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Abstract. Previous methods have generally identified the location of a
type error as a particular program point or the program subtree rooted
at that point. We present a new approach that identifies the location of
a type error as a set of program points (a slice) all of which are necessary
for the type error. We describe algorithms for finding minimal type error
slices for implicitly typed higher-order languages like Standard ML.

1 Introduction

1.1 Previous Approaches to Identifying Type Error Locations

There has been a large body of work on explaining type errors in implicitly typed,
higher-order languages with let-polymorphism (Haskell, Miranda, O’Caml, Stan-
dard ML (SML), etc.) [26,19,18,30,28,2,3,9,1,15,8,20,29]. This is much harder
than in monomorphic, explicitly typed, first-order languages. None of the previ-
ous work on this is entirely satisfactory. In particular, the previous approaches
do a poor job of identifying the location of type errors.

As an example, consider the following SML program fragment:

val f = fn x => fn y => let val w = x + 1 in w::y end

This defines a function f such that the function call (f 1 [2]) should compute
the list [2,2]. Suppose the programmer erroneously typed this instead, making
an error at the indicated spot:

val f = fn x => fn y => let val w = y + 1 in w::y end

When the W [6], M [18], or the UAE [28,30] type inference algorithms are
used to identify the error location, the type inference algorithm traverses the
program’s abstract syntax tree and when it fails, the node of the tree currently
being visited is blamed. The algorithms differ in how eagerly they check the
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various type constraints, so they may fail at different nodes. When using either
W or UAE for the example, this error location is identified:

val f = fn x => fn y => let val w = y + 1 in w::y end

Although UAE was designed with the intention that unlike W it would blame a
location containing the error, it handles let-bindings in the same way as W so
it fails in the same way on this error. It has been proposed to useM instead of
W because this would yield more “accurate” error locations. For the example,
M identifies this error location:

val f = fn x => fn y => let val w = y + 1 in w::y end

This example illustrates the general fact that W,M, and UAE often fail to
identify the real location of the error. They identify one node of the program
tree which participates in the type error, but will often be the wrong node to
blame. These approaches also often identify program subtrees that include many
locations that do not participate in the type error, e.g., in the example both
W and UAE include the occurrence of w in the blamed subtree. This problem
can also happen forM in some cases, although it does not happen as often. For
W and M, this is not necessarily wrong because only the root of the subtree
is being blamed, not necessarily all of the other nodes in the subtree, but the
programmer will often not understand this distinction.

1.2 A New Notion of Type Error Location

In contrast, this paper locates errors not at single nodes or subtrees of the
abstract syntax tree, but at program slices. For the example, our implementation
finds this error location:

val f = fn x => fn y => let val w = y + 1 in w::y end

This correctly includes all of the parts of the program where changes can be made
to fix the type error. Importantly, it also correctly excludes all of the parts of the
program where changes can not fix the type error. The occurrences of + and ::
are highlighted differently to show they are the “endpoints” of a clash between
the int and list type constructors. As an alternative, the erroneous slice of the
program can be presented separately by displaying a very small program that
contains the same type error as the source program, and nothing but this type
error. In many cases, this will make it easier for the programmer to understand
the error, especially when the error spans multiple source files. Here is actual
output from our implementation in this style for the example:1

Type of error: type constructor clash, endpoints int vs. list.
(.. y => (.. y + (..) .. (..)::y ..) ..)

1 The fn keyword is missing because SML has the match syntax. That x is bound in
a fn-match as opposed to a case-match is irrelevant for the error.
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Formally, a type error slice is a set of program points. It is complete if these
program points together “form a type error”. It is accurate if none these program
points is irrelevant for the type error. Examples of incomplete type error slices
include the locations that are returned in most error messages of, for example,
the SML/NJ compiler. They consist of a single program point, namely the point
where the type inference algorithm detects a failure. This program point by
itself does not form a type error. As an example of an inaccurate type error
slice, one could take the entire program if it contains a type error. If the type
error locations produced by the W, M, or UAE algorithms are taken to be
identifying a program subtree, then they will usually be inaccurate.

1.3 Related Work

Dinesh and Tip have applied slicing techniques for locating sources of type errors
[8]. Their techniques are applicable to explicitly typed languages. Their approach
depends on the fact that the type system can be expressed as a rewrite system,
and they use techniques for origin and dependency tracking in rewrite systems
to find error locations. Although type inference algorithms for implicitly typed
languages can be phrased as rewrite systems, a large part of the rewrite rules
would concern auxilliary functions, i.e., unification and constraint solving. For
this reason, we do not believe that a direct application of Dinesh and Tip’s
methods results in accurate location of type error sources in languages with
type inference.

Our work is based on Damas’ type inference system [7]. This system dif-
fers from the more widely know type scheme inference system (i.e., the Hind-
ley/Milner system) in the typing rule for let-expressions, but admits the same
set of well-typed closed expressions. It can be seen as a restriction of a sys-
tem of rank-2 intersection types. Jim [14] has proposed using rank-2 intesection
types for accurate type error location. Bernstein and Stark [2] use Damas’s type
inference system for type error debugging of open terms.

Wand has presented an algorithm for finding the source of type errors in
implicitly typed languages [26]. Similar methods have been used by Duggan and
Bent [9]. Wand’s algorithm uses a modified unification procedure that keeps track
of constraint sets that have been used in the derivation of unsolvable constraints.
However, there is no attempt to present the corresponding program slices and
these constraint sets need not be minimally unsolvable. We use a similar method
as a subroutine, but in addition, we minimize constraint sets and present the
resulting minimal type error slices. Our slices are minimal in the sense that the
omission of further program points yields a non-error. Johnson and Walz have a
method which attempts to choose the location to blame by counting the number
of sites which prefer one type over another [15].

Chopella and Haynes study type error diagnosis in a simply typed language
[5,4]. Unlike our work, they do not actually treat let-polymorphism. They pro-
pose to present type error locations as program slices, but have no notation
for slices. Moreover, they present a graph-based unification framework, based on
work by Port [23], which could be used for finding minimal unsolvable constraint
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sets. However, the diagnostic unification algorithm that is eventually presented
in [4] only computes a single unsolvable constraint set that is not necessarily
minimal. In contrast, our algorithms are not graph-based but based on run-
ning a unification algorithm multiple times. A big advantage of our approach is
simplicity of presentation and implementation. Unlike Chopella and Haynes, we
give a detailed presentation of an algorithm that enumerates minimal unsolvable
constraint sets. On the other hand, while our algorithm enumerates some mini-
mal unsolvable subsets of a given constraint set, the algorithm is impractical for
exhaustively enumerating all such sets. In the worst case, enumerating all such
sets is intractable [27]. In some cases an algorithm based on Port’s idea may find
all minimal unsolvable subsets, whereas ours does not. In the future, we may
adopt the algorithm that is sketched by Port.

Heeren and others propose constraint-based type inference for improved type
error messages [13,12,11]. They treat let-polymorphism, and their type system is
between a type inference system and a type scheme inference system. In addition
to equality constraints, their inference algorithm generates type scheme instance
constraints. As a result, the constraint solving order is restricted. We believe
that a type inference system without type schemes would simplify their system
and sometimes permit more accurate error messages. They do not attempt to
compute type error slices.

MrSpidey is a static debugger for Scheme that is distributed with some ver-
sions of the DrScheme programming environment [10]. It is based on set-based
flow analysis, constructs and, on demand, displays parts of flow graphs, and
highlights critical program points at which runtime errors may occur.

Much related work on type error analysis has spent a great deal of effort on
sophisticated ways for automatically generating type error explanations [3,9,20,
26,29,1,19]. Such explanations tend to be complicated and lengthy. We believe
that it is most important to accurately locate type errors, and display type error
locations in a user-friendly way. For understanding errors, programmers typi-
cally use additional semantic knowledge that cannot be provided automatically
anyways. Our work is intended to be a step into this direction.

1.4 Outline of Paper

Section 3 gives an overview of Damas’ type inference system. The methods for
type error slicing proceed in three steps. The first step consists of assigning con-
straints to program points. In order to obtain accurate type error slices, it is
important to follow a certain strategy. This strategy is described in section 4.
The second step consist of finding minimal unsolvable subsets in the set of all
constraints. Section 5 describes algorithms for doing this. Finally, section 6 de-
scribes how type error slices are computed from the results obtained in the
previous step.

For concreteness, we describe our methodology in detail for the small model
language shown in figure 1. The labels that superscript expressions mark pro-
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l ∈ Label a fixed infinite set of labels
L ∈ LabelSet all finite subsets of Label
x ∈ Var a fixed infinite set of variables
n ∈ Int the set of integers

lexp ∈ LExp ::= xl | nl | (lexp + lexp)l | (fn xl => lexp)l

| (lexp lexp)l | (let val xl = lexp in lexp end)l

Restriction: The labels that occur in a labeled expression must be distinct.

Fig. 1. Labeled expressions

gram points. The labeled expression language is a sublanguage of Standard ML
(SML) [21]. We have an implementation for a larger sublanguage of SML.2

Acknowledgments. We thank Sébastien Carlier for his help in making the
web demonstration interface and Greg Michaelson, Phil Trinder, and Jun Yang
for stimulating discussions.

2 Some Definitions and Notations

The symbols 〈 and 〉 denote tuple braces. We use the terms “tuple” and “list”
interchangeably. For a list xs = 〈x1, . . . , xn〉, the expression y :: xs denotes the
list 〈y, x1, . . . , xn〉. For each natural number i, the symbol πi denotes the i-th
projection operator, i.e., if xs = 〈x1, . . . , xn〉 and i ∈ {1, . . . , n}, then πi(xs) = xi.
If f is a function, then f [x �→ y] denotes the function (f \{〈x, f(x)〉})∪{〈x, y〉}.
If X is a set and → is a subset of X × X, then →∗ denotes its reflexive and
transitive closure. An element x is called irreducible with respect to →, if there
is no element y such that x → y. If X is a set of sets, then min(X) denotes
the set of all elements of X that are minimal with respect to set inclusion. Two
sets are called incomparable if neither of them is a subset of the other one. In
definitions of rewrite systems, we use a form of pattern matching. The symbol ·
denotes a wildcard and is matched by any element of the appropriate domain. A
disjoint union pattern is of the form pat1 � pat2 and is matched by a set X, iff
there are sets X1, X2 such that X1 ∪X2 = X, X1 ∩X2 = ∅, X1 matches pat1
and X2 matches pat2. Usually, X matches pat1 � pat2 in more than one way.

3 Damas’s Type Inference System

Types are defined as follows:

ty ∈ Ty ::= a | int | ty -> ty ity ∈ IntTy ::= ∧S
a ∈ TyVar a fixed infinite set of type variables
S ∈ TySet the set of all finite subsets of Ty

2 http://www.cee.hw.ac.uk/ultra/compositional-analysis/type-error-slicing
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Γ [x �→ ∧{ty , . . .}] � xl : ty
Γ � n : int

(Γ � lexp1 : int) and (Γ � lexp2 : int) ⇒ Γ � (lexp1 + lexp2)
l : int

Γ [x �→ ∧{ty}] � lexp : ty ′ ⇒ Γ � (fn xl => lexp)l
′
: ty -> ty ′

(Γ � lexp1 : ty ′ -> ty) and (Γ � lexp2 : ty ′) ⇒ Γ � (lexp1 lexp2)
l : ty

(n ≥ 1) and (∀i ∈ {1, . . . , n}. Γ � lexp : ty i) and (Γ [x �→ ∧{ty1, . . . , tyn}] � lexp′ : ty)
⇒ Γ � (let val xl = lexp in lexp′ end)l

′
: ty

Fig. 2. Damas’s typing rules

The elements of IntTy are called intersection types. The symbol ∧ is syntax. For
example, ∧{a -> int, int -> a} ∈ IntTy. A type environment is a total function
from Var to IntTy. Let Γ range over Env, the set of all type environments. Let
empty be the type environment that maps all variables to ∧{}.

Damas’s type inference system is defined in figure 2. We will call it Damas’s
System T because it is used with Damas’s algorithm T. It differs in the rule
for let-expressions from the usual system for SML, which Damas called the type
scheme inference system. Whereas the type scheme inference system requires the
types of all occurrences of a let-bound variable to be substitution instances of a
common type scheme, System T does not require this. However, Damas showed
that the two approaches accept the same expressions. The following fact is a
variation of proposition 2 in Damas’s Ph.D. thesis [7, p. 85].

Fact 3.1 For closed lexp, (empty � lexp : ty) iff lexp has type ty in SML.3

We use the system, because it is good for accurately locating sources of type
errors. The use of closely related systems has been proposed previously for type
error analysis [2,14] as well as separate compilation [24,14].

4 Assigning Constraints to Program Points

This section explains how constraints are assigned to program points. We will
define a function that maps labeled expressions to finite sets of constraints asso-
ciated with program points. An expression is typable if and only if the associated
constraint set is solvable. The association between constraints and particular pro-
gram points is important for an untypable expression lexp. All program points
in lexp associated with a minimal unsolvable subset of the set of constraints gen-
erated for lexp jointly cause a type error, and we display these program points
as the location of the type error.

A labeled constraint is a triple 〈ty , ty ′, L〉, which will be written as ty =L== ty ′.
Such a labeled constraint is called atomically labeled, if L is a one-element set.
3 Formally, some minor syntactic adjustments (omitted here) are needed to translate

lexp into an exp of the SML definition [21].
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Let ty =l== ty ′ stand for ty =
{l}
== ty ′. Let C range over AtConstraintSet, the set of

all finite sets of atomically labeled constraints. Let D range over ConstraintSet,
the set of all finite sets of labeled constraints. A type substitution is a function
from TyVar to Ty. If s is a type substitution and ty a type, then s(ty) denotes
the type that results from ty by replacing each type variable occurrence a in ty
by s(a). A solution to a constraint ty =L== ty ′ is a type substitution s such that
s(ty) and s(ty ′) are syntactically equal. A solution to a set of constraints is a
type substitution that solves all constraints in the constraint set simultaneously.
The projection operator ΠL is defined by ΠL(C) = {(ty =l== ty ′) ∈ C | l ∈ L}.
Let Πl stand for Π{l}.

The total function ⇓ from LExp to Env × Ty × AtConstraintSet is defined as
the least relation that satisfies the rules in figure 3. This function is a variation
of Damas’s type assignment algorithm T. We use the term “fresh variant” of an
object involving type variables to denote the result of renaming the type variables
occurring in it by fresh type variables. We define (∧S)∧ (∧S′) = ∧(S ∪S′). The
operation ∧ on type environments is defined by (Γ ∧Γ ′) (x) = Γ (x)∧Γ ′(x). We
define (∧S) � (∧S′), iff S ⊆ S′, and Γ � Γ ′, iff Γ (x) � Γ ′(x) for all x in Var.
The following facts are variations of propositions 7 and 8 on pages 39 and 44 in
Damas’s Ph.D. thesis [7].

Fact 4.1 Suppose (lexp ⇓ 〈Γ, ty , C〉).
1. If s is a solution of C, then (s(Γ ) � lexp : s(ty)).
2. If (Γ ′ � lexp : ty ′), then there is a solution s of C such that s(Γ ) � Γ ′ and

s(ty) = ty ′.

Example 4.1. Consider the following partially labeled expression. (We have
omitted all labels that are irrelevant for this example.)

lexp = (fn xl1 => f (xl2 0)l3 (xl4 + 0)l5)

Note that this expression has an obvious type error. The bound variable x is
used both as a function and as an integer. Formally, it is the case that (lexp ⇓
〈empty[f �→ a], a′, C〉) for some type variables a, a′ and some constraint set C
that has the following subset C ′.

C′ =
{
a1 =

l2== a2, a2 =
l3== a3 -> a4, a5 =

l4== a6, a6 =
l5== int, a7 =

l1== a1, a7 =
l1== a5

}

It is not hard to see that C ′ is unsolvable. Moreover, it is minimally unsolvable,
i.e., every proper subset of C ′ is solvable. As a type error message, our imple-
mentation displays a program slice that contains all program points that are
associated with C ′. When applied to the declaration

val = fn x => f (x 0) (x + 0)

it displays a message like this one:

type constructor clash, endpoints: function vs. int
(.. fn x => (.. x (..) .. x + (..) ..) ..)
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xl ⇓ 〈 empty[x �→ ∧{ax}], a, {ax =
l
== a} 〉 where ax, a fresh

nl ⇓ 〈 empty, a, {int =
l
== a} 〉 where a fresh

lexp1 ⇓ 〈Γ1, ty1, C1〉; lexp2 ⇓ 〈Γ2, ty2, C2〉
(lexp1 + lexp2)

l ⇓ 〈 Γ1 ∧ Γ2, a, Cnew ∪ C1 ∪ C2 〉
where a fresh, Cnew = {ty1 =

l
== int, ty2 =

l
== int, int =

l
== a}

lexp ⇓ 〈Γ [x �→ ∧{ty1, . . . , tyn}], ty , C〉
(fn xl => lexp)l

′ ⇓ 〈 Γ [x �→ ∧{}], a, Cnew ∪ C 〉
where ax, a fresh, Cnew = { ax =

l
== ty1, . . . , ax =

l
== tyn, ax -> ty =

l′
== a }

lexp1 ⇓ 〈Γ1, ty1, C1〉; lexp2 ⇓ 〈Γ2, ty2, C2〉
(lexp1 lexp2)

l ⇓ 〈 Γ1 ∧ Γ2, a, Cnew ∪ C1 ∪ C2 〉
where a, a1, a2 fresh, Cnew = { ty1 =

l
== a1 -> a2, ty2 =

l
== a1, a =

l
== a2 }

lexp1 ⇓ 〈Γ1, ty1, C1〉; lexp2 ⇓ 〈Γ2[x �→ ∧{ty ′1, . . . , ty ′n}], ty2, C2〉
(let val xl = lexp1 in lexp2 end)l

′ ⇓ 〈 Γ ′1 ∧ Γ2[x �→ ∧{}], a, Cnew ∪ C′1 ∪ C2 〉
where 〈Γ1,1, ty1,1, C1,1〉, . . . , 〈Γ1,k, ty1,k, C1,k〉 are fresh variants of 〈Γ1, ty1, C1〉,
Γ ′1 = Γ1,1 ∧ . . . ∧ Γ1,k, C

′
1 = C1,1 ∪ . . . ∪ C1,k, C = {ty1,1 =

l
== ty ′1, . . . , ty1,n =

l
== ty ′n},

a fresh, Cnew = {a =
l′
== ty2} ∪ C, k = max(n, 1)

Fig. 3. Algorithm T

Unlike Damas’s original algorithm, in our variation of algorithm T every ex-
pression’s result type is a fresh type variable a equated to a type ty by a separate
constraint. The additional constraints and type variables are vital for obtaining
complete type error slices. For example, if the variable rule were replaced by

xl ⇓ 〈empty[x �→ ∧{ax}], ax, ∅〉 where ax fresh

then in example 4.1 the generated constraint set would not mention the labels l2
or l4. Thus, these relevant program points would be wrongly omitted from the
type error location. The resulting type error slice would be incomplete:

(.. fn x => (.. (..) (..) .. (..) + (..) ..) ..)

The let-expression rule copies the constraint set C1 for lexp1 for each use of
the variable x in lexp2. In bad cases, the number of copies of a constraint set
can be exponential in the size of the program. Consider, this example program:
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let val x1 = lexp in
let val x2 = f x1 x1 in
...
let val xn = f xn−1 xn−1 in f xn xn end ... end

The resulting constraint set contains 2n variants of lexp’s constraint set. Note,
however, that this family of expressions is notorious also for algorithm W: If
lexp = (fn x => x) and f ’s type scheme is assumed to be (∀a.∀b. a -> b -> a -> b),
then the principal type scheme of the entire expression contains 2(n+1) distinct
type variables. Remember also that Hindley/Milner (SML) typability in our
small expression language is exponential time complete [16,17].

5 Finding Minimal Unsolvable Constraint Sets

We define a function that maps sets of atomically labeled constraints to sets
of associated labels by labels(C) = { l | (∃ty , ty ′)((ty =l== ty ′) ∈ C) }. A set
of labels L is called an error with respect to C, if C has an unsolvable subset
C ′ such that L = labels(C ′). We denote the set of all such errors by errors(C).
Moreover, minErrors(C) denotes the set of all those elements of errors(C) that are
minimal with respect to set inclusion. This section shows how to find minimal
errors in an unsolvable constraint set. We will present a greedy minimization
algorithm that, given an unsolvable constraint set C, finds a single element of
minErrors(C). This algorithm is reasonably efficient for practical purposes. It
is not practical to always exhaustively enumerate all elements of minErrors(C),
because this set has a worst-case size exponential in the size of C [27]. However,
our simple enumeration algorithm seems to always find a few good candidates
for some (but not all) minimal errors. These candidates are close to minimal and
can be minimized with the minimization algorithm.

5.1 Labeled Unification

Unification can be viewed as a rewrite system on constraints. Our algorithms
label each derived constraint with the labels of constraints used in deriving it.
Our unification algorithm is similar to the one in [26]. Our labeled unification
algorithm is a set of state transformation rules given in figure 4 which define the
state transformation relation →. Initial states are of the form unify(C) and final
states of the form Success(E ) or Error(L, l). Intermediate states are of the form
unify(C,E ) or unify(C,E ,D , l) where the state components are as follows:

C ∈ AtConstraintSet initial constraints not yet considered
E ∈ TyVar→ ((Ty × LabelSet) ∪ {⊥}) environment, contains derived bindings
D ∈ ConstraintSet derived constraints that are not bindings yet
l ∈ Label the label whose constraints are currently

under inspection

Proposition 5.1 (Termination of unify). Each state transformation sequence
terminates. A state is irreducible iff it is a final state.
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We define a function app that maps environments to partial functions from
TyVar to Ty. For every fixed E, the binary relation app(E)( · ) = · is defined
inductively as the least relation that satisfies the following conditions:

(E(a) = ⊥) ⇒ (app(E)(a) = a)
(E(a) = 〈ty ,L〉) ⇒ (app(E)(a) = app(E)(ty))

(app(E)(ty1) = ty ′1) ∧ (app(E)(ty2) = ty ′2) ⇒ (app(E)(ty1 -> ty2) = ty ′1 -> ty ′2)
(app(E)(int) = int)

app(E) is a partial function for every E . Although app(E) is not always total,
because the second equation (for variables) is not size decreasing, it is only used
in defined cases. For type substitutions s and s′, their composition s′ ◦ s is the
type substitution that satisfies (s′ ◦ s)(a) = s′(s(a)) for all type variables a. A
type substitution s is called a most general unifier of C, iff for every solution s′

of C there exists a type substitution s′′ such that s′ = s′′ ◦ s.
Theorem 5.1 (Correctness of unify).

1. If unify(C)→∗ Success(E), then app(E) is a total function and a most gen-
eral unifier of C.

2. If unify(C)→∗ Error(L, l), then L ∈ errors(C) and L \ {l} �∈ errors(C).

If one ignores the labels, the labeled unification algorithm looks very much
like standard presentations of unification. Note that the transformation system
in figure 4 is non-deterministic. Arbitrary choices can be used for the label l in
the fourth unify rule, the labeled constraint (ty =L== ty ′) in the last ten unify rules,
and the label set associated with an occurs-check failure in the last unify rule.
Different choices may yield different final results. This is not a surprise, because
the label sets that get returned in case of failure record parts of the histories of
transformation sequences.
Example 5.1.

C = { a1 =
l1== a2 -> a3, a2 =

l2== int -> a4, a1 =
l3== (a5 -> (a6 -> a7)) -> int,

a2 =
l4== a8 -> int }

Both unify(C) →∗ Error({l1, l2, l3, l4}, l4) and unify(C) →∗ Error({l1, l3, l4}, l4).
The first result is obtained, for instance, if the constraints are inspected in the
order l1, l2, l3, l4; the second result is obtained, for instance, if they are inspected
in the order l1, l3, l4. Note that this example shows that unify(C)→∗ Error(L, l)
does not imply that L is minimal.

Example 5.2.

C = { a1 =
l1== a2 -> a3, a1 =

l2== (a4 -> (a5 -> a6)) -> int,

a1 =
l3== (a7 -> (a8 -> a9)) -> int, a2 =

l4== int -> int }

Then, unify(C) →∗ Error({l1, l2, l4}, l4). The result is obtained, for instance, if
the constraints are inspected in the order l1, l2, l3, l4. Note that, although l3 is
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dummy is some arbitrarily chosen fixed label

unify(C) → unify(C, (λa ∈ TyVar.⊥))
unify(C,E) → unify(C,E , ∅, dummy)
unify(∅, E, ∅, l) → Success(E)

unify(C,E , ∅, l′) → unify(C \Πl(C),E , Πl(C), l),
if Πl(C) �= ∅

unify(C,E , {ty =L== ty} �D , l) → unify(C,E ,D , l)

unify(C,E , {ty1 -> ty2 =
L
== int} �D , l)→ Error(L, l)

unify(C,E , {int =
L
== ty1 -> ty2} �D , l)→ Error(L, l)

unify(C,E , {int =
L
== a} �D , l) → unify(C,E , {a =

L
== int} ∪D , l)

unify(C,E , {ty1 -> ty2 =
L
== a} �D , l) → unify(C,E , {a =

L
== ty1 -> ty2} ∪D , l)

unify(C,E , {ty1 -> ty2 =
L
== ty ′1 -> ty ′2} �D , l)

→ unify(C,E , {ty ′1 =
L
== ty1, ty2 =

L
== ty ′2} ∪D , l)

unify(C,E [a �→ 〈ty ′,L′〉], {a =
L
== ty} �D , l)

→ unify(C,E [a �→ 〈ty ′,L′〉], {ty ′ =L∪L′
=== ty} ∪D , l)

unify(C,E [a �→ ⊥], {a =L== ty} �D , l)

→



unify(C,E [a �→ 〈ty ,L〉],D , l) if occurs(E ,L, a, ty , 0) = ∅
Error(L′, l) if 〈L′, n〉 ∈ occurs(E ,L, a, ty , 0) and n ≥ 1
unify(C,E [a �→ ⊥],D , l) otherwise

occurs(E [a′ �→ 〈ty ,L′〉],L, a, a′, i) = occurs(E [a′ �→ 〈ty ,L′〉],L ∪ L′, a, ty , i)
occurs(E [a′ �→ ⊥],L, a, a, i) = {〈L, i〉}
occurs(E [a′ �→ ⊥],L, a, a′, i) = ∅ if a �= a′

occurs(E ,L, a, int, i) = ∅
occurs(E ,L, a, ty1 -> ty2, i)

= occurs(E ,L, a, ty1, i+ 1) ∪ occurs(E ,L, a, ty2, i+ 1)

Fig. 4. A non-deterministic labeled unification algorithm

inspected before the error is discovered, l3 is not an element of the return set.
This is so, because the constraint that is labeled by l3 does not increment the
knowledge that has already been accumulated as a result of inspecting l1 and l2.

It is also the case that unify(C) →∗ Error({l1, l3, l4}, l4). This result is ob-
tained, for instance, if the constraints are inspected in the order l1, l3, l2, l4. It
happens to be the case that minErrors(C) = {{l1, l2, l4}, {l1, l3, l4}}

5.2 Error Minimization

Both our minimization and enumeration algorithms are based on the labeled
unification algorithm; they execute it multiple times on different subsets of the
initial constraint set. The minimization algorithm is based on the following idea:
Remember that if unify(C) →∗ Error(L, l), then L is an error and L \ {l} is not
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minimize(C,L, l)→ minimize(C, λa ∈ TyVar.⊥,L, l, ∅)

unify( Πl(C), E ) →∗ Error(·, ·)
minimize(C,E ,L, l,L′) → MinError(L′ ∪ {l})

unify( Πl(C), E ) →∗ Success(Enew );
unify( ΠL\{l}(C), Enew ) →∗ Error(Lnew , lnew )

minimize(C,E ,L, l,L′) → minimize(C,Enew ,Lnew , lnew ,L′ ∪ {l})

Fig. 5. A non-deterministic error slice minimization algorithm

an error. It follows that l is an element of every minimal error that is contained
in L. The minimization algorithm exploits this fact repetitively, and iteratively
builds a minimal error.

In figure 5, the algorithm is presented as a set of state transformation rules.
Initial states are of the form minimize(C,L, l) and final states of form MinError(L).
Intermediate states are of the form minimize(C,E ,L, l,L′). The intention is that,
if, initially, L ∈ errors(C) and L \ {l} �∈ errors(C), and if minimize(C,L, l) →∗
MinError(L′), then L′ is a minimal error that is contained in L.

Proposition 5.2. Suppose Lin ∈ errors(Cin), Lin \ {lin} �∈ errors(Cin)
and minimize(Cin ,Lin , lin)→∗ minimize(C,E ,L, l,L′). Then all of these hold:

1. C = Cin , l ∈ L, lin ∈ L′, L ∩ L′ = ∅ and L ∪ L′ ⊆ Lin .
2. app(E) is a most general unifier of ΠL′(C).
3. app(E)(ΠL(C)) is not solvable.
4. app(E)(ΠL\{l}(C)) is solvable.

Proposition 5.3 (Termination of minimize). Let L ∈ errors(C) and L \ {l} �∈
errors(C). Every transformation sequence starting from minimize(C,L, l) termi-
nates. If minimize(C,L, l)→∗ s, then s is irreducible iff it is a final state.

Lemma 5.1. Suppose Lin ∈ errors(C), Lin \ {lin} �∈ errors(C)
and minimize(C,Lin , lin)→∗ minimize(C ′,E ,L, l,L′). Then:

∀L0 ∈ errors(C). ((L0 ⊆ L ∪ L′)⇒ (L′ ∪ {l} ⊆ L0))

Theorem 5.2 (Correctness of minimize). If L ∈ errors(C), L\{l} �∈ errors(C)
and minimize(C,L, l)→∗ MinError(L′), then L′ ∈ minErrors(C) and L′ ⊆ L.

The transformation sequence minimize(C,L, l) →∗ MinError(L′) requires at
most 2n calls to the labeled unification algorithm, where n is the size of ΠL(C).
In the worst case, our labeled unification algorithm takes exponential time in the
the size of the constraint set, but linear time unification algorithms exist. Using
a linear time unification algorithm, minimization would take quadratic time in
the size of ΠL(C). We apply the minimization algorithm only to label sets L
returned by an initial run of labeled unification. Even for large input programs
we expect these label sets, and also ΠL(C), to be small.
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5.3 Error Enumeration

Enumerating all minimal errors is harder than finding just one. In the worst case,
the number of minimal errors is exponential in the size of the constraint set [27].
We use a simple algorithm that quickly finds a number of different errors that
are close to minimal. In principle (but not in practice), this algorithm eventually
returns the set of all minimal errors. However, we interrupt its execution after
a short time. The interrupted algorithm returns an intermediate state that con-
tains a list of candidates. These candidates are errors that are not guaranteed
to be minimal yet. However, they are close to minimal and the minimization
algorithm can be used to minimize them. Our algorithm has the property that
it finds a few minimal errors fast, at the expense of behaving badly in the hypo-
thetical limit case.4 We do not think that, in practice, it is a great disadvantage
that our algorithms only find some, but not all, minimal error slices of a program
at once. Many of today’s compilers report only a few type errors at a time. Even
if they do report many type errors at once, most programmers correct only few
of the reported errors before they try to recompile.

The (previously defined) function minErrors satisfies the following equations:

If unify(C)→∗ Success(·): minErrors(C) = ∅
If unify(C)→∗ Error(L, ·):

minErrors(C) = min(
⋃ { minErrors(Πlabels(C)\{l}(C)) | l ∈ L } ∪ {L} )

A recursive implementation of these equations rediscovers identical errors many
times. For instance, if unify(C) →∗ Error(L, ·) and L′ is a minimal error of C
that is contained in (labels(C) \ L), then L′ gets returned by each one of the
recursive calls. Our enumeration algorithm suffers from such recomputations.
For that reason, the algorithm is impractical for exhaustively enumerating all
minimal errors, even in cases where minErrors(C) is small.

The algorithm in figure 6 is essentially an iterative version of the above
recurrences presented as a set of state transformation rules. Initial states are
of the form enum(C) and final states of the form MinErrors(Ls), where Ls is
a set of pairwise incomparable label sets. Intermediate states are of the form
enum(C, found , todo) where both found and todo are sets of pairwise incompa-
rable label sets. At each state, the set found contains close approximations of
some minimal errors of C (“candidate set”). Members of the set todo represent
work items that still need to be done (“to-do set”). Specifically, for each label
set L in the to-do set, the minimal errors that are contained in (labels(C) \ L)
still need to be found. We usually interrupt the execution of enum(C) before it
terminates but after it has found at least one error. In this case, the elements of
the current found -set get minimized and then returned.

4 An example of an algorithm that “behaves well” in the hypothetical limit case,
but may often not even find a single minimal error in reality because of time or
space limits, is a breadth-first exploration of all possible transformation sequences
of labeled unification.
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enum(C) → enum(C, ∅, {∅}); enum(C, found , ∅) → MinErrors(found)

unify(Πlabels(C)\L(C)) →∗ Success(·)
enum(C, found , {L} � todo) → enum(C, found , todo)

unify(Πlabels(C)\L(C)) →∗ Error(L′, ·); insertError(L′, found) = found1;
insertTodos(distribute(L′,L), todo) = todo1

enum(C, found , {L} � todo) → enum(C, found1, todo1)

insertError(L, found) =def
==

{
found , if (∃L′ ∈ found)(L′ ⊆ L)
{ L′ ∈ found | L �⊆ L′ } ∪ {L}, otherwise

insertTodos(Ls, todo) =
def
== todo ∪ { L ∈ Ls | (∀L′ ∈ todo)(L′ �⊆ L) }

distribute(L′,L) =
def
== { {l′} ∪ L | l′ ∈ L′ }

Fig. 6. A non-deterministic minimal error slice enumeration algorithm

Proposition 5.4 (Termination of enum). Each state transformation sequence
terminates. A state is irreducible iff it is a final state.

Theorem 5.3 (Correctness of enum). If enum(C) →∗ MinErrors(Ls), then
Ls = minErrors(C).

6 Slicing the Program

Figure 7 defines the abstract syntax class of slices. The grammar extends the
labeled expression grammar by the additional phrase

sl ::= . . . | dots(sl1, . . . , slk) | . . .

A dots-node in a slice’s abstract syntax tree represents an irrelevant segment of
the corresponding program’s abstract syntax tree. Our experimental implemen-
tation displays dots(sl1, sl2, sl3) as:

(.. sl1 .. sl2 .. sl3 ..)

For instance, the type error slice

fn xl1 => dots( (xl2 dots())l3 , (xl4 + dots())l5 )

computed for the erroneous program from example 4.1 is displayed as:

fn x => (.. x (..) .. x + (..) ..)

Figure 7 defines additional typing rules for slices. A slice of the form dots(sl1,
. . . , slk) is well-typed iff sl1 through slk are. In this case, it has all types. The
typing rules for other phrases are omitted, because they are the same as for
expressions (see figure 2). Figure 7 also extends algorithm T. We need this ex-
tension, in order to formulate a statement that relates erroneous programs to
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k ∈ {0, 1, 2, . . .}
vsl ∈ VarSlice ::= xl | dots()
sl ∈ Slice ::= xl | nl | (sl + sl)l | (fn vsl => sl)l |

(sl sl)l | (let val vsl = sl in sl end)l | dots(sl1, . . . , slk)

Typing rules

(∀i ∈ {1, . . . , k}. Γ � sl i : ty i) ⇒ (Γ � dots(sl1, . . . , slk) : ty)
(Γ � sl : ty ′) ⇒ (Γ � (fn dots() => sl)l : ty -> ty ′)
(Γ � sl ′ : ty ′) and (Γ � sl : ty) ⇒ (Γ � (let val dots() = sl ′ in sl end)l : ty)

Algorithm T

sl i ⇓ 〈Γi, ty i, Ci〉 for i in {1, . . . , k}; a fresh
dots(sl1, . . . , slk) ⇓ 〈 Γ1 ∧ . . . ∧ Γk, a, C1 ∪ . . . ∪ Ck 〉

sl ⇓ 〈Γ, ty , C〉; a, a′ fresh

(fn dots() => sl)l ⇓ 〈Γ, a, {a′ -> ty =
l
== a} ∪ C 〉

sl1 ⇓ 〈Γ1, ty1, C1〉; sl2 ⇓ 〈Γ2, ty2, C2〉; a fresh

(let val dots() = sl1 in sl2 end)l ⇓ 〈 Γ1 ∧ Γ2, a, {a =
l
== ty2} ∪ C1 ∪ C2 〉

Fig. 7. Additional rules for slices

their type error slices. The rule for dots-phrases does not generate any addi-
tional constraints. It merely propagates recursively computed results. The rules
for other phrases are omitted, because they are exactly as in figure 3.

Figure 8 defines the function slice which takes a label set L and a labeled
expression lexp and returns a slice. This function replaces each node of lexp’s
syntax tree by dots, if its node label is not in L. It also flattens nested dots. As
a result of flattening, slice(L, lexp) does not have immediately nested dots.

Theorem 6.1 (Faithfulness). If (lexp ⇓ 〈·, ·, C〉), L ∈ errors(C)
and (slice(L, lexp) ⇓ 〈·, ·, C ′〉), then L ∈ errors(C ′).

Let � be the least contextually closed and transitive relation on slices satisfying
the following:

dots() � xl;
dots() � nl;

dots(sl1, sl2) � sl1 + sl l2;

dots(sl) � (fn dots() => sl)l

dots(sl1, sl2) � (sl1 sl2)l

dots(sl1, sl2) � (let val dots() = sl1 in sl2 end)l

(sl = dots(sl1, . . . , sl i, . . . , sln))
and (sl i = dots(sl ′1, . . . , sl ′k))

}
⇒

{
sl � dots(sl1, . . . , sl i−1,

sl ′1, . . . , sl ′k, sl i+1, . . . , sln)

Theorem 6.2 (Accuracy). If (lexp ⇓ 〈·, ·, C〉), L ∈ minErrors(C)
and sl � slice(L, lexp), then sl is well-typed.
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lexp ↓L sl
slice(L, lexp) = sl

l ∈ L
xl ↓L xl

l �∈ L
xl ↓L dots()

l ∈ L
nl ↓L nl

l �∈ L
nl ↓L dots()

lexp1 ↓L sl1; lexp2 ↓L sl2; l ∈ L
(lexp1 + lexp2)

l ↓L (sl1 + sl2)l
lexp1 ↓L sl1; lexp2 ↓L sl2; l �∈ L
(lexp1 + lexp2)

l ↓L merge(〈sl1, sl2〉)
xl1 ↓L vsl ; lexp ↓L sl ; l1 ∈ L or l2 ∈ L

(fn xl1 => lexp)l2 ↓L (fn vsl => sl)l2
lexp ↓L sl ; l1 �∈ L and l2 �∈ L
(fn xl1 => lexp)l2 ↓L merge(〈sl〉)

lexp1 ↓L sl1; lexp2 ↓L sl2; l ∈ L
(lexp1 lexp2)

l ↓L (sl1 sl2)lL2

lexp1 ↓L sl1; lexp2 ↓L sl2; l �∈ L
(lexp1 lexp2)

l ↓L merge(〈sl1, sl2〉)
xl1 ↓L vsl ; lexp1 ↓L sl1; lexp2 ↓L sl2; l1 ∈ L or l2 ∈ L

(let val xl1 = lexp1 in lexp2 end)l2 ↓L (let val vsl = sl1 in sl2 end)l2

lexp1 ↓L sl1; lexp2 ↓L sl2; l1 �∈ L and l2 �∈ L
(let val xl1 = lexp1 in lexp2 end)l2 ↓L merge(〈sl1, sl2〉)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

merge(〈〉) = dots()
merge(sls) = dots(sl1, . . . , sln); sl �= dots(·)

merge(sl :: sls) = dots(sl , sl1, . . . , sln)

merge(sls) = dots(sl ′1, . . . , sl ′k)
merge(dots(sl1, . . . , sln) :: sls) = dots(sl1, . . . , sln, sl ′1, . . . , sl ′k)

Fig. 8. Slicing

7 Conclusion

We have presented algorithms for type error slicing in an implicitly typed λ-
calculus with let-polymorphism. These algorithms first generate type equality
constraints using a version of Damas’s type inference algorithm T, and then find
minimal unsolvable subsets of the set of generated constraints. Type error slices
are programs where irrelevant program points are masked.

In the future, we want to extend our implementation of type error slicing
to full SML and improve its user interface. The user interface will both high-
light program points in the source code and display separate type error slices.
The separate slices will be especially useful, if relevant program points are far
apart, possibly in multiple files. Hyperlinks will relate program points in the
separate slice to the corresponding points in the source. The extension to full
SML will require the treatment of additional issues. For instance, the presence
of equality types and overloaded built-in operations requires an additional sort
of constraints: kind constraints for type variables. Another important issue are
explicit type and signature annotations. These will put natural boundaries on
type error slices. For instance, if library modules are always annotated with ex-
plicit signatures, then type error slices for programs that use the library will
never contain parts of the library implementation.
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