
M~-COMPUTER DIALOGUES FOR MANY LEVELS OF COMPETENCE

P.A.V. Hall

Information Systems Division

SCICON Ltd.

Sanderson House

49 Berners Street

London, W.I.

ABSTP~.CT

Man-computer dialogues are viewed as languages and the relationship between programming

languages and menu plus form dialogues is shown. Syntax notation is used for dialogue

description and design. It is shown how to construct a man-machine system where the

user can switch freely between programming language style of interface and a dialogue

of menus and forms.

1 INTRODUCTION

Interactive systems are now very common (eg. 9,10,12,13,15). The systems vary in

degree of sophistication they demand of the user, ranging from programming languages

like BASIC or APL to systems based on menus, forms, etc. to systems based on natural

language. The various alternative forms of man-computer dialogue have been surveyed

in the very useful book by Martin (!0).

In many systems there is a need to accommodate both experienced users, who require a

very succinct language to enable them to work fast and without frustration, and naive

users who need a lot of assistance. It is desirable for the naive user to progress

to advanced status without having to learn a new advanced dialogue separate from their

beginner's dialogue. HELP commands, abbreviations for English-like keywords, and

MACROS (eg. 10,13) are widely used: these ideas are useful, and they do accommodate

a range of competences, but can we not go further ?

I found myself involved in discussions around the design of an interactive system,

facing advocates of a programming language approach and advocates of a menu plus form

approach. It then occurred to me that these approaches are very closely related, and

it should be possible to enable the user to freely switch from menus or forms to progra-

mming language within a single system. Thus I set out to formulate my proposals in

detail: this paper is the result.

For the purposes of exposition, I have invented a library retrieval problem: this

example is typical of many interactive systems concerned with on-line retrieval of

information (eg. i0). Section 2 introduces the example, and later sections draw

upon this example.

The first consequence of looking at dialogues as languages is that all the computing

industry's experience of languages and compilers can be applied. In particular, the

language can be described by a syntax, and this is what has been done in Section 2.

632

A BNF notation has been used in Section 2, but diagrams similar to state-transition

networks (14) are used later, and are important. The interaction can be designed

initially as a programming language, and from this the dialogues derived: this is

done in Section 2 for the example, and general rules are described in Section 3.

The syntax description includes both man and computer generated symbols - the design

of the dialogue is essentially a matter of deciding how much the man contributes and

how much the computer contributes° Only the combination of both computer and human

contributions has meaning, spelling out the intentions of the man and the required

actions of the computer.

A naive user is more at home with a dialogue of menus and forms, but as he gains

competence he would like to short-cut the verbosity and slowness associated with the

dialogue and key in directly his instructions. This shift of behaviour is readily

accommodated by viewing the dialogue as a language. The basic ideas are given in

Section 4, and various software issues are discussed in Section 5 and 6.

2 EXAMPLE - Library Administration

The books held in the library are recorded in the table BOOKS, with each book descr-

ibed by AUTHOR, TITLE, PUBLISHER, YEAR of publication and library ACCESSION - NUMBER.

People who are entitled to use the library are recorded in table SUBSCRIBERS with

their NAME and ADDRESS, while actual loans are recorded in the LOANS table. Thus

there are three tables with columns as below:-

BOOKS (AUTHOR, TITLEt PUBLISHER, YEAR, ACCESSION-NUMBER)

SUBSCRIBERS (NAME, ADDRESS)

LOANS (NAME, ACCESSION-NUMBER)

Note that this can be thought of as relational system in as much as its information

is tabular (4,11) but as will be seen below only limited operations will be allowed.

In use, the three tables can be independently updated or interrogated to answer such

questions as "does the library have any books by SMITH?" or even "who has on loan that

book by SMITH?". To this end the simple query/update language of Figure 1 is desig-

ned, as a conventional programming language.

Clearly we could expect the user to type commands into the system according to the

syntax of Figure i. Instead we could design a menu/form driven dialogue offering

the same facilities. The menus and forms are shown in Figures 2 and 3. These are

derived directly from the syntax of Figure i. Each menu or form is displayed with

a heading showing the complete dialogue so far, so that, for example, having made t~e

following choices, menu i: UPDATE, menu 2: DELETE, menu 3: BOOKS, when form 1 is dis-

played, it will have a heading UPDATE DELETE BOOKS.

3 DESIGN OF DIALOGUES FROM A PROGRAMMING LANGUAGE

In the preceding example, we saw how an interactive system was specified by initially

633

FIGURE ! Syntax and Semantics of the library administration update/query language
~command> : := UPDATE ~update> /QUERY <query>
~update> ::= DELETE <deletion~ /INSERT <insertion>
~deletion> ::= ~table - descriptor>
<insertion> ::= ~table - descriptor>
<tabie - descriptor~ ::= BOOKS <books - descripto~

/SUBSCRIBERS ~subscribers-descriptor>
/LOANS <loans-descriptor>

<books-descriptor> ::= AUTHOR (~string> /?) TITLE
(<string> /?) PUBLISHER (~string> /?) YEAR

(~number> /?) ACCESSION-NUMBER (<number~ /?)
~subscribers-descriptor> ::= NAME (<string> /?) ADDRESS

(<string~ /?)
~loans-descriptor~ ::= NAME (~string> /?)

ACCESSION-NUMBER (<number> /?)
<string> ::= ~character> *
~character> ::= ~digit~ /A/B/.../Z/./-/,/space
~digit~ ::= 0/1/2/3/4/5/6/7/8/9
~number~ ::= <digit~ ~digit> *
~query> ::= ~table-descriptor>

In the syntax notation, * means arbitrarily many repetitions of the construct.
SEMANTICS OF UPDATE DELETE
The table selected is searched for the entries described; all entries matching on
the field values supplied, with a '?' matching anything , are found; all these entries
are deleted from the table.
Semantics of UPDATE INSERT
The table selected has added to it the new entry specified; where the field value
is not known, a '?' can be entered - this will have the property that on later sear-
ches, a match will always be obtained on this field.
Semantics of QUERY
The table selected is searched for the entries described, as for UPDATE DELETE: the
entries found are displayed for the user in tabular form, with a suitable mechanism
for handling tables too large for a single screen.

specifying the user interface using conventional syntax methods with semantic annota-

tion, with the interactive dialogues being derived from the syntax. In this section,

we abstract general rules for the design of man-computer dialogues from a programming

language. The details of the dialogue will necessarily depend upon the device throu-

gh which the interaction takes place, and as in all design situations, these constrai-

nts will influence the early stages of the design process and the design will be

iterative.

In the design of conventional programming languages, one usually distinguishes two

phases. In the first phase, basic functional capabilities are decided; what infor-

mation structures are to be manipulated and what manipulations are to be permitted.

In this first phase, all the essential information that the user must supply (eg.

numerical values) will be identified for each command, but no consideration of how

the user will supply this information is undertaken. In the second phase, the de-

tails of how the facilities are presented to the user are considered: are values

identified explicitly by a label which describes them or implicitly by position, and

so on. User convenience and the capability of the computer to analyse the language

are both considered at this second stage.

634

Figure 2.. Menus for Library Administration update_____/query dialogue

MENU OPTIONS NEXT MENU/FORM

1 UPDATE

QUERY

DELETE

INSERT

BOOKS

SUBSCRIBERS

LOANS

Menu 2

Menu 3

Menu 3

Menu 3

Form 1

Form 2

Form 3

Figure 3 Forms for Library Administration update/query di_alogue

FORM FIELD TITLE INITIAL DISPLAY

1 AUTHOR

TITLE

PUBLISHER

YEAR

ACCESSION-
NUMBER

NAME

ADDRESS

NAME

ACCESSION-
NUMBER

?

?

?

?

. ?

ENTRY

string 1

string I

string i

string i

n~erl

string

string I

string I

number I

In systems design, the first phase corresponds to functional specification, while the

second phase corresponds to user interface description: In formal approaches to lang-

uage design (eg. i), these two phases are known as "abstract syntax" and "concrete

syntax" respectively.

In principle, in designing a dialogue system, we should progress our language design

as far as functional specification only, and use that as the basis for the design of

the dialogues. However, it is useful to design the language with a concrete syntax

as if it were a conventional programming language since, as we will see in the next

section, we will want experienced users to take short cuts by enabling them to revert

to the related programming language.

Thus we take as our starting point a language which has been fully specified in its

635

concrete syntax using normal language specification conventions (eg. 6).

Four basic rules suffice in guiding our design of the dialogue.

RULE 1 - Syntax of form <class 0> ::= ~class i> / <class 2~ /.../ ~class n>
Make a menu one option per class on the right hand side. The syntax class names may
themselves not be adequate to guide the user, and extra guidance may be necessary.
This guidance could take the form of short descriptions of t/%e classes, possibly only
displayed on demand, but the guidance could employ language terminal symbols like

"DELETE" etc. which are meaningful to the user. The case
<class 0> ::= SYMBOL'I <class l> / SYMBOL-2 <class 2~.../SYM~OL-n ~class n>

is especially useful since the terminal symbols SYMBOLi can be used to denote the

options, as was done in the menus of our Example of section 2.

In other cases, terminal symbols from further down the production sequence could be

used, as in
<arith - exp~ ::= ~add - exp> / ~sub - exp> / ~arith - exp~ /

/ <div- exp> / <number~ / (<arith- exp>)

~add - exp> ::= ~arith - exp> + ~arith - exp~
~sub - exp~ ::= <arith - exp> - <arith - exp>
Wmult - exp> ::= <arith - exp> X ~arith - exp>
<div - exp> : := <arith - exp> ~ <arith - exp>

when the options list for the ~ari{h - exp> menu could be:
+,-,X,÷,NUMBER, ()
NOTE: in doing this, we are really digging behind the concrete syntax and are looking
at the abstract syntax and from this we are creating an alternative concrete syntax

equivalent to the first.

RULE 2 - Syntax of form:= <class 0> ::= ~class l~ ~class 2> ... ~class n~

No explicit menu for ~class 0~ is necessary, but the interactions for ~class l> ,
~class 2> ... have to be successively worked through to gather the user require-

ments for ~class 0>

In our example of section 2, there is no example of this rule. However, it could
have been applied to all those productions which led to a form. For example, the
syntax production for books-descriptor could have been rewritten as
~books-descriptor> : := <author> ~title~ ~publisher>

~year> ~accession-nu/~ber~
~author> ::= AUTHOR (~string> /?) ... etc ...

and the production for <books-descriptor> demands Rule 2 - to obtain the information
for a ~books-descriptor> , each of ~author~ , <title~ and so on, have to be ac-
quired in turn.

These are the basic rules for a dialogue, and a dialogue could be constructed entirely

from these. However, in many cases,the user can input a collection at one go - this

leads to prompts and forms as in Rule 3. It is also important to keep the user aware

of his progress - hence Rule 4.

RULE 3 - It often happens that the possibilities for completing a syntax class, such
as ~number> , are well known and that this can be input in one go. Thus for
~class> ::= Wn~mber~

a suitable prompt should enable the user to input a number without further menus.
For more complex primitives like dates, some rules of formation and a few examples
may be necessary to guide the user° Even syntax classes like arithmetic expressions
could be handled in this way.

Where the syntax class demands a set of such responses, we find the requirement for a
form: each separate response needs to be separately prompted in a way that is meaning-
ful to the user and as in Rule i, terminal symbols taken from the syntax would be espe-
cially useful. The example of section 2 has three such forms.

RULE 4 - at all intermediate positions keep the user notified of the story so far.
The easiest way to do this is to maintain on the display the command that he has built
up so far. In a complex interaction sequence, it is very easy to get lost.

636

In this section, we have progressed from a programming language to a dialogue of menus

and forms and similar. This process can be carried through in the reverse direction,

and given a dialogue of menus, forms, etc., a programming language can be very easily

derived. As we shall see in the next section, we will require both language and

dialogue, and the closer these are to each other the better. Ideally, they should

be designed together, rather than one first and the other afterwards. Note that

Black (2) comes very close to doing what we have done in this section, but then drifts

away from the essential linguistic nature of a dialogue.

4 ENABLING USER SHORT CUTS

A completely interactive system can be very tedious to use. For a new user of a

system, the menus and forms and other aids are very useful, and little prior learning

is necessary in order to be able to effectively use the system. However, Once the

user obtains knowledge and experience, it can be very irksome to have to wait while a

screen full of information is displayed, to have to exercise an option by positioning

a cursor, and so on. A command language becomes attractive - the user can pace the

system, providing that he does not have to type excessive language keywords, and he

will be able to work as fast as his typing skills permit.

In section 3~ we partially recognised this requirement by Rule 3, allowing complex

information groups which would be readily comprehended by the user (eg. numbers) to

be keyed directly into the computer. This capability can be fully generalised to

allow the user complete freedom to switch to the command language and back to dialo-

gues as required. To see how this can be donew let us return to our example.

Example revisited

The language and dialogue of the example of section 2 can be represented by a state

diagram. One form of this is shown in Figure 4. In drawing this diagram, we have

had to slightly modify the syntax to break-up the productions for the descriptions.

Starting at state one, the first symbol of the dialogue selects a state-transition to

move ta the next state, and successive symbols in the dialogue sequence cause succe-

ssive state transitions. The dialogue sequence continues until State 28, the terminal

state has been reached. Figure 5 relates the states to menus and forms.

In the diagram of Figure 4, four sub-diagrams have been used - these form "sub-routl-

nes", but are not essential, since the sub-diagram could have been repeated at each

place it is used, to give a single state diagram.

In general, from any state in the state diagram, a sequence of symbols will "drive"

the system to a new state. Thus from state 2, the sequence INSERT LOANS NAME 'JONES'

drives the system to state 25.

Consequently, all we have to do to allow the user to make shortcuts and bypass the

dialogues is to allow him to key in sequences of symbols at any point and allow a

suitable menu or form or other prompt at the end.

?I
GU
RE
 4
.

St
at
e

di
ag

ra
m

fo
r

th
e

la
ng

ua
ge

an

d
di

al
og

ue

of

Se

ct
io

n
2.

2
_

UP
DA
TE

QU
ER

Y

~
I

N
S

E
R

T

BO
O~

.f
 S
U~
SS
~B
ER
S-
--
-.

~O
.~
S

I E Ir

AU
TH

OR

E

] <
st
ri
ng
>

TI
TL

E

I
<s
tr
in
g~

E

PU
BL

IS
HE

R

I <~
tr
in
g>

Y
EA

R

l <
n

~
er

>

AC
CE

SS
IO

N
NU

MB
ER

um
be
r>

NA
ME

I I
 N
AM

E

<s
tr
in
g>

~
5
~
 ~
t
r
i
n
g
>

AD
DR

ES
S

AC
CE

SS
IO

N
'
NU

~B
ER

]
~
t
r
i
n
~

~
2
~

/ 6
=

em
pt

y
sy
mb
ol
.

ca
us
es

an

au

to
ma

ti
c

tr
an

si
ti

on

of

st
at
e.

IU
BD
IA
GR
AM
S

:
<s

tr
in

g~

~h
ar
oc
te
r>

<d
ig
it
> [

<n
~e
~>

~
Ch
ar
ac
te
r>

sp
ac
e

p
a
c
e

638

Figure 5 Correspondence between states of Figure 2, and Menus and forms of Tables

1 & 2

MENU/FOP~ STATES

i

MENU 1

MENU 2

MENU 3

FORM 1

FORM 2

FORM 3

1

2

6

7 to 17

8 to 22

23 to 27

Hence a possible scenario for the user of our system is as in Figure 6.

It is very easy to arrange that continuations such as those of Figure 6 can be made.

Details will depend upon the particular terminal. There is a cost in software, for

we have to be able to parse strings new.

In general, to allow user shortcuts, we must build a generator/parser embodying the

notion of state. In any particular state, a menu or form is displayed to prompt the

user for the next symbol to be generated, the next state transition to be made. Op-

tionally, the user can input a sequence of symbols to skip a few menus or forms, dri-

ving the system through several states as the symbol sequence is parsed; in the state

finally arrived at, the next menu or form is displayed for the user to select the next

symbol to be generated.

Note that the idea here of typing in the next few symbols is very similar to the idea

of keying ahead which is possible in some systems (eg. IBM VM/CMS) though these syst-

ems still blindly go through the prompts and menus even though these should not be

necessary. A limited form of command/menu alternatives is also available in some

systems. (eg. DEC's PDP-II IAS).

This idea of switching freely between programming language and dialogue can be com-

bined with the established ideas of abbreviations, MACROs and HELP commands to provide

a very adaptable dialogue. MACROs and abbreviations enable further speed-up at the

programming language end, while HELP provides extra assistance at the menu and form

end. We then see two modes of use of the interaction system as follows:

Naive user

Basic mode - dialogue of menus and forms. If get stuck - request HELP to obtain

further information about response expected. If become fa~liar with part of dialo-

gue - anticipate the following questions and revert to related programming language.

Use abbreviations and MACROs if these are known.

639

Figure 6 Possible Scenario for Use of the system with user short cuts

USER ACTION

signs on

Selects UPDATE

Selects INSERT and

continues with LOANS
NAME 'JONES'

Completes form with

ACCESSION-NUMBER

103X

Selects number

Selects 1

Selects 0, etc.

Selects space to

complete form and

dialogue

SYSTEM RESPONSE

Menu l, in state 1

Menu 2, in state 2

Form 3 partially

completed with

NAME 'JONES', in
state 25

Detects error, in

state 26 and reco-

vers to prompt
user with ? or

number

Menu 0,1,2,3,4,5,

6,7,8,9, in state

26/3.1/4.1

Menu 0,1,2,3,4,5,

6,7,8,9,Sp in

state 26/3.2/4.1

cycles in state
26/3.2/4.1 until

space input

In State 28

system makes

INSERTion reque-
sted, and
returns to state

1 for a new
dialogue

Experienced user

Basic mode - programming language. If get stuck, with partially completed command

or statement - system automatically throws up a menu or form to assist continuation.

As gain experience - use abbreviations and other short forms, and where appropriate,

define MACROs to further reduce keying effort, and thus speed-up communication.

Note that these "modes" are modes of user behaviour and not modes of the computer

system. MACROs could be invoked directly from the dialogue, and requests for HELP

oould be made as part of a programming language style command.

Finally, a formal remark about the scope of this technique. Figure 4 is a simple fini-

te state diagram for a finite state machine. We could draw this diagram because the

language concerned was regular (6,8). For context-free languages, such diagrams

become more complex, either becoming ~ND/OR graphs (7), or more usefully becoming

state transition networks (14) which are similar to our Figure 4 but allow recursive

sub-diagrams. Thus with context-free languages the notion of state becomes more

640

complex. This does not set a limit on the computer's capabilities, but could set a

limit on the user. During a dialogue, a user has to keep track of where his dialogue

is taking him. With complex languages, especially of a context-free nature, we may

be leading him into trouble.

5 ERROR RECOVERY

At any time, the system may discover an errorr or the user on inspecting his dialogue

so far may discover he has made a mistake. In both cases, there is a need to be able

to backtrack to an earlier point in the dialogue to recover from the error.

The very simplest form of recovery available to the user is the editing of a response

prior to its"transmission" to the computer. This editing could be local in the hard-

ware of the terminal, Or it could involve software; transmission could be simply the

transmission Of information from terminal to computer, or it could be by software

directing the message to the segment of software that decodes commands. The act of

transmission is a commitment by the user that the message transmitted is intended,

and recovery after this is more complex. The user requires an ESCAPE or CANCEL key,

to stop the processing he has initiated. The CANCEL could CANCEL the complete comm-

and, returning the user to the base state of waiting-for-a-new-command, or it could

cancel just the last fragment of the con~nand, with the user having to CANCEL many

times if he wishes to revert to base state. A nice feature here could be the ability

to edit the command or command-fragment just cancelled, and re-transmit this: this

requires that the computer recovers the command and sends it to the user who then

edits it using the same mechanisms as if it were an original command.

For the computer, the backtracking requirement is much simpler than the error-recovery

requirement for batch compilation (6 ch 15) for it is not necessary to be able to

recover and continue syntax checking as in batch compilation.

Error recovery can be expensive in implementation (see Section 6), so one has to

seriously consider not supplying this - if the user makes mistakes, then he must live

with them, paying a penalty in delay or the need to undo the damage caused (eg. inco-

rrect update).

6 IMPLEMENTATION CONSIDERATIONS

The software to control a dialogue of menus and forms is closely related to the soft-

ware for compilation/interpretation. Both kinds of software must have the language

syntax incorporated either in the code or in a table.

In a compiler, the syntax is used for parsing - the user supplies a complete sequence

of symbols, a "statement", which the software analyses using its syntax in order to

understand it: internally a parse tree or equivalent will be formed. In a dialogue

system the software uses the syntax generatively; to build up a statement, each time

in the syntax where a choiee is possible, this choice is given to the user (Section 3,

Rule 1 and Rule 3). As the sequence of menus and forms are worked through, the syst-

641

em builds up a complete statement of what the users requirements are, performing ac-

tions on the users behalf as sufficient information is obtained. In the dialogue

system, parsing as such is not performed, but the progress of the dialogue must again

be recorded as a parse tree or equivalent.

It is then relatively easy to combine software for dialogue control and compilation/

interpretation. A single syntax table would be used, and this table would include

all syntax for the programming language together with all abbreviations and shorh

forms, and would include all menus and forms as appropriate together with any HELP

text. This syntax description would not necessarily be much larger than that requi-

red separately for dialogue control and compilation, since the menus and forms could

be directly derived from the language syntax, and HELP text could be shared so as to

satisfy several needs.

Error recovery requires a lot of software support. The easy part is the backtracking

through the states to an earlier position in the dialogue: this requires only a suita-

ble representation of the syntax, and the actual command being recovered from. The

difficult part comes in stopping any actions being undertaken by the computer (eg.

lengthy calculations or listings), and in undoing previous actions. Cancellation of

actions requires that the system is left in a tidy state, as if the action had never

happened. The most difficult part here is the undoing of "updates": a solution

here resides in the use of "spheres of recovery" (3,5) or equivalent. However, one

has to accept that recovery arbitrarily far back in time will not be possible because

of storage limitations and because some updates will already have been picked up and

used by other users.

From the preceding discussion, we see that the implementation of an interactive syst-

em allowing free movement between programming language and a dialogue of menus and

forms is more complex than the adoption of one single mode of interaction, but it is

not as expensive as implementing the two modes as separate and independent modes of

interaction.

It is worth commenting on Black's system (2). While this does not give the user the

flexibility we have been striving for, the software does contain interesting features.

During the dialogue, a "statement" of what the user has done is built up and can be

edited~ a command is code-generated for some other processor to execute.

7 CONCLUSIONS

This paper has shown that programming languages and man-computer dialogues are closely

related. Simple rules allow a programming language to be converted into a dialogue

of menus and forms, and vice versa. Section 2 showed a simple example of an inter-

active system with both styles of interface, and Section 3 showed rules of construc-

tion from one to the other. Given such rules of conversion, conventional syntactic

descriptions can be used for dialogue.

642

Having shown the relationship between programming language and dialogue, the next step

in sections 4, 5 and 6 was to show how, within a single system, the user could shift

freely from programming language use of the system to a dialogue of menus and forms,

and back again. Traditional aids such as abbreviations, HELP, MACROs could be inclu-

ded to give a very flexible system capable of accor~nodating many levels of competence

in their users. This facility has a cost in software which is comparatively small -

the question is, are the benefits worth the cost involved ? For specialised systems

like airline reservations, the answer is surely no, but for systems like management

information systems where the user population may be very varied, the answer must Sur-

ely be yes.

8 REFERENCES

i. Becik H., Bjorner D., Henhape ~ W., Jones C., and Lucas P. "A Formal Definition of
a PL/I subset" IBM Vienna Labs, report TR 25.139.

2. Black J.L. "A general pl~pose dialogue processor" National Computer Conference,

1977. pp 397-408.
3. Bjork L.A. "Recovery Scenario for a DB/DC System" ACM 1973 Proceedings Vol. 28,

pp 142-147.
4. Date C.J. "An Introduction to Database Systems" Addison - Wesley 1975.
5. Davies C.T. "Recovery Semantics for a DB/DC System" ACM 1973 Proceedings Vol 28,

pp 136-141.
6. Gries P. "Compiler Construction for Digital Computers" Wiley, N.Y. 1971.
7. Hall P.A.V. "Equivalence between AND/OR Graphs and Context~Free Gralmnars" Comm.

A.C.M. July 1973, pp 444-445.
8. H opcroft J. and Ullman J. "Formal Languages and Their Relation to Automata" Addi-

son-Wesley, 1969.
9. Infotech "Interactive Computing" State of the Art Report i0, Infotech 1972.
i0. Mar~in J. "Design of Man-Computer Dialogues" Prentice Hall 1973.
ii. Martin J. "Computer Database Organisation" Prentice Hall, 1975.
12. Pritchard J.A.T. "Selection and Use of Terminals in On-Line Systems" National

Computing Centre 1974.
13. Watson R.W. "User Interface Design Issues for a Large Interactive Systex~" Procee-

dings of National Computer Conference 1976, pp 357-364.
14. Wood W.A. "Transition Network Grammars for Natural Language" Communications of

A.C.M. Vol. 13, No. i0, 1970, pp 591-606.
15. Zloof M.N. "Query be Example" Proceedings of National Computer CQnference 1975,

pp 431-438J

