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Abstract. In complex systems, like robot plants, applications are built
on top of a set of components, or devices. Each of them has particular
individual constraints, and there are also logical constraints on their in-
teractions, related to e.g., mechanical characteristics or access to shared
resources. Managing these constraints may be separated from the appli-
cation, and performed by an intermediate layer.
We show how to build such property-enforcing layers, in a mixed im-
perative/declarative style: 1) the constraints intrinsic to one component
are modeled by an automaton; the product of these automata is a first
approximation of the set of constraints that should be respected; 2) the
constraints that involve several components are expressed as temporal
logic properties of this product; 3) we use general controller synthesis
techniques and tools in order to combine the set of communicating par-
allel automata with the global constraint.

1 Introduction

Consider the programming of a small robot made of two devices: an elevator
table and a rotating arm placed on it. The elevator has a motor than can be
switched on and off, in either direction, and two sensors at its extreme positions.
The rotating arm also has a motor with commands on and off, and a choice
between two speeds. The requests for moving up or down, and rotating the arm,
come from an application program in charge of performing some given sequence
of tasks with the robot.

At a low level, independently of any particular application, the programming
of the robot has to ensure safety properties related to the characteristics of
the devices composing the robot, and the way they interact. These can concern
the mechanics, or the access to shared resources. For instance, the motor of
the elevator should be turned off when the elevator reaches one of its extreme
positions. This type of local constraint can be specified independently of the
behavior of the arm. Similarly, the arm motor should be turned off before a
change of speeds can be performed.
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We may also have to take into account some global constraints, concern-
ing their interactions, like “the arm should not be turning at its highest speed
while the elevator is moving up”. There are several methods we can think of for
ensuring such properties in the running application:

– The responsibility could be left to the application; the code ensuring the
safety properties related to the mechanics of the robot has to be included in
all application programs; it may be difficult to intertwine with the proper
code of the application. Even if we can provide powerful static verification
tools to check the properties before running the application on the actual
robot, this solution should be avoided, because it makes writing the appli-
cation very difficult.

– A solution that allows to separate the code of the application and the code
that is in charge of ensuring the safety properties, is to introduce an inter-
mediate layer. The application does not talk directly to the robot but to this
layer, that may delay or reject its requests to the actuators of the robot.
This layer is in charge of enforcing the safety properties, and may be reused
with various applications. Using this architecture means that the application
is aware of the fact that its requests may be postponed or canceled. This is
where an acknowledge mechanism is needed.

In all cases, note that we cannot rely on monitoring techniques and dynamic
checks, because we are mainly interested in embedded systems. These systems
should not raise exceptions at runtime. Our aim is not to reject faulty programs,
either statically or dynamically, but to help in designing them correctly.

In this paper we formalize the general intermediate layer approach, thereby
allowing for the automatic generation of such property-enforcing layers from a
mixed-style description of the properties: several automata for the individual
properties of the devices, and temporal-logic formulas for the global properties.
Controller synthesis techniques are used as a compilation technique here.

2 The Approach

Expressing Individual Constraints and Global Constraints. The individual con-
straints on the behavior of the devices can be conveniently modeled as simple
reactive state machines with the sensors from the physical devices and requests
from the application (sensor, req) as inputs and the commands to the actuators
(start, stop) as outputs (see figure 1-a). Each automaton records significant
states of the corresponding device, e.g., I for idle, and A for active. The au-
tomaton of figure 1-a enforces the following property: “a request is ignored if it
happens while a previous request is being treated.”. Note that we may think of
various protocols between the application and the intermediate layer: it may be
useful to send an acknowledgment (ack) on the transition that stops the motor,
meaning: “the request has been executed”. In particular, it is not sent when a
request is ignored.
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Fig. 1. Expressing Individual Constraints

The parallel composition of all the individual automata models all the in-
dividual constraints. In terms of these parallel automata, a global property like
“the arm should not be turning at its highest speed while the elevator is moving
up” means that one particular global state (or, perhaps, a set of global states)
should be unreachable. More generally, we are interested in safety properties of
the parallel composition (see [9] for the distinction between safety and liveness
properties).

Mixing the two kinds of Constraints. Of course, if we start from a set of automata
A = A1||A2|| ... ||An that were designed in isolation, and impose a global safety
property φ, it is very likely that A does not satisfy φ. For example, if the appli-
cation requires that the arm motor be switched on, while the elevator is moving
up, nothing can be done to avoid the faulty situation.

When global constraints appear, due to the joint use of several devices, the
automaton describing one component has to be designed in a more flexible way.
For instance, if obeying a request from the application immediately is forbidden
by a global constraint, given the states of the other devices, the request has to
be either rejected or delayed.

We choose to introduce an additional component (i.e. a controller), that
knows about the global safety property to be ensured, and may constrain the
individual automata about the transitions they take in order to ensure this
property. Then, we re-design the individual automata in a more controllable way,
allowing them to respond to events from the application, the physical device,
and the controller. The transitions that were labeled by “req” are now labeled
by “req AND ok”, meaning that the request is taken into account only if the
controller allows it (see Figure 1-b). But then, what happens when “req AND
NOT ok”? The missing transition may be a loop, meaning that the request is
simply canceled. In this case, the application is likely to apply a protocol that
maintains the request as long as it is not taken into account.

Another solution is to memorize the request. Instead of responding directly
to a request by the appropriate command to the physical device, the automaton
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enters a waiting state W, hence postponing the request until it can be obeyed
without violating the global safety property. This gives the machine of Figure 1-
c, where label “GO” corresponds to the controller releasing the waiting request.

We could model even more sophisticated behaviors. For instance, the appli-
cation might cancel its requests; or several requests might be queued, etc.

Again, writing the controller by hand may be hard to do if there are a lot
of individual devices and global properties. It can even be the case that such a
controller does not exist.

The solution we propose is to let the general controller synthesis technique
do the job for us. Instead of programming the controller and the communica-
tions between the machines by hand, we state this control objective in a very
declarative way (as a logical formula on the set of states). Then we let the con-
troller synthesis technique generate the controller that, put in parallel with the
individual machines, will ensure the global property.

Summarizing the Method. Consider an application program A and a physical
system under control, e.g., a robot R. The latter requires that a property φ be
respected, i.e. A||R |= φ. Our method is the following:

– First, design A with a software architecture that introduces an intermediate
layer Iφ to ensure φ: A = A′||Iφ. The problem becomes: A′||Iφ||R |= φ. A′
is easier to write, and Iφ is reusable.

– Iφ includes properties that can be expressed for each component or device
independently of the others, and also global constraints. φ is of the form
φ1 ∧ φ2 ... ∧φn ∧ φglob:

– For the individual constraints, propose a set of automata A1, A2, ... An (like
the ones presented in Figure 1), composable with a controller, i.e. able to
respond to an application and to a controller, and corresponding to the
properties φ1, φ2, ... φn.

– For the global constraints φglob, express them as safety properties, and let
the controller synthesis technique build the controller. This gives the most
permissive controller, that has to be made deterministic since we want to use
it as a program. We will use techniques from optimal controller synthesis [14]
to reduce the non-determinism and to impose some kind of progress.

If a controller exists, the final picture is: Iφ = A1||A2|| ... ||An||Cφglob , and
A′||Iφ||R |= φ, by construction, for all A′. If there exists no controller, it means
that some of the automata have to be redesigned, introducing more “controlla-
bility” (e.g., OK and GO inputs, waiting states) so that the controller should be
able to ensure the property.

The paper. Section 3 sets a formal framework in which our approach can be
explained together with the main results of controller synthesis. An example
taken from robotics is described in section 4, with a list of global constraints one
may want to ensure for this kind of systems. Section 5 gives some quick hints
on the implementation of the approach. Section 6 comments on the method.
Section 7 reviews related work, and section 8 is the conclusion.
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3 Framework

Our work uses general controller synthesis results (see [18]): we present them
in a unified formal framework by using synchronous Mealy machines from syn-
chronous languages (see, for instance, [11]), augmented with state weights. A
presentation of controller synthesis with Mealy machines can also be found in [2],
with similar motivations: Mealy machines give programs straightforwardly.

3.1 Synchronous Automata with Outputs and Weights

Definition 1 (Automaton). An automaton A is the tuple A =
(Q, sinit, I,O, T ,W) such that Q is the set of states, sinit ∈ Q is the initial
state, I and O are the sets of Boolean input and output variables respectively,
T ⊆ Q×Bool(I)× 2O ×Q is the set of transitions, and W : Q −→ N is a func-
tion that labels states with natural weights. Bool(I) denotes the set of Boolean
formulas with variables in I. For t = (s, �, O, s′) ∈ T , s, s′ ∈ Q are the source
and target states, � ∈ Bool(I) is the triggering condition of the transition, and
O ⊆ O is the set of outputs emitted whenever the transition is triggered. We
consider that the Boolean formulas used as input labels are conjunctions of liter-
als and their negation. Disjunctions lead to several transitions between the same
two states.

Definition 2 (Reactivity and Determinism). Let A = (Q, sinit, I,O, T ,W)
be an automaton. A is reactive iff ∀s ∈ Q,

∨
(s,�,O,s′)∈T �. A is deterministic iff

∀s ∈ Q,∀ti = (s, �i, Oi, si) ∈ T , i = 1, 2 . �1 = �2 =⇒ (O1 = O2) ∧ (s1 = s2) . 1

Every automaton in this paper is reactive but is not necessarily deterministic.
The automata of figure 1 are of this kind. However, in the concrete syntax, we
often omit the transitions that are loops and do not emit anything. When the
weights on states are omitted, they are 0.

The semantics of an automaton A = (Q, sinit, I,O, T ,W) is given in terms
of input/output/state traces.

Definition 3 (Trace). Let A = (Q, sinit, I,O, T ,W) be an automaton. A se-
quence of tuples t = {(vi, Oi, si)}i where the vi are valuations of the inputs, the
Oi are subsets of outputs, and the si are states, is a trace of A iff

{
s1 = sinit

∀n ∃(sn, �, On, sn+1) ∈ T such that � has value true in vn .

In state si, upon reception of input valuation vi, the automaton emits Oi and
goes to si+1. We note Trace(A) the set of all traces of A.

Definition 4 (Trace with hidden inputs). Let A = (Q, sinit, I,O, T ,W) be
an automaton, and let J ⊆ I be a set of input variables to be hidden. A trace
of A with hidden values J is a sequence of tuples tI\J = {(v′i, Oi, si)}i where
1 The equality �1 = �2 stands for syntactical equality since there is no disjunction in

labels.
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∀i . v′i : I \ J −→ {true, false}, Oi ⊆ O and si ∈ Q such that there exists a
trace t = {(vi, Oi, si)}i ∈ Trace(A) and ∀i . ∀x ∈ I \ J . v′i(x) = vi(x).

The trace with hidden inputs J built from a trace t ∈ Trace(A) is noted t(I\J)
as above. And we note the set of all traces with hidden inputs J : Trace(I\J)(A).

Definition 5 (Synchronous Product). Let A1 = (Q1, sinit1, I1,O1, T1,W1)
and A2 = (Q2, sinit2, I2,O2, T2,W2) be automata. The synchronous product of
A1 and A2 is the automaton A1||A2 = (Q1 × Q2, (sinit1sinit2), I1 ∪ I2,O1 ∪
O2, T ,W) where T is defined by: (s1, �1, O1, s

′
1) ∈ T1 ∧ (s2, �2, O2, s

′
2) ∈ T2 ⇐⇒

(s1s2, �1 ∧ �2, O1 ∪O2, s
′
1s
′2) ∈ T ; W is defined by: W(s1s2) =W1(s1) +W2(s2)

(more general composition of weights may be defined if needed).

The synchronous product of automata is both commutative and associative, and
it is easy to show that it preserves both determinism and reactivity.
Encapsulation makes variables local to some subprogram and enforces synchro-
nization; the following definition is taken from Argos [11]. In general, the encap-
sulation operation does not preserve determinism nor reactivity. This is related to
the so-called “causality” problem intrinsic to synchronous languages (see, for in-
stance [3]). However, these problems can appear only if two parallel components
communicate in both directions, in the same instant. We will use encapsulation
only in simple cases for which this is not necessary.

Definition 6 (Encapsulation). Let A = (Q, sinit, I,O, T ,W) be an automa-
ton and Γ ⊆ I ∪O be a set of inputs and outputs of A. The encapsulation of A
w.r.t. Γ is the automaton A\Γ = (Q, sinit, I\Γ,O\Γ, T ′,W) where T ′ is defined
by: (s, �, O, s′) ∈ T ∧ �+ ∩Γ ⊆ O∧ �− ∩Γ ∩O = ∅ ⇐⇒ (s,∃Γ . �,O \Γ, s′) ∈ T ′ .

�+ is the set of variables that appear as positive elements in the monomial �
(i.e. �+ = {x ∈ I | (x∧�) = �}). �− is the set of variables that appear as negative
elements in the monomial l (i.e. �− = {x ∈ I | (¬x ∧ �) = �}).

Example 1. In figure 2 two automata A and B are composed by a synchronous
product, and then {b} is encapsulated. The typical use of an encapsulation is
to enforce the synchronization between two parallel components, by means of a
variable which is an input on one side, and an output on the other side. In the
product, this variable appears in both the triggering condition and the output
set of transitions.

b

not b

a/b

not a

1

2

x

y

1x

2y

a

not a

(A||B) \ {b}A B
b

Fig. 2. An encapsulation example
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Definition 7 (Temporal Properties of the Automata). Let A =
(Q, sinit, I,O, T ,W) be an automaton, let S ⊆ Q be a set of states and let
t = {(vi, Oi, si)}i ∈ Trace(A) be a trace of A. The properties φ we are interested
in are the two CTL [7] formulas defined below.

Invariance of S: φ = ∀�(S). A trace t satisfies �(S) (noted t � �(S)) iff
∀i . si ∈ S. For automata: A � ∀�(S)⇐⇒ ∀t ∈ Trace(A) . t � �(S) .

Reachability of S: φ = ∀�(S). A trace t satisfies �(S) iff ∃s ∈ S . ∃i . s = si.
For automata: A � ∀�(S)⇐⇒ ∀t ∈ Trace(A) . t � �(S) .

3.2 Controllers and Controller Synthesis

Controllers. Let A = (Q, sinit, I,O, T ,W) be an automaton. We partition the
set I of inputs into a set Iu of uncontrollable inputs (those coming from the
application or from the physical devices, like req, sensor in figure 1) and a set
Ic of controllable inputs (i.e. inputs coming from the controller, like OK, GO).

Definition 8 (Controller of an Automaton). A controller of A is an au-
tomaton C = (Q, sinit, Iu,O ∪ Ic, T ′,W ′) such that ∃t = (s, �u ∧ �c, O, s′) ∈
T ⇐⇒ ∃γ ⊆ Ic ∧ ∃t′ = (s, �u, O ∪ γ, s′) ∈ T ′, where �u (resp. �c) is only writ-
ten with variables in Iu (resp. Ic) and γ ⊆ Ic at most contains the controllable
inputs involved in �c (i.e., �+u ∪ �−u ⊆ Iu, and γ ⊆ �+c ∪ �−c ⊆ Ic). Moreover
∀s ∈ Q .W ′(s) = 0.

Notice that one t ∈ T may define several t′ ∈ T ′ as defined above. The con-
troller C of an automaton A has the same structure (states and transitions). The
controllable variables are inputs in A, whereas they are outputs of the controller.
This means that the role of the controller is to choose whether controllable vari-
ables should be emitted, depending on uncontrollable inputs and states.

The automaton (A||C) \ Ic represents the controlled automaton of A by C :
the interaction between the controller and its automaton is formalized by a syn-
chronous product (A and C execute in parallel, communicating via Ic variables)
and the Ic variables are kept as local variables (and so encapsulated).

Properties 1 Let A = (Q, sinit, I,O, T ,W) and let its input variables I be
partitioned into the two subsets Ic and Iu. Let C be a controller of A.

1. Trace((A||C) \ Ic) ⊆ TraceIu(A).
2. If A is reactive, then C is reactive, by construction. But C may not be deter-

ministic even if A is deterministic.
3. (A||C) \ Ic is reactive and, if C is deterministic, then so is (A||C) \ Ic. This

holds because the encapsulation is used in a case for which causality problems
do not occur.

The first property means that every trace of the controlled automaton of A by C
is also a trace of A with hidden variables Ic: the controller restricts the execution
of the automaton. 2 and 3 are specific to the way we build controllers. Reactivity
and determinism are required if we want to obtain programs with this method.
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Example 2. Let us observe figure 3. The right part of the figure depicts a con-
troller C: the set of controllable inputs is Ic = {OK}, whereas req and stop
are uncontrollable. The controller shown here enforces the fact that the task
always has to wait before executing. This is done by deciding which of the con-
troller transitions do emit OK, in such a way that the transition to wait remains,
whereas the transition to EX disappears, in the product.

The controlled automaton (A||C) \ Ic is shown in figure 4, where the syn-
chronous product of the automaton A and of its controller C has been performed
(left part), and where the encapsulation of the controllable input OK has been
realized (right part).

In the transition from stopped to wait, OK appears as a negative element in
the triggering condition of A; the controller chooses not to emit it in the corre-
sponding transition, hence the transition remains in the encapsulated product.
Conversely, from stopped to execute, OK appears as a positive element in A;
since the controller does not emit it, the transition disappears in the encapsu-
lated product.

stop

true/OK,ack

req
req and OK/ackST

EX
W

stop

req and
not OK

OK/ack

OK

req/ack

Fig. 3. An automaton and a controller for it

stop

true/ack

req
req and OK/ackST

EX
W

stop

req and
not OK

OK/OK, ack

OK (a) (b)

ST

W
EX

Fig. 4. The controlled automaton obtained from figure 3

Controller Synthesis Problem. Let A = (Q, sinit, I,O, T ,W) be a deter-
ministic and reactive automaton I = Ic ∪ Iu. Let φ be one of the two CTL
properties on A given by definition 7.

Problem 1 (Controller Synthesis). The controller synthesis problem consists in
finding a controller C of A such that the controlled automaton of A by C, satisfies
the property φ: (A||C) \ Ic � φ.
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The problem may have several solutions but has a greatest solution, called
the most permissive controller: if φ = ∀�(S) (resp. φ = ∀�(S)), the controller
C is the most permissive iff if ∃t ∈ Trace(A) such that t � �(S) (resp. t � �(S))
then t(Iu) ∈ Trace((A||C) \ Ic).

Reducing Non-determinism in the Controller. We are interested in de-
terministic controllers because our aim is to build a program.

Let A = (Q, sinit, I,O, T ,W) be a deterministic and reactive automaton
with I = Ic ∪ Iu. Let φ be one of the two CTL properties on A defined in
definition 7. Let C be a solution of the controller synthesis given by A and φ.

We are looking for a controller C′ which is a solution of the same controller
synthesis problem, and which is more deterministic. First, we impose that C and
C′ have the same set of states and outputs but not necessarily the same set of
transitions and inputs.

Second, we want to ensure the property TraceIu(C′) ⊆ TraceIu(C) since
it guarantees that: TraceIu((A||C′) \ Ic) ⊆ TraceIu((A||C) \ Ic) and then
(A || C)\ Ic � φ =⇒ (A||C′) \ Ic � φ, i.e. if C is a solution of the above
controller synthesis problem then also is C′. We give two ways of building C′
from C: static or dynamic reduction of non-determinism.

Static reduction of non-determinism: C′ only differs from C by its transition
set, TC′ : TC′ ⊆ TC , where TC is the set of transitions of C. In this paper, we
use a very particular case of this approach: TC′ may be obtained from TC by
a local optimization based on state weights: ∀t = (s, �, O, s′) ∈ TC′ . W(s′) =
min{W(s′′) | ∃(s, �, O′′, s′′) ∈ TC}. Notice that this operation may not completely
suppress the non-determinism of the controller.

Dynamic reduction of non-determinism: C′ differs from C by its set of inputs
IC′ such that Iu ⊆ IC′ , and by its triggering conditions. The idea is to add
special inputs called oracles: from a state S, if there are two transitions labeled
by the same input �, then one of them becomes � . i and the other one becomes
� . i, where i is the oracle. In general we need several oracles (see [10]). We obtain
a deterministic automaton (or a “program”) that has to be run in a environment
that decides on the values of the oracle inputs. See sections 5 and 6.

4 Example System and Methodology

4.1 A Robot System

We illustrate the proposed methodology with a case study [5] concerning a robot
system: an automated mobile cleaning machine, designed by ROBOSOFT2. It
can learn a mission, with trajectories to be followed, and starting and stopping
of cleaning tools at pre-recorded points. It can play them back, using sensors like
odometry, direction angle and laser sensors to follow the trajectories and detect
beacons. One of the tools is a brush, mounted on an articulated arm, under the
robot body, that can achieve vertical translation (in order to be in contact with
the floor or not), horizontal translation (in order to reach corners), and rotation.
2 www.robosoft.fr
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The constraints are the following: 1) the brush should rotate only when on
the floor, in low position, because otherwise, when in high position, it might
damage the lower part of the mobile robot; 2) it can be moved laterally only
when on the floor, and not rotating, for the same reason.

4.2 Modeling the Brush Individual Constraints

The brush individual constraints are modeled in terms of three automata, each
one representing the activation of control laws for one degree of freedom of the
brush: vertical movement, horizontal movement and rotation.

Vertical movement: the initial state up in Figure 5(a) represents the brush
being in high position. Upon reception of a request from the application to move
down, r down, either the controller accepts it, in the absence of any conflict
at global level, by okV, or not. If yes, then the going down state is reached,
with emission of the acknowledgement start down. Otherwise, the request is
memorized by going to state wait down. The controller may then authorize the
activation from state wait down to state going down, by okV with emission of
start down. When the uncontrollable event sensor down occurs from the phys-
ical device, corresponding to the reaching of the low position, the state down
is reached, with emission of stopV. Movement upwards follows a symmetrical
scheme, also subject to controller authorization.

Horizontal movement: the automaton for horizontal movements follows
exactly the same scheme as for vertical movement.

Rotation: the automaton for rotation follows a different scheme (fig-
ure 5(b)): there is no intermediate state going to the rotation state. State imm
designates an immobile brush. A request for rotating, r rot, is either accepted
directly by okR, which leads into the rotate state, or not, which leads to the
wait rot state. Going back from rotation to immobility is done through a request
r imm, and follows the same scheme as before, with a waiting state wait imm in
case not authorized, and a deceleration state going imm.

4.3 Safety Properties to Be Ensured by the Controller

We introduce a notation to define sets of global states in terms of local states. Let
A1, ...,An be n automata. (Ai = (Qi, siniti, Ii,Oi, Ti,Wi). Let A = A1||A2 ...
||An = (Q, sinit, I,O, T ,W). Let si ∈ Qi be a state of automaton Ai. We note
si for all the states of A whose projection of Qi is equal to si: si = {s ∈ Q |
s = (s′1, s

′
2, ..., s

′
n) . s′i = si} The set of global states excluding si is noted si for

Q \ si. The set of global states excluding S ⊆ Q is noted S.
Global states must be avoided where the properties mentioned in section 4.1

are violated. To define them, we identify states where:

– the brush turns, which can happen when in states rotate, wait imm and
going imm, as a decelerating brush is still in motion. This is expressed by
the set of states: Rotating = rotate ∪ wait imm ∪ going imm;

– the brush arm is in low position, i.e. in state down and also wait up: Low =
down ∪ wait up;
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– the brush arm is moving laterally i.e., in states going out and going back:
Lateral = going out ∪ going back .

The set of safe states wrt properties described in section 4.1 is then given by:
S = (Rotating ∪ Low) ∩ (Lateral ∪ Rotating ∩ Low). Finally, we compute a
controller for the property ∀�(S).

Fig. 5. The brush control tasks.

4.4 Result of the Controller Synthesis Phase

The result is a non-deterministic controller (see section 3.2). In particular, the
choice remains between staying in a wait state and moving to the active state,
both being safe with respect to the property. This is the usual problem when
specifying a system by safety properties: a very simple way of respecting them is
to do nothing. Hence, some progress should be expressed and taken into account.

We propose to use the weights associated with states. The weight of the
waiting states is set to 1, and the weight of all other states is set to 0. The
static reduction of non-determinism produces a controller where, whenever there
are two transitions sourced in the same state, with the same inputs, only the
transitions that go to the states with minimal weight are kept.

In the example, this is sufficient for ensuring that at least one component
leaves its waiting state when it is possible. This does not yield a deterministic
automaton, as some global states might have the same weight due to the com-
position of local weights. Dynamic reduction of non-determinism can then be
used. In the framework of our case study, we worked in a context of interactive
simulation: the values for the oracles are given by the end-user.

5 Implementation

The current implementation of the method, which has been used for the example,
relies on the chain of Figure 6: the individual constraints are described using a
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synchronous formalism called “mode-automata” [12]; Yann Rémond provided
the compiler into z3z, the input format of the synthesis tool Sigali. The global
properties and the weights are expressed into z3z by the means of Sigali macros.
Sigali [13] is a tool that performs model-checking, controller synthesis for logical
goals, and optimal controller synthesis.

The result of Sigali is a controller, in the form of an executable black-box. Y.
Rémond and K. Altisen developed the tool SigalSimu, to simulate the behavior
of the controlled system. This corresponds to a dynamic resolution of the non-
determinism, where the human being plays the role of the oracle.

The next step will be to transform the interpretation chain into a compilation
chain, producing the controlled system as an explicit automata that can then be
compiled into C code (see below).

properties
weights

components
system model Mode

Automata

encoding
z3z

Sigali

controller

SigalSimu
interactive
simulation

Fig. 6. Implementation of the approach: the tools involved.

6 Evaluation of the Method

Patterns for the individual constraints: The whole approach requires that
the mechanical devices (or, more generally, the “resources” for which we build
an application program) be modeled as small automata. We suggest that a set
of reusable patterns — in the spirit of “design patterns” [8] — be designed for
that purpose. It is likely to be specific of a domain.

Cost: The algorithms involved in controller synthesis techniques are expen-
sive. If the whole intermediate layer had to be built as the result of a synthesis,
starting from a declarative specification only, it could be too costly to be con-
sidered as a viable implementation technique. The reason why it is reasonable
in our case is that part of the specification is already given as a set of automata.
Controller synthesis is used only to further restrict the possible behaviors of the
product.

Towards a compilation chain (non-determinism, progress and fair-
ness): First, we want programs, so we have to determinize the controllers.
Second, a specification S made of safety properties only, leads to trivial solu-
tions that do not progress. Hence we have to specify progress properties, and to
remove transitions in the controller obtained from S, so that only progressing be-
haviors remain. Third, what about fairness? Our example system is an instance
of a mutual exclusion problem, and we defined critical sections as sets of states
in each of the individual automata. In some sense, the effect of the controller-
synthesis phase is to add the protocol between the components, so that mutual
exclusion is respected. This is a typical case where a non-deterministic choice
remains, for choosing the component to serve. Usually, a dynamic scheduler is
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used to ensure fairness between the concurrent processes willing to access the
shared resource.

In our case, we would like to obtain a deterministic controller and to compile
it into a single program. This can be done by 1) determinizing the controller
with oracles (see section 3.2); 2) adding in parallel an automaton Or that sends
the oracle values, and encapsulating the oracle variables. Or is responsible for
the fairness of the whole system.

7 Related Work

Previous Work. In previous work [15,16], an approach is proposed for the model-
ing of robot control tasks, using simple pre-defined control patterns, and generic
logical properties regarding their interactions. A teleoperation application is con-
sidered, as an illustration of a safety-critical interactive system. An extension of
this work concerns multi-mode tasks [14], where each task has several activity
modes or versions, distinguished by weights capturing quality (as in e.g., im-
age processing) and cost (typically: execution time). Optimal control synthesis
is then used to obtain the automatic control of mode switchings according to
objectives of bounded time and maximal quality. The approach in this paper is
a generalization of this more specialized work.

On “Property-Enforcing” techniques. A number of approaches has been pro-
posed for enforcing properties of programs, but they mainly rely on dynamic
checks. In [6], a program transformation technique is presented, allowing to equip
programs with runtime checks in a minimal way. Temporal properties are taken
into account, and abstract interpretation techniques are used in order to avoid
the runtime checks whenever the property can be proven correct, statically. In
the general case, the technique relies on runtime checks, anyway.

The approach described in [17] is a bit different because it does not rely on
program transformation. The authors propose the notion of security automaton.
Such a security automaton is an observer for a safety property, that can be run
in parallel with the program (performing an on-the-fly synchronous product).
When the automaton reaches an error state, the program is stopped.

On the use of Controller-Synthesis Techniques. In [4], the authors use controller
synthesis techniques to help in designing component interfaces.

In their sense, an interface is a (possibly synchronous) black box that is
specified by input and output conditions (input and output behaviors). Inter-
faces may be composed as far as they are compatible, i.e. as far as there exist
some inputs for which the composition works. Compatibility is computed by a
controller synthesis algorithm which finds the most permissive application (wrt
input and output conditions) under which the composed interfaces may work.

The unusual thing here (regarding the use of controller synthesis) is that they
constrain the application, i.e. the environment of the interfaces, in order to fit
input and output conditions, whereas, in usual controller synthesis framework,
we use it to make the system work whatever the application/environment does.
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In [1], the authors use controller synthesis techniques to build real-time sched-
ulers. A layered modeling methodology is also provided here. First, real-time
processes are individually modeled by timed transition systems; then a syn-
chronization layer is built ensuring functional properties; finally, a scheduler is
computed by controller synthesis, ensuring the non functional properties of the
layer.

8 Conclusion and Further Work

We presented a method that automates partially the development of property-
enforcing layers, to be used between an application program and a set of resources
for which safety properties are defined and should be respected by the global
system (the application, plus the intermediate layer, plus the set of resources).

We illustrated the approach with a case-study where the set of resources is
a robot. However, the method can be generalized to other kinds of applications.

The method relies on two ideas. First, the specification of the properties
to be respected often comes in a mixed form: simple and “local” properties,
typically those imposed by one mechanical device in isolation, are better given as
simple automata; on the contrary, the interferences between the devices, and the
situations that should be avoided, are better described in a declarative way, for
instance with trace properties in a temporal logic. Second, mixing the two parts
of the specification is not easy, and we show how to use very general controller-
synthesis techniques to do so. The technique that enforces the safety part of
the specification has to be complemented, in order to ensure some progress. We
adapted the notion of optimal synthesis to obtain progress properties.

Further work has to be devoted to the notion of “progress” in layers that
enforce safety properties. We encountered the problem and solved it only in a
very particular case. The first questions are: what kind of progress properties do
we need? How can they be expressed in terms of optimal synthesis goals?

We really believe that optimal control synthesis is the appropriate method
because, in the contexts we are interested in, the “progress” properties are often
related to a notion of “quality”. The states in the individual automata might
be labeled by weights related to CPU time, memory use, energy consumption,
quality of service, etc. (additivity of weights in parallel components may not fit
all the needs, of course). In these cases, progress means “improve the quality”.

Acknowledgments. The authors would like to thank Hervé Marchand, the
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work on the implementation.

References
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