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Abstract. In this paper we examine a number of ways of implementing
characteristic three arithmetic in hardware. While this type of arithmetic
is not traditionally used in cryptographic systems, recent advances in
Tate and Weil pairing based cryptosystems show that it is potentially
valuable. We examine a hardware oriented representation of the field ele-
ments, comparing the resulting algorithms for field addition and multipli-
cation operations, and show that characteristic three arithmetic need not
significantly under-perform comparable characteristic two alternatives.

1 Introduction

There has been a recent increase in research activity surrounding cryptosystems
based on the Tate and Weil pairings. Identity based encryption schemes [6] and
signature algorithms [11,16,17] as well as general signature algorithms [7] have
been developed and published, all of which utilise pairing based operations.
Additionally, extensions to higher genus curves have been fully explored [8].
Pairing based cryptosystems were traditionally thought to be weak when it was
shown [13] that the discrete logarithm problem in supersingular curves was re-
ducible to that in a finite field using the Weil pairing. However, this view changed
when Joux [12] presented a simple tripartite Diffie-Hellman protocol based on
the Weil pairing on supersingular curves which, in part, rekindled interest in this
area.

Although there is little discussion about implementation, it was noted by
Galbraith [8] that in terms of bandwidth efficiency, it is more efficient to use
elliptic curves in characteristic three for systems based on the Weil or Tate
pairing. This notion contradicts conventional advice when implementing elliptic
curves, which generally suggests using fields of either large prime characteristic
or characteristic two. The use of such fields is generally based on the assumption
that arithmetic in characteristic three is much slower than the given alternatives
and has resulted in a gap in literature surrounding the topic.
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Since the efficient hardware implementation of elliptic curves arithmetic in
characteristic three is potentially of value to the expanding list of systems which
use the Weil or Tate pairing, we will fill this gap in this paper. The purpose of this
work is to facilitate the use of characteristic three arithmetic in pairing based
cryptosystems, and hence reap the advantages of doing so, without imposing
the performance overhead which may traditionally be expected. In Section 2
we discuss the Tate pairing and develop some parameters for the comparison of
our techniques. We present a way of representing polynomials and performing
arithmetic on them in Sections 3 and 4. Finally, we implement these arithmetic
operations in field programmable hardware and present the performance results
in Section 5.

2 Supersingular Elliptic Curves and the Tate Pairing

We let G denote a prime order subgroup of an elliptic curve E over the field Fq,
which for the moment we assume is a general finite field of arbitrary character-
istic. Let the order of G be denoted by l and define α to be the smallest integer
such that

l|qα − 1

In practical implementations we will require α to be small and so will usually
take E to be a supersingular curve over Fq. Let G denote the group of points of
order l of the elliptic curve E over the field Fqα . While the group G is cyclic of
order l, the group G is a product of two cyclic subgroups of order l.

The bandwidth performance of the schemes based on the Weil pairing usually
grow with log2 q rather than with α · log2 q, hence it is better to try to minimise
q. This leads us to consider fields of characteristic three, since they aid us in
minimising the value of q and hence minimising the bandwidth. However, it is
unclear as to whether this comes at the expense of a decrease in performance
when compared against fields of characteristic two. In this paper we go some
way to address this issue in hardware by performing a comparison of the field
primitives. A comparison of the actual protocols we leave to a later publication.

In this paper we shall be interested in protocols which make use of the mod-
ified Tate pairing given by the map

t̂ : G × G → F
∗
qα ,

which satisfies the following properties

1. Bilinearity:
– t̂(P1 + P2, Q) = t̂(P1, Q) · t̂(P2, Q).
– t̂(P, Q1 + Q2) = t̂(P, Q1) · t̂(P, Q2).

2. Non-degeneracy: There exists a P ∈ G such that t̂(P, P ) �= 1.
3. Computable : One can compute t̂(P, Q) in polynomial time.

If we let φ denote a “distortion map”, or group endomorphism which maps
elements in E[l] into linearly independent elements of E[l], then we can define
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the modified Tate pairing from the standard Tate pairing t(P, Q) via the use of
distortion maps

t̂(P, Q) = t(P, φ(Q))(q
α−1)/l

That the Tate pairing is efficiently computable follows from an unpublished, but
much referenced, algorithm of Miller [14].

We wish to compute t̂(P, Q) where P, Q ∈ G. This requires some operations
to be performed in Fq and some to be performed in Fqα , see [5] and [9]. The
exact value of α depends on which supersingular curve is chosen. The optimal
choices in each characteristic are given by the following table

Field Curve α
F2p y2 + y = x3 + x 4
F2p y2 + y = x3 + x + 1 4
F3p y2 = x3 − x + 1 6
F3p y2 = x3 − x − 1 6
Fp y2 = x3 + 1 2
Fp y2 = x3 + x 2

Notice, the value of α is bounded by four in characteristic two, by six in charac-
teristic three and two for curves defined over large prime fields. The underlying
security of the system is based both on the computational Diffie-Hellman prob-
lem in the subgroup of order l of E(Fq) (the so called ECDLP security) and on
the computational Diffie-Hellman problem in the finite field F

∗
qα (the so called

MOV security). Note that the decision Diffie-Hellman problem on supersingular
elliptic curves is easy due to the existence of the Weil and Tate pairings, as was
first pointed out by Joux [12].

We therefore need to choose, assuming standard current security recommen-
dations,

– l ≈ 2160

– qα ≈ 21024

If we wish to deploy a system with security roughly equivalent to 1024-bit
RSA or 160-bit ECC, then we are led to consider the following parameters in
each characteristic

Field Curve ECDLP Security MOV Security
F397 y2 = x3 − x + 1 151 922
F2241 y2 + y = x3 + x + 1 241 964

We shall consider these parameters when describing our implementation of char-
acteristic three arithmetic below, and the corresponding characteristic two im-
plementation with which we compare it.

3 Polynomial Arithmetic Modulo Three

In order to improve on the expected performance of characteristic three arith-
metic, we decided to use a novel representation of polynomials [10]. Each set of
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polynomial coefficients is held as two values, which we shall denote w1 and w2.
A given bit in w1 is set if the corresponding coefficient of the polynomial is equal
to one, while if the given bit in w2 is set then the coefficient of the polynomial
is equal to two. If both bits are clear then the coefficient is zero, while the case
of both bits set is considered invalid.

Put more simply, w1 holds the least significant bits of all coefficients in the
polynomial while w2 holds the most significant bits. This method of holding the
coefficients is similar to the practice of bit-slicing which is often performed in
software. By bit-slicing the high and low bits of each coefficient into separate
values, we offer a much more effective way to perform arithmetic as well as a
natural representation which is bit oriented in the same way that characteristic
two arithmetic is commonly implemented. As an example of this representation,
consider the trinomial x6 + x + 2 which can be described as in Figure 1

x^3 = 0
x^2 = 0
x^1 = 1
x^0 = 2

x^6 = 1
x^5 = 0
x^4 = 0

least significant 
bits
most significant 
bits

0100001
0000 00 1

Fig. 1. Bit-sliced Representation

Note that as we are working in hardware and not tied to a word oriented design,
where each coefficient occupies a number of bits which roughly equate to the
word-size of a processor, this representation is far more compact than other
methods. The size of w1 and w2 simply grow in length as the degree of the
polynomial they represent grows.

3.1 Addition

Addition of polynomials is done on a per-value basis using seven logic oper-
ations. Consider the example which adds the polynomial represented by the
values (a1, a2) to the polynomial (b1, b2), producing a result in (r1, r2). We can
express the addition as a logic diagram, shown in Figure 2, or in the form of a
simple pseudo-code program

t = (a1 | b2) ˆ (a2 | b1);
r1 = (a2 | b2) ˆ t;
r2 = (a1 | b1) ˆ t;

Note that negation and multiplication by two in this representation are partic-
ularly easy operations to implement since

2 · (a1, a2) = −(a1, a2) = (a2, a1)
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00010010001..0

00100001000..1
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00000100100..0

00011001010..0

Fig. 2. Addition

3.2 Multiplication

A natural way to multiply elements in this representation is in a bit-serial man-
ner. In this method we take two operands and perform a multiply by repeatedly
shifting the multiplier down by one bit position and shifting the multiplicand
up by one bit position. The multiplicand is then added or subtracted from the
output value, on each iteration, depending on whether the least significant bit of
the first or second word of the multiplier is set to one. This is possible due to the
identity mentioned above which notes that the double operation is equivalent to
the negation operation.

MULTIPLIER

MULTIPLICAND

000101001

011000110 0

1

0

011110001

0000011000

1

1

ADD/SUB
CHOICE

ACCUMULATOR

010001001

011010010

Fig. 3. Multiplication

The advantage of this full bit serial technique is that it requires less intermediate
storage and is far more suited to a hardware implementation, using a basic
iterated structure and only simple logic elements, i.e. no direct multiplier or
adder circuitry is required. However, a major disadvantage of the full bit-serial
multiplier is that an analogous cubing operation is only as fast as a general
multiply, where as with other representation methods we can perform a more
efficient cubing operation than a general multiply.
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4 Implementation of Arithmetic in F36p

When considering pairing based cryptosystems, we are not only required to
perform some operations in F3p but will also need to compute in the extension
F36p . Since in applications p is a prime greater than five we can use the following
representation of the finite field F36p

F36p = F3p [θ]/(θ6 + θ + 2)

This provides a performance efficient reduction operation for multiplication. For
example, consider the multiplication of two polynomials, a and b, in the field
F36p which we denote

a = a5θ
5 + a4θ

4 + a3θ
3 + a2θ

2 + a1θ + a0

and
b = b5θ

5 + b4θ
4 + b3θ

3 + b2θ
2 + b1θ + b0

Firstly, we multiply the two polynomials using a school-book method to produce
a degree ten resulting polynomial r. We can then perform reduction of r, with
respect to the irreducible trinomial θ6 + θ + 2, using the circuitry as in Figure 4
since the multiplication results in

a · b = r = r10θ
10 + r9θ

9 + · · · + r2θ
2 + r1θ + r0

= s5θ
5 + s4θ

4 + s3θ
3 + s2θ

2 + s1θ + s0

and we know that θ6 = 2θ + 1, so

s0 = r0 + r6

s1 = r1 + 2r6 + r7

s2 = r2 + 2r7 + r8

s3 = r3 + 2r8 + r9

s4 = r4 + 2r9 + r10

s5 = r5 + 2r10

Note that we can perform a subtraction operation in place of the double opera-
tion because of the characteristic of this field and representation as described in
Section 3.

5 Timing of Field Operations

In order to show that arithmetic in F3n is suitable, in terms of performance
and size, for use in cryptosystems, we implemented a number of algorithms in
field-programmable hardware. Our algorithms for addition and multiplication
were implemented using version 2.1 of the Celoxica [1] Handel-C [2] hardware
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R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

R5 R4 R3 R2 R1 R0

ADD

ADD

ADD

ADD

ADD

SUB

SUB

SUB

SUB

SUB

001..0 010..1 000..0 010..1 011..0 000..0 011..1 010..0 011..0 010..1 001..1

010..0 010..1 001..1 110..1 011..0 001..1

Fig. 4. Reduction Modulo θ6 + θ + 2

compilation system and a PCI resident, Xilinx4000XL FPGA based prototyping
device [3]. The Handel-C language and compiler tool-chain allowed us to exper-
iment in a familiar high level language, very similar to C, and directly produce
hardware implementations from a program in that language. The output of the
Handel-C compiler was placed and routed using Xilinx Foundation 3.1i.

All designs communicate input and output data though on-board RAM and
use a system clock of 20MHz. We average the results of our timings over 10000
experiments to gain a more representative answer than might otherwise be ob-
tained.

We note that due to our use of a slightly unconventional design process, our
results may not be suitable for comparison with, for example, highly optimised
VHDL designs. Additionally, we note that we used a somewhat dated version
of the Handel-C and Xilinx tool-chains and that more recent versions may offer
enhanced optimisation phases which could improve the performance, clock speed
and size of our designs. Specifically, we expect to drastically reduce the size of
our designs, by using shared arithmetic elements, since the current results are
blatantly larger than one might expect. However, we feel that the comparisons
offered below are valid in showing both the advantage of our alternative repre-
sentation and that such arithmetic need not be considered significantly slower
than comparable characteristic two alternatives.

In all our experiments, the following notation is used to describe the type of
arithmetic being tested

– F397 −S corresponds to an implementation using the standard software tech-
nique of representing each polynomial as an array of 97 integers, where arith-
metic is performed using a naive multiplication algorithm.
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– F397 − B refers to our alternative representation using a full bit-serial mul-
tiplication method.

The performance for F2241 and F397 polynomial addition and multiplication,
modulo their respective irreducible trinomial, are shown below

Hardware implementation [unoptimised]
Field Addition Multiplication Slices
F397 − S 25.29µs 4393.34µs 2149
F397 − B 1.20µs 102.21µs 4136
F2241 0.80µs 96.63µs 4920

Notice that addition and multiplication, in our alternative representation of char-
acteristic three, are an order of magnitude faster than the standard F397 algo-
rithms. Additionally, addition and multiplication are very close to being as fast
as arithmetic in F2241 .

These addition and multiplication algorithms were implemented with the
same basic structure with reduction happening in-place rather than at the end
of a multiplication. However, since both the F397 and F2241 algorithms are bit
rather than word oriented, they can easily be accelerated by making size/speed
tradeoffs. For example, we can use some extra space to allow reduction to be
performed at the end of multiplication and sacrifice further space to add a degree
of parallelism to our bit-serial multiplication technique. We also apply additional
optimisations which are based on knowledge about how the Handel-C compiler
generates hardware for a given input.

By applying these optimisations, we obtain two faster versions of our basic
algorithms in both fields

Hardware implementation [optimised]
Field Addition Multiplication Slices
F397 1.15µs 50.68µs 8733
F2241 0.70µs 37.32µs 10139

Since the majority of elliptic curve operations will use these primitives as the
basis for more complex operations, the small difference in terms of performance
is an important result, it essentially says that characteristic three arithmetic is
not necessarily much slower than characteristic two arithmetic.

We can use these optimised addition and multiplication designs as the basis
for further algorithms to perform arithmetic in extensions of their respective base
fields. We now need to compare arithmetic in F36·97 with arithmetic in F24·241

due to the different values of α in Section 2

Hardware implementation [optimised]
Field Addition Multiplication Slices
F36·97 5.90µs 1843.71µs 10854
F24·241 3.10µs 609.04µs 12286
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These results show that addition in the two extension fields is roughly equivalent
in terms of how long it takes, while using multiplication in F36·97 is three times
as costly as in F24·241 . The space required for both implementations is about the
same.

Notice that the above implementation used naive arithmetic for performing
the extension field multiplication. This was chosen so as to minimise the area of
the final hardware solution. Hence, we see that in both cases that if Mb denotes
the time needed to perform a base field multiplication and Me denotes the time
needed to perform an extension field multiplication, that

Me ≈ n2Mb

where n = 6 in characteristic three and n = 4 in characteristic two.
An interesting extension to these results would be to consider the use of

Karatsuba multiplication. Although this would lead to a significant increase in
area, due to the need to store intermediate results, it could further improve on
the arithmetic performance in both fields.

First we deal with the case of even characteristic, where we need to multiply
two polynomials of degree three. Using Karatsuba multiplication we can reduce
this to three multiplications of polynomials of degree one, plus a little book keep-
ing which we shall ignore. We then multiply the polynomials of degree one, again
using Karatsuba, using three base field multiplications. Hence, in characteristic
two one expects to obtain

Me ≈ 9Mb.

In characteristic three we need to multiply two polynomials of degree five over
the base field. Using a trivial extension of Karatsuba, which can be found for
example in [4] in a similar context, we first apply standard Karatsuba to reduce
the problem to the multiplication of three polynomials of degree two. These three
products are then computed via performing six base field multiplications each.
Hence, in characteristic three one expects to obtain

Me ≈ 18Mb.

We would therefore expect that a fully optimised version of extension field arith-
metic for both characteristics would result in a multiplication algorithm for char-
acteristic three extension fields which is four times slower than the corresponding
implementation of characteristic two extension fields. This may not be such a
problem in practice as much of the protocols based on the Tate pairing make use
of only base field arithmetic, and only the computation of the pairing requires
extension field arithmetic. When implementing pairing computations one also
attempts to reduce the number of full extension field multiplications that one
needs to perform, see [5] and [9] for details.

Finally, to offer further comparison between our techniques, we also imple-
mented them in a software environment. The timings were taken using the same
150MHz Intel PentiumPro equipped FPGA host PC used in the hardware exper-
iments and were compiled using GCC 2.95.1 with all optimisations turned on.
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The timings for addition and multiplication in both the base field and extension
field are shown below

Software implementation [optimised]
Field Addition Multiplication
F397 − S 11.89µs 1013.61µs
F397 − B 3.98µs 153.85µs
F2241 3.31µs 178.60µs

Software implementation [optimised]
Field Addition Multiplication
F36·97 8.91µs 5138.75µs
F24·241 5.12µs 3156.86µs

By comparing the results for software and hardware implementation, we can see
that in both cases F397 − B based arithmetic is quicker than a corresponding
naive representation. Furthermore, the improvement in the hardware implemen-
tation of F397 − B over F397 − S is greater than that in software indicating that
it is indeed more naturally defined in this medium. Finally, even though our
software test environment is far from state of the art, in both cases our hard-
ware implementations significantly out-perform their software equivalents. This
is clearly the expected outcome but it is reassuring that even by using an out of
date hardware design tool-chain, we were able to produce effective designs using
the Handel-C system.

6 Conclusion

We have shown how the use of a novel representation can result in an implemen-
tation of characteristic three arithmetic suitable for use in hardware cryptosys-
tems based on the Tate pairing. The use of characteristic three with the Tate
pairing is preferred due to the improved bandwidth considerations implied by
the security parameters.

Our implementation techniques offer a considerable improvement over the
standard techniques based on using a word oriented approach to holding poly-
nomial coefficients. We have also demonstrated that it is possible to implement
characteristic three arithmetic which is comparable in performance to a space-
equivalent characteristic two alternative. This is a valuable result which allows
system designers to benefit from bandwidth reduction without degraded perfor-
mance.
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