sa can be deduced using the await-rule.
On the other hand we customize the specification of incr to meet the requi-

rements of the composition rule. We now have Si
def
= (P2, R2, W2, G2, E2, ∅) where

P2
def
= true, R2

def
= G1 , W2 = false , G2

def
= R1 , E2

def
= Count =

↼
Count +1. It can easily be

verified that starting from S0 , the premises of the composition rule are satisfied.
We now subscribe incr to events with identifiers equal to 1. The composition



84 P. Fenkam, H. Gall, and M. Jazayeri

rule yields the following result: Sa = (P1, R1, P
R1
1 ∧ sentinel, G1 ∨ G2, E1 ∧ E2, { Bufa1 =

{e.elt} ≺ (1, e.elt)}).
This is indeed the specification of a program which adds an element in the buffer
and increments the counter. The program blocks until sentinel becomes true.
Further, executing programs will not be interrupted by the environment. Other
programs will wait until sentinel becomes true and no other program is running.
This means that announced events are not simply discarded as in the previous
example.

7 Conclusion

“Concurrent programming is hard and shared variable programming is very
hard [30].” Concurrent programming with synchronization, shared variable and
event based communication is therefore “three times” harder. We presented some
shortcomings of the existing approaches in this paper.

In addition, we proposed a logic (LECAP) that allows specifying applications
based on these paradigms (concurrency, shared variables, events, synchroniza-
tion). The logic also supports composition of these specifications into specifica-
tions of larger applications. LECAP is therefore intrinsically oriented towards
construction of complex systems. The paper also gave the formal semantics of the
LECAP programming language. Such a language is based on an event based sy-
stem whose formal definition was presented. Jones’s rely/guarantee approach for
the construction of interfering programs was extended with announcement con-
ditions. The paper finally presented two examples that illustrate the approach.

It is obvious that a software development method cannot be established based
on two examples. We therefore need to develop more examples and case studies
to further experiment our approach. Additionally, refinement and verification of
LECAP specifications are tasks we have to tackle.
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