
True Random Number Generator Embedded in
Reconfigurable Hardware

Viktor Fischer1 and Miloš Drutarovský2

1 Laboratoire Traitement du Signal et Instrumentation,
Unité Mixte de Recherche CNRS 5516, Université Jean Monnet,

Saint-Etienne, France
fischer@univ-st-etienne.fr

2 Department of Electronics and Multimedia Communications,
Technical University of Košice,

Park Komenského 13, 041 20 Košice, Slovak Republic
Milos.Drutarovsky@tuke.sk

Abstract. This paper presents a new True Random Number Generator
(TRNG) based on an analog Phase-Locked Loop (PLL) implemented in
a digital Altera Field Programmable Logic Device (FPLD). Starting with
an analysis of the one available on chip source of randomness - the PLL
synthesized low jitter clock signal, a new simple and reliable method
of true randomness extraction is proposed. Basic assumptions about
statistical properties of jitter signal are confirmed by testing of mean
value of the TRNG output signal. The quality of generated true random
numbers is confirmed by passing standard NIST statistical tests. The
described TRNG is tailored for embedded System-On-a-Programmable-
Chip (SOPC) cryptographic applications and can provide a good quality
true random bit-stream with throughput of several tens of kilobits per
second. The possibility of including the proposed TRNG into a SOPC
design significantly increases the system security of embedded crypto-
graphic hardware.

1 Introduction

Random number generators represent basic cryptographic primitives. They are
widely used for example as confidential key generators for symmetric key and
public-key crypto-systems (e. g. RSA-moduli) and as password sources. In some
algorithms (e.g. DSA) or protocols (e.g. zero-knowledge), random numbers are
intrinsic to the computation [1]. In all these applications, security depends
greatly on the randomness of the source.

Because security algorithms and protocols rely on the unpredictability of the
keys they use, random number generators for cryptographic applications must
meet stringent requirements. Unfortunately computers and digital hardware can
implement only pseudo-random generators. A Pseudo-Random Number Gener-
ator (PRNG) is a deterministic polynomial time algorithm that expands short
(hopefully true random and well distributed) seeds into long bit sequences, this

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 415–430, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

416 V. Fischer and M. Drutarovský

distribution is polynomially indistinguishable from the uniform probability dis-
tribution. PRNGs rely on complexity and their use in cryptography, for example
to generate keys, is very critical. An alternative solution is to get true ran-
dom numbers, hence true security for crypto-systems, using a True Random
Number Generator (TRNG) based on a random physical phenomenon. Even an
ideal PRNG relies upon, and is limited by, the quality of its input seed data.
Good TRNG is designed to generate high-quality random numbers directly or
as a seed for PRNG. Current modern high-density Field Programmable Logic
Devices (FPLDs) provide a suitable hardware platform for a complete System-
On-a-Programmable-Chip (SOPC). This SOPC can be used for cryptographic
applications, even for system-level integration of embedded algorithms. Unfor-
tunately, high quality embedded TRNGs were not realizable in FPLDs. Most
hardware TRNGs follow unpredictable natural processes, such as thermal (re-
sistance or shoot) noise or nuclear decay. Such TRNGs are not compatible with
modern FPLDs and cannot provide a SOPC solution. The fact that TRNG can-
not be implemented inside the FPLD represents significant security and system
disadvantages in embedded cryptographic applications.

TRNGs can be produced using any non deterministic process. The funda-
mental probabilistic phenomena utilized by proposed TRNG is the frequency
instability of electronic oscillator. The use of this phenomena to generate truly
random numbers is not new and was used e.g. in [2], [3]. These implementations
used two free running oscillators with relatively high instability at least one of
them.

This paper describes implementation of new analog Phase-Locked Loop
(PLL) based TRNG that uses on-chip resources of recent Altera FPLD fami-
lies (e. g. APEX E [4], APEX II [5], etc.). Described TRNG uses two coupled
oscillators that are not free running and originally designed to be as stable as
possible. Proposed method reliably extracts intrinsic randomness from low-jitter
clock signals synthesized by on-chip analog PLL circuits and to our best knowl-
edge it is the first TRNG implementation that uses only on-chip FPLD resources.
This paper extends the description of the proposed method first announced in
[6], provides new results of tested output TRNG signals, reveals some deviations
from ideal TRNG, and discusses system aspects of proposed TRNG. It is orga-
nized as follows: a brief overview of jitter performance of analog PLL circuits
embedded in recent FPLDs is given in Sect. 2. In Sect. 3, a proposed new method
of reliable true randomness extraction from low jitter on-chip PLL synthesized
clock signal is presented. The experimental TRNG hardware used for the testing
of the proposed method is described in Sect. 4. In Sect. 5, statistical evaluations
of output TRNG signals are made. Finally, concluding remarks are presented in
Sect. 6.

2 PLL – Source of Randomness in Recent FPLDs

Recent FPLDs use often on-chip PLLs to increase performance of clock distribu-
tion and to provide on-chip clock-frequency synthesis. There are two fundamental

True Random Number Generator Embedded in Reconfigurable Hardware 417

approaches to implement PLL in FPLDs - one uses digital delay lines, or DLL,
(e.g. in XILINX Virtex FPLDs [7]) and the second one uses true analog PLL
(e.g. in Altera APEX E [4] and APEX II [5] FPLDs). Both approaches have
some system advantages and disadvantages but we believe that analog PLL is a
better candidate for cryptographic TRNG design since it contains analog source
of unpredictable randomness.

2.1 Analog PLL in Altera FPLD

To support high-speed designs, new Altera FPLD devices offer ClockLock, Clock-
Boost and ClockShift circuitry containing several integrated on-chip analog PLL
circuits. Block diagram of enhanced PLL sub-circuit available in latest versions
of APEX E and APEX II FPLDs is depicted in Fig. 1 [4], [5].

m
n × v

FIN

Fig. 1. Block diagram of enhanced Altera PLL circuit

In analog PLLs, various noise sources cause the internal voltage controlled
oscillator (VCO) to fluctuate in frequency. The internal control circuitry ad-
justs the VCO back to the specified frequency and this change is seen as jitter.
Under ideal conditions, the jitter is caused only by analog (non-deterministic)
internal noise sources. Such jitter is called an intrinsic jitter. Other possible
frequency fluctuations are caused by variations of supply voltage, temperature,
external interference through the power, ground, and even by the internal noisy
environment generated by internal FPLD circuits [7]. From cryptographic point
of view, these sources should be regarded as deterministic and the function of
TRNG must not be deteriorated by them. In other words, the output TRNG
must in any case depend also on the non-deterministic intrinsic jitter. Any ad-
ditional disturbing deterministic jitter is possible as far as dependency of the
output signal on intrinsic jitter is guaranteed.

2.2 Jitter Characteristics of Altera PLL Circuitry

Parameters of the proposed TRNG depend on the jitter characteristics of Altera
embedded PLLs. Real measurements of jitter parameters requires the use of
special equipment which was not available, so we had to rely on the parameters

418 V. Fischer and M. Drutarovský

given in the Altera data sheets [4] and the application note [8]. Some of these
parameters have been independently confirmed by Xilinx and the results are
available in [7]. Since these parameters are fundamental for our TRNG design,
they are summarized and discussed in this subsection.

Altera tries to minimize the clock jitter1 by a proper design, for example
their typical analog intrinsic PLL jitter in an APEX FPLD has 1-sigma value
of σjit ≈ 15 ps (under Gaussian approximation, the peak-to-peak jitter value is
approximately tJITTER = 6σjit) for a F = 66.6 MHz synthesized clock signal and
multiplication factor of 2× [7]. Actual distribution of jitter values is depicted in
Fig. 2 [7]. These results were acquired under “ideal conditions”, with only a min-
imal amount of occupied FPLD resources and minimal input/output activities.

Fig. 2. APEX intrinsic jitter performance for 1,000 clock samples (bottom curve, peak-
to-peak value 97.0 ps, σjit ≈ 15.9 ps) and 1,000,400 clock samples (upper curve, peak-
to-peak value 151.4 ps, σjit ≈ 15.7 ps)

In [7] it was shown that the clock jitter in APEX FPLD is significantly higher,
when internal FPLD flip-flops are switching with different clock frequencies. It
was shown that when 35 % of the total available flip-flops were clocked with a 33.3
MHz clock and 35 % of the flip-flops with a 66.6 MHz clock, jitter is much higher
than that specified in the data-sheet. These conditions simulated an internal
noisy environment generated by internal FPLD circuits and jitter distribution
was split into two peaks with a 665 ps total peak-to-peak value [7]. Although
overall jitter performance exceeds data sheet specification, true intrinsic jitter
is still present and it is clearly visible as two approximated Gaussian peaks
have around 150 ps. We can conclude that under real conditions the clock jitter

1 There are two types of jitter described in [7], [8], period jitter and cycle-to-cycle
jitter. Period jitter is the deviation in time of any clock period from the ideal clock
period (also known as “edge-to-edge” jitter). Peak-to-peak jitter defines an upper
bound on the jitter. Cycle-to-cycle jitter is the deviation in clock period between
adjacent or successive clock cycles.

True Random Number Generator Embedded in Reconfigurable Hardware 419

always contains intrinsic jitter and only the overall jitter distribution is changed.
Such behavior is expected, since the intrinsic jitter cannot be removed by any
interference.

3 Randomness Extraction from an Intrinsic Jitter

The principle behind our method is to extract the randomness from the jitter of
the clock signal synthesized in the embedded analog PLL. The jitter is detected
by the sampling of a reference (clock) signal using a correlated (clock) signal
synthesized in the PLL. The fundamental problem lies in the fact that the refer-
ence signal has to be sampled near the edges influenced by the jitter. From the
previous section we know that clock edges of a synthesized signal can vary un-
der ideal conditions in the range of several tens of ps. This value is significantly
lower than the smallest delay obtainable in APEX FPLDs and our method must
overcome this problem.

3.1 Timing Analysis of the Logic Cell in Altera FPLD

The smallest possible delay in Altera FPLDs is obtainable between the carry-in
and carry-out of the Logic Cell (LC). A simplified timing model of the logic cell
is depicted in Fig. 3.

Fig. 3. Altera simplified logic cell timing model

420 V. Fischer and M. Drutarovský

We have taken the parameters obtained from the Quartus II [9] version 2.0
timing analyzer as the basis for our method. From the result of this analysis we
can conclude that the smallest obtainable delay in APEX FPLDs is τ ≈ tCICO =
500 ps. The delay τ is only a statistical value and its real size can vary with time,
temperature and supply voltage.

3.2 Basic Principle of Randomness Extraction

The basic principle of the proposed randomness extraction is illustrated in Fig. 4
[6].

 CLK

q(nTCLK)

Fig. 4. Basic principle of randomness extraction from low-jitter clock signal

Let CLK be a system clock signal with the frequency FCLK. In an actual
implementation CLK can be either an external signal or it can be internally syn-
thesized by an additional on-chip PLL. Let CLJ be an on-chip PLL-synthesized
rectangular waveform with the frequency FCLJ = FCLKKM/KD. Let values of
multiplication factor KM and division factor KD be relative primes, so

GCD (KM, KD) = 1 (1)

where GCD is an abbreviation for Greatest Common Divisor. Equation (1) en-
sures that the maximum guaranteed distance between the closest edges of CLK
and CLJ (denoted as MAX(∆Tmin)) is minimized. As it is discussed in Sect. 2,
signal CLJ certainly includes intrinsic analog PLL jitter σjit and it can also
contain other “deterministic” jitter components from external or internal envi-
ronment. This signal is sampled into the D flip-flop using a clock signal with
frequency FCLK. The sampled signal q (nTCLK) contains certain random values.
Their exact position is not known and potentially it can vary in time. Ran-
dom values can be easily extracted by a standard XOR decimator [10], [11]. In
the proposed design the decimator produces one output bit per KD input val-
ues q (nTCLK) (one period TQ). The next paragraphs analyze more deeply the
functionality of the proposed circuit.

Let us consider the output signal in two different conditions: ideal conditions
without jitter and real conditions when jitter is included in the synthesized
clock signal. Under ideal conditions when the jitter is zero (σjit = 0), signal
q(nTCLK), n = 0, 1, . . . is deterministic and under condition (1) periodic with
the period

TQ = KDTCLK = KMTCLJ . (2)

True Random Number Generator Embedded in Reconfigurable Hardware 421

Therefore decimated output signal x (nTQ) , n = 0, 1, . . .

x (nTQ) = q (nTQ) ⊕ q (nTQ − TCLK) ⊕ . . . ⊕ q (nTQ − (KD − 1)TCLK) (3)

which represents bit-wise addition modulo 2 of KD input samples, is also deter-
ministic. The situation is completely different under real conditions when the
jitter is nonzero (σjit > 0). If KD is chosen so, that the jitter σjit is compara-
ble with the maximum distance MAX(∆Tmin) between the two closest edges of
CLK and CLJ, we can guarantee that during TQ the rising edge of CLK will fall
at least once into edge zone of CLJ (edge zone means the time interval around
the edge including jitter2). The value MAX(∆Tmin) can be computed as

MAX(∆Tmin) = TCLK
GCD(2KM, KD)

4KM
= TCLJ

GCD(2KM, KD)
4KD

. (4)

The during current period of TQ, KD values of CLJ will be sampled into D flip-
flop and at least one of them will depend on the random jitter. The decimated
signal x (nTQ) will not be deterministic anymore and its value will depend on
this jitter. In Fig. 5-7 we analyze different possibilities for small values of KM
and KD that demonstrate the validity of (4).

Fig. 5. Clock relation for KM = 5, KD = 7 (FCLJ < FCLK)

Figure 5 shows the case when GCD(2KM, KD) = 1 and FCLJ < FCLK.
In real implementation it is not possible to guarantee the position of CLJ in
relationship to CLK. In this example the minimum distance ∆Tmin is 0 (the
last sample of the period TQ). The worst case (maximum value of the minimum
distance - MAX(∆Tmin)) will be the event when CLJ will be shifted by a half

2 For qualitative analysis we can assume that the width of the edge zone is for example
6σjit. Therefore there is some non-zero probability that the jitter will influence the
sampled signal value.

422 V. Fischer and M. Drutarovský

step (the step is equal to3 TCLJ/2KD) to the left or to the right. In that case
the minimum difference will be the half step in at least one of critical samples
(they are indicated by arrows) and the output value Q will be nondeterministic
during one period TCLK (gray zones in Q output signal). Conclusion: the jitter
should be comparable with the half step, therefore σjit ≈ TCLJ/4KD and so

MAX(∆Tmin) =
TCLK

4KM
=

TCLJ

4KD
=

TCLJ

28
(5)

Figure 6 shows the case when GCD(2KM, KD) = 1 and FCLJ > FCLK.
Following the previous study it can be found that MAX(∆Tmin) can be expressed
in the same way as in (5), so (4) is valid, too.

Fig. 6. Clock relation for KM = 7, KD = 5 (FCLJ > FCLK)

Figure 7 shows the case when KD is even so GCD (2KM, KD) = 2 and FCLJ <
FCLK. It can be found that MAX(∆Tmin) can be expressed as

MAX(∆Tmin) =
TCLJGCD(2KM, KD)

4KM
=

2TCLJ

4KD
=

TCLJ

2KD
=

TCLJ

16
(6)

and (4) is valid also in this case.
Following this analysis we can conclude that according to (4) it is better (if it

is possible from system point of view) to choose relative primes KM, KD in such
a way that KD is odd. This choice will decrease MAX(∆Tmin) by the factor of
2.

3 Note that there are KD = 7 clock periods in interval TQ. The longest distance ∆T
is 7∆. 7∆ is a half period of CLJ. So the longest distance ∆T is the half period of
CLJ. The worst case of the largest distance MAX(∆Tmin) is 0.5∆ = 1/14 of the half
period of CLJ. That means 1/28 = 1/ (4KD) of the full period of CLJ.

True Random Number Generator Embedded in Reconfigurable Hardware 423

Fig. 7. Clock relation for KM = 7, KD = 8 (FCLJ < FCLK)

3.3 TRNG Realization

Under real conditions D flip-flop in Fig. 4 produces signal q (nTCLK) that is
sampled KD times during the time interval TQ. Based on the analysis in Sect. 3.2
it is possible to express the decimated output signal x (nTQ) as

x (nTQ) = [q (nTQ) ⊕ q (nTQ − TCLK) ⊕ . . .

. . . ⊕ q (nTQ − (J − 1)TCLK) ⊕ q (nTQ − (J + 1)TCLK) ⊕ . . .

. . . ⊕ q (nTQ − (KD − 1)TCLK)] ⊕ q (nTQ − JTCLK) (7)

where the first term in (7) contains all values not influenced by the jitter (there-
fore they are deterministic) and the second term4 q (nTQ − JTCLK) is influenced
by the jitter. In general, values q (nTQ − JTCLK) are statistically biased random
bits that have expectation (long run average) p = E [q (nTQ − JTCLK)] different
from the ideal value of 1/2 by a bias b = p−1/2. Under Gaussian approximation
the bias for intrinsic jitter can be computed by

|b| =

∣∣∣∣∣∣∣∣
1√
2π

∆Tmin
σjit∫

−∞
e
− x2

2 dx − 1
2

∣∣∣∣∣∣∣∣
≤ 1

2
erf

(
MAX(∆Tmin)

σjit
√
2

)
<

1
2

(8)

where erf() is the Error function [15]. Since the exact value of J is not known
(it can be influenced by a non-deterministic jitter described in Sect. 2 or by the
temperature and supply voltage variations that influence delays in the D flip-flop)
it is necessary to use a decimator that produces x (nTQ) according to (7) with
the output sample rate TCLK/KD. This ensures that randomness included in the
value q (nTQ − JTCLK) is also included in x (nTQ) without precise knowledge of
4 In principle more terms could be influenced by the jitter but according to the previous
analysis, choosing proper values KM and KD we can guarantee that at least one
sample will be influenced by the jitter.

424 V. Fischer and M. Drutarovský

the actual value J (position of the sample influenced by jitter in the frame of
one period TQ).

Good TRNG should produce binary outputs with equal probability, so b → 0.
Signal x (nTQ) generally does not fulfill this requirement. One common way to
reduce statistical bias is to use a XOR corrector [10], [11]. The simplest XOR
corrector takes non-overlapped pairs of bits5 from the input stream and XORs
them to produce an output stream with the half bit-rate of the input stream.
If input stream bits are statistically independent then the bias at the output
(decimated) stream is bout = −2b2in and |bout| < |bin| since |bin| < 1/2 [10]. There
are two XOR operators needed in the complete TRNG realization (see Fig. 8):
the XOR decimator implied by the basic principle of the method (described
above) and a XOR corrector of Nd samples

qi (nTCLK) = q

nTCLK −

i∑
j=0

jτj

 , i = 0, 1, . . . , Nd − 1, τj ≈ τ . (9)

D

CLK

Q XOR Decimator

XOR Corrector

Fig. 8. Simplified block diagram of complete TRNG

To increase the probability of overlapping CLK and CLJ edge zones during
the TQ period, the signal CLJ is delayed in Nd − 1 delay elements. Outputs of
these elements are synchronously sampled with the frequency FCLK and XOR-ed
together to produce signal

xXOR (nTCLK) = q0 (nTCLK) ⊕ q1 (nTCLK) ⊕ . . . ⊕ qNd−1 (nTCLK) . (10)

Output of the complete TRNG can be written in the form:
5 This principle can be applied also to more non-overlapped bits that are XORed
together.

True Random Number Generator Embedded in Reconfigurable Hardware 425

x (nTQ) = xXOR (nTQ) ⊕ xXOR (nTQ − TCLK) ⊕ . . .

. . . ⊕ xXOR (nTQ − (KD − 1)TCLK) . (11)

The minimal signal delay obtainable in Altera APEX family is τ ≈ 500 ps
and actual values τi, i = 0, 1, . . . , Nd − 1 fluctuate around this value and are
influenced by the supply voltage and the temperature. This mechanism causes
fluctuation of biases bi of individual outputs of the delay line (since corresponding
values ∆T i

min, i = 0, 1, . . . , Nd − 1 influence bi according to (8)). In order to
decrease the output bias it is necessary to use a Nd which is as large as possible.
We propose to use about Nd delay elements, where the maximal value of Nd is
limited by

Nd ≤ TCLK/τ = 1/(FCLKτ) . (12)

The sum of the delays thus spans one period TCLK and ensures (for TCLK <
TCLJ) that if the edge of the CLJ signal is in the current TCLK window, the edge
zone is sampled only once with the probability σjit/τ . Larger values of Nd are
not recommended, since sampling one edge of CLJ signal two or more times can
create an undesired statistical dependency. Therefore at each output-sampling
interval nTQ, the signal x (nTQ) is the result of XOR-ing

NXOR = KDNd (13)

individual bits. There are 2KM edges of CLJ signal over TQ period, so approxi-
mately Nbit bits, Nbit being calculated by

Nbit ≈ 2KMσjit/τ, (14)

are influenced by the intrinsic jitter and these bits are used by XOR corrector for
a bias reduction. Although value (14) is just statistical estimation, it provides
information about the applicability of some statistical rules.

If the input bits were statistically independent, the decimated output se-
quence x (nTQ) would quickly converge to an unbiased binary sequence that is
uncorrelated. Since the binary stream xXOR (nTCLK) is influenced by an ana-
log part of the PLL, we can expect that obtained values will be statistically
independent. This hypothesis is tested in Sect. 5.

4 Experimental Hardware Implementation

To measure the real performance of our proposed TRNG, an Altera NIOS de-
velopment board was selected. This development board was chosen to elimi-
nate concerns about proper board layout technique. The same board was also
used in [7] for the reference PLL measurements so we can expect that jit-
ter characteristics presented in Sect. 2 can be directly applied to our design.
The board features a PLL-capable APEX EP20K200-2X with four on-chip
analog PLLs. In order to use as large output data rate as possible, the two6

6 It is possible to create TRNG based only on one PLL, but it requires a different
crystal than the NIOS board actualy uses.

426 V. Fischer and M. Drutarovský

on-chip PLLs shown in Fig. 9 were used for generating CLJ and CLK sig-
nals. The external clock source was 33.3 MHz, on-chip synthesized clocks were
FCLK = 33.3 × 159/60 = 88.245 MHz and FCLJ = FCLK (785/1272) ≈ 54.459
MHz, so KM = 785 and KD = 1272. These values were chosen as a compromise
of minimal MAX(∆Tmin) for actual NIOS board constraints. According to (4)
they ensure that MAX(∆Tmin) ≈ 7.2 ps < σjit. The TRNG was implemented
for Nd = 22 in VHDL using standard Altera megafunction for embedded PLL
configuration.

CLJ

Fig. 9. Actual PLL configuration used in experimental hardware

There are two problems related to the random number generator implemen-
tation in an FPLD:

– the function of the generator cannot be verified using simulation (jitter is
not simulated),

– since detection of the jitter is based on a repetition of a small signal delay
using a carry chain, placement and routing has a significant impact on the
generator operation (for example, to guarantee the correct operation of the
generator, D flip-flops have to be implemented in the same logic array block
as the carry chain delay).

For a proper operation the design must use resource locking (assignments)
and the design must be verified and tested on a real hardware. Generator blocks
have been designed using both Altera Hardware Description Language (AHDL)
and VHDL. Since its implementation is hardware-specific, it seems to be more
practical to use AHDL instead of VHDL (at least for the jitter detector block),
because AHDL is closer to the hardware and the implementation can be better
controlled on a low level basis (assignments of hardware elements).

The FPLD resource requirements of the proposed TRNG block as well as the
supporting logic (FIFO, control logic) of the experimental hardware implemen-
tation is shown in Table 1. The first four columns show resource requirements

True Random Number Generator Embedded in Reconfigurable Hardware 427

(in Logic Cells and Embedded System Blocks (ESB)) of the generator, as it is
presented in Fig. 8. The second four columns give resource requirements of the
complete TRNG circuit including 8 bits wide 1024-byte FIFO and a data bus
controller. Presented results have been obtained using Altera Quartus II v. 2.0
[9]. Values x (nTQ) generated with bit-rate 1/TQ ≈ 69375 bits/s were saved on
the hard disk for further analysis.

Table 1. APEX FPLD resource requirements

TRNG only TRNG + FIFO
Device LCs LCs ESBs ESBs LCs LCs ESBs ESBs

% # % # % # %

EP20K200EFC484-2X 48 0.6 0 0 121 1.5 4 7.7

5 Statistical Evaluation of TRNG

Testing a hardware random number generator differs from testing a PRNG [12].
In particular, if we know the design of the generator we can tailor some of the
tests. However, the random number generator (either random or pseudorandom)
might pass the test and still not be a good generator. There are some well
documented general statistical tests that can be used to look for deviations from
an ideal TRNG [13], [14], [15]. A good TRNG should pass all kinds of tests.

5.1 Testing of Basic Statistical Assumption

A potential problem of using XOR decimation technique for bias removing is
that XOR decimation should be used only with statistically independent bits.
Our XOR corrector performs XOR-ing of NXOR = 1272 ∗ 22 = 27984 input
bits. According to (14) there are about Nbit ≈ 47 input bits per one output
bit that are influenced by a non-deterministic jitter. Under ideal assumption
(statistically independent biased jitter values) the output signal must converge
to an almost unbiased binary sequence (B → 0) with probability of 1’s and 0’s
equal to 1/2 ± B, where the total bias B can be computed as

B = E [x (nTQ)] = E [f (q0 (nTQ) , . . . qNd−1 (nTQ) , b0, b1 . . . bNd−1)] +

+ (−2)Nd−1
Nd−1∏
i=0

bi . (15)

For statistically independent values the first term of (15) is zero and the sec-
ond term of (15) very quickly converges to a low value since |b|i < 1/2, i =
0, 1, . . . , Nd−1. Table 2 shows the results of the mean value computation for sev-
eral 1-Gigabit TRNG output records acquired from two available NIOS boards.

428 V. Fischer and M. Drutarovský

It is clear that there is a certain small difference from an ideal TRNG. This
difference is caused by a certain small non-zero statistic dependency in the first
term of (15). This is the first7 detected difference between our TRNG and ideal
one.

Table 2. Mean values computed for several 1-Gigabit records

Record 1 2 3 4 5
NIOS (Board A) (Board B) (Board B) (Board B) (Board B)

Mean 0.500109 0.499917 0.499911 0.499896 0.499872

5.2 The NIST Statistical Tests

A large number of generalized statistical tests for randomness have been pro-
posed. It seems that the NIST statistical test suite [15] is currently the most com-
prehensive tool publicly available. Our NIST statistical tests were performed on
1-Gigabit of continuous TRNG output records and followed the testing strategy,
general recommendations and result interpretation described in [15]. We have
used a set of m = 1024 1-Megabit sequences produced by the generator and we
have evaluated the set of P -values (some typical values are shown in Table 3 [6])
at a significance level α = 0.01. The total number of acceptable sequences was
within the expected confidence intervals [15] for all performed tests and P -values
were uniformly distributed over the (0, 1) interval.

We have performed the same tests for several 1-Gigabit records and have
uncovered certain deviations in the FFT statistical test results. For ideal TRNG
the distribution of P -values is uniform in the interval (0, 1). For tested TRNG
this uniformity is checked by using a χ2 test distribution of P -values in subin-
tervals C1-C10. If the P -value shown in Table 4 (more precisely a P -value of
the P -values [15]) is lower than 0.0001 the test fails and indicates a detectable
difference from the ideal TRNG.

6 Conclusions

In this paper we have evaluated a new method of true random numbers generated
in SOPC based on a reconfigurable hardware. The randomness of the sequence
of numbers has been extensively tested and only small differences from an ideal
TRNG have been detected. We believe that intrinsic analog PLL noise is a good
source of true randomness and at least for typical cryptographic keys with the
length from hundreds to several thousands bits, our TRNG is not distinguishable
from the ideal TRNG. For very critical cryptographic applications the proposed
7 Note that this difference is really detectable only for long streams and we believe that
proposed TRNG can be used for key generation in typical cryptographic applications.

True Random Number Generator Embedded in Reconfigurable Hardware 429

Table 3. NIST test results (uniformity of P -values and proportion of passing sequence)
for 1-Gigabit record that passed all tests

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P -value Proportion Statistical Test

112 103 114 95 98 105 91 95 104 107 0.827418 0.9873 Frequency
111 103 103 91 104 110 101 108 93 100 0.920212 0.9922 Block-Freq.
103 113 89 100 92 104 107 97 92 127 0.242375 0.9873 Cusum
97 81 97 117 114 91 93 106 115 113 0.144842 0.9941 Runs
86 108 102 92 93 94 122 99 125 103 0.106543 0.9922 Long-Run
99 92 116 110 90 115 103 93 104 102 0.582174 0.9902 Rank
83 110 116 110 112 108 120 87 79 99 0.027813 0.9951 FFT
117 107 90 95 108 98 102 99 105 103 0.830876 0.9824 Periodic-Template
130 95 111 112 99 91 97 92 111 86 0.072399 0.9863 Universal
91 114 118 102 85 94 108 96 112 104 0.327204 0.9951 Apen
95 107 105 126 99 94 94 96 104 104 0.510619 0.9932 Serial
110 90 104 127 94 96 78 107 114 104 0.056616 0.9863 Lempel-Ziv
105 108 96 96 103 114 106 87 108 101 0.807953 0.9893 Linear-Complexity

Table 4. NIST FFT test results (uniformity of P -values and proportion of passing
sequence) for all tested 1-Gigabit records

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P -value Proportion Statistical Test

1 83 110 116 110 112 108 120 87 79 99 0.027813 0.9951 FFT
2 105 136 100 113 111 99 101 79 88 92 0.010138 0.9932 FFT
3 96 113 125 143 96 96 118 86 82 69 0.000002 *0.9951 FFT
4 107 132 133 110 117 95 71 93 86 80 0.000010 *0.9971 FFT
5 91 132 115 128 101 93 99 109 78 78 0.000301 0.9941 FFT

TRNG can be used at least as an useful internal source of entropy or efficiently
combined with one-way hash functions or PRNGs.

The proposed solution is very cheap. It uses very small amounts of FPLD
resources and it is fast enough for typical embedded cryptographic applications.
The advantage of our solution lies in the fact that the proposed TRNG block
together with symmetrical and asymmetrical algorithms can fit into one FPLD
chip and significantly increase the system security of an embedded cryptographic
SOPC system.

The bias reduction of the TRNG can be further improved by a proper choice
of parameters KM and KD and using more sophisticated XOR corrector. This
solution is currently in development and will be presented in a future paper.

430 V. Fischer and M. Drutarovský

References

1. Menezes, J.A., Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptogra-
phy, CRC Press, New York (1997)

2. Faifield, R.C., Mortenson, R.L., Coulthart, K.B.: An LSI Random Number Genera-
tor (RNG). Lecture Notes in Computer Science, Vol. 0196. Springer-Verlag, Berlin
Heidelberg New York (1984) 203–230

3. Jun, B., Kocher, P.: The INTEL Random Number Generator. Cryptography Re-
search, Inc., White Paper prepared for Intel Corporation, April 1999, 1–8,
http://www.intel.com

4. APEX 20K Programmable Logic Device Family. Data Sheet, February 2002, ver.
4.3, 1–116, http://www.altera.com

5. APEX II Programmable Logic Device Family. Data Sheet, December 2001, ver.
1.3, 1-96, http://www.altera.com

6. Fischer, V., Drutarovský, M.: True Random Number Generator in Field Pro-
grammable Logic Devices. Submitted to Electronic Letters, Paper Number ELL
32365, April 2002

7. Superior Jitter management with DLLs. Virtex Tech Topic VTT013 (v1.2), Jan-
uary 21, 2002, 1–6, http://www.xilinx.com

8. Jitter comparison analysis: APEX 20KE PLL vs. Virtex-E DLL. Technical Brief
70, January 2001, ver.1.1, 1–7, http://www.altera.com

9. Quartus II - Programmable Logic Design Software. January 2002, ver.2.0, 1–45,
http://www.altera.com

10. Davies, R.B.: Exclusive OR (XOR) and Hardware Random Number Generators.
February 28, 2002, 1–11, http://webnz.com/robert/

11. Eastlake, D., Crocker, S., Schiller, J.: Randomness Recommendations for Security.
Request for Comments 1750, December 1994, http://www.ietf.org/rfc/rfc1750.txt

12. Davies, R.: Hardware Random Number Generators. Paper presented to the 15th
Australian Statistics Conference, July 2000, 1–13, http://statsresearch.co.nz

13. Marsaglia, G.: DIEHARD: A Battery of Tests of Randomness.
http://stat.fsu.edu/ geo/diehard.html

14. Security Requirements for Cryptographic Modules. Federal Information Process-
ing Standards Publication 140-2, U.S. Department of Commerce/NIST, 1999,
http://www.nist.gov

15. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applications.
NIST Special Publication 800-22, May 15, 2001, 1–153, http://www.nist.gov

	Introduction
	PLL -- Source of Randomness in Recent FPLDs
	Analog PLL in Altera FPLD
	Jitter Characteristics of Altera PLL Circuitry

	Randomness Extraction from an Intrinsic Jitter
	Timing Analysis of the Logic Cell in Altera FPLD
	Basic Principle of Randomness Extraction
	TRNG Realization

	Experimental Hardware Implementation
	Statistical Evaluation of TRNG
	Testing of Basic Statistical Assumption
	The NIST Statistical Tests

	Conclusions

