
" q " " 9 How Hard Is Compiler Code Generation.

Alfred V. Aho and Ravi Sethi
Bell Laboratories

Murray Hill, New Jersey

1. Introduction

Over the past two decades great strides have been made in understanding how
to design lexical and syntactic analyzers for programming-language compilers.
Theory and practice have proceeded to the point where usable lexical and syntactic
analyzers can be generated automatically from notations based on regular expres-
sions and context-free grammars [Aho and Ullman (1977), Johnson (1975), Lesk
(1975)].

Unfortunately, our understanding of code generation has not kept pace with
the developments in the syntactic domain. Recently, however, a number of
theoretical results have been obtained which suggest how well and how extensively
code generation can be automated. This paper summarizes these results and
discusses the problems that still remain to be solved.

2. The Problem

A program in a high-levei language, by its very nature, does not specify the
routine, hardware-specific computations needed to implement the program on a
given machine; it is the function of the compiler to supply these details. In
translating a source program into machine language, many compilers first translate
the source program into an intermediate form, which is then subsequently
transformed into the final object program. This paper discusses some of the
difficulties of translating the intermediate-language program into machine code.

Intermediate Code

We assume that an intermediate program is a sequence of primitive statements
such as:

A:--- Bop C
A : - uop C
A:= B
A:= B[C]
A[B]:= C
return A
goto L
ff (condition) goto L

where condition is a Boolean variable, or a simple relational expression of the form
A relop B.

- 2 -

The intermediate code represents a flow graph such as the one in Fig. 2.1,
where each node represents a straight-line (basic) bIock--a sequence of statements
in which control enters at the top and leaves at the bottom. Thus a branch state-
ment can occur only at the end of a basic block.

start: j :~- 0 B1
term : = 1
exp := 1
goto test

test: I if (term ~ EPS) goto done [B2

j : = j + l
t : = z/j
term :---- term • t
exp := exp + term
goto test

)

B3 done :~re turn(exp) [B 4

Fig. 2.1. Flow graph for a program computing e z, z>~0, using

Z Z 2
e Z = l + - ~ - ! + - ~ (+ + . . .

EPS is some constant to be specified.

Each basic block in a flow graph can be represented by a dag (directed acyclic
graph) in which each interior node represents an operation and each leaf represents
an initial value [Aho and Ullman (1972)]. A dag represents the set of expressions
computed in a basic block, making explicit the partial order that must be satisfied
by the source program. A compiler is free to evaluate the expressions in a basic
block in any order consonant with this partial order. Unconditional gotos are not
represented in the dag, and only the condition of a conditional goto is represented.
The dag for block B3 from Fig. 2.1 is shown in Fig. 2.2. This dag happens to be a
tree

The overall problem of code generation is to start with a flow graph and con-
struct a machine-language program. We would like the resulting machine-language
program to be optimal, but even if we qualify the word "optimal" suitably, we are
far from being able to solve the overall problem completely. Some of the
difficulties arise from the fact that generating optimal code from dags is an NP-
complete problem for any realistic machine. Additional difficulties arise from the
fact that target machines often have special hardware features that are hard to han-
dle analytically.

~ 3 o

t/I+-.,.
exp • / / 1

term

Fig. 2.2. The dag for the expression
exp + term • (z / (j + l)) .

Machine Models

A variety of machine models have been considered in the literature. Here we
shall consider only the register-machine model and provide references for some of
the other models. An N-register machine consists of a sequence of memory loca-
tions m0, ml in which values can be stored, and a set of registers
r0, rl rN-1 in which all computations are performed. The following types of
instructions are available:

1. LOAD r, m
2. STORE r, m
3. r . ' - r o p m
4. r * - - r o p r '

Here, r, r ' a re registers, m is a memory location or literal, and op is a machine-code
operation.

Example 2.1. The following register-machine program computes the tree of
Fig. 2.2.

1. LOAD rl, j
2. rl *-- ri + 1
3. LOAD r2, z
4. r2 *-- r2 / rl
5. LOAD r b term
6. r 1 *- r 1 * r 2
7. LOAD r2, exp
8. r2 *-- r2 + rl

Variations on the above instructions are possible.
instructions of the form

For example, we might have

r, " - rj op ri, or
rj ~--- rj op r~

Register machines have been considered in a number of papers, including Ershov

~ 4 -

[1958], Anderson [1964], Nakata [1967], Redziejowski [1969], Sethi and Ullman
[1970], Chroust [1971], Schneider [1971], Wasilew [1971], Beatty [1972], Stock-
hausen [1973], Aho and Johnson [19761 consider a class of machines that includes
these models.

Another popular machine model is the stack machine, considered by Bruno
and Lassagne [1975], and by Prabhala and Sethi [1977]. Finally, register-machine
models in which each value may occupy either a one or two registers are considered
by Aho, Johnson, and Ullman [1977a].

Some Questions
No matter what machine model is used, a number of fundamental questions

arise. Here are a few that have received some theoretical attention.

1. Automatic code generation. Devise an algorithm that takes as input a
description of a machine and delivers as output a good code generator for that
machine. Although a number of preliminary reports have been issued on this sub-
ject [Miller (1970), Donegan (1973), Newcomer (1975)], practical automatic code
generation is still beyond our present capabilities, We are much better prepared for
the following:

2. Automatic code generation from expression trees. For expression trees we can
generate optimal code for certain classes of machines. However, even for this res-
tricted problem we have trouble generating optimal code for more complicated
machines, such as even-odd register-pair machines which require double-length
values to reside in even-odd register pairs.

3. Common subexpresswns. One code-improvement technique is to identify
common computations so they need to be performed only once. This process can
complicate the process of code generation in that if common subexpressions in
expression trees are merged to give dags, then generation of optimal code becomes
an NP-complete problem on typical machines.

4. Code generation in the presence of flow of control. Good code generation
requires knowing how to properly allocate machine resources during a computation.
Assignment of registers to hold frequently-accessed values is one example of this
kind of resource allocation problem. Since virtually all programs spend most of
their time in loops, knowing the looping structure of a program is useful. A
number of code-generation problems are concerned with the detection of loops in
programs and the assignment of registers across loops.

5. What is the best machine from a code-generation stan@oint? This is perhaps
the most interesting question of all. Given a programming language, how do we
design a machine for which we can generate efficient code efficiently? Notice that
there are two parts to this problem. We want the code generator to produce object
code that utilizes the target machine in an efficient manner. We also want the code
generator itself to be efficient. Both questions have received relatively little atten-
tion.

- 5 -

3. Expression Trees

Consider, for the moment, an intermediate language in which every value can
be held in a single register and every operator can be executed by a machine opera-
tion code. For such expression ~rees we can generate optimal code for register
machines in time linearly proportional to the size (number of nodes) of the tree.

Consider the tree in Fig. 3.l. Once we bring a value from, say, the subtree
for y into a register, then we may as well continue working on the subtree for y
until a store occurs.

y z

Fig. 3.1. On a register machine, if we compute the
subtree for y using m registers, hold the value of y,

and then compute z, we need max(m, n+l) registers.

For a large class of machine models Aho and Johnson [1976] prove a
"normal-form theorem" to the effect that there is an optimal program which com-
putes an entire subtree of a node before starting work on another subtree of that
node.

More precisely, a program P = PaP 2 . . . PkQ, is in normal form if P has no
"useless" instructions, and

(i) STORE's occur exactly at the end of each of the program fragments
P1,P2 Pk, and all instructions in Pi compute portions of the subtree for the
node stored by the last instruction in P~.

(ii) Within P~ and Q the instructions for computing any subtree are contiguous.

In Fig. 3.1 let m and n be the least number of registers required to compute
the subtrees for y and z, respectively. From the normal-form theorem, we know
that we can compute either y before z or z before y in an optimal program. Ershov
[1958] notes that we need max(re, n) registers for x if m;~n and m+l registers for
x if m=n. (Nakata [1967] has a similar observation; Redziejowski [1969] supplies a
proof.) Basically, there are two possibilities for computing the subtrees of x and we
must consider both of them.

We can label each node with an integer which gives the least number of regis-
ters required to compute the node using a simple N-register machine having LOAD,
STORE, and the following instructions

r ~ - r o p m
ri "-- rj op rk

(It is important to note that while the right operand may be in a memory location,

- 6 ~

the left operand must be in a register.) The labeling algorithm proceeds as follows:
Label left leaves by 1 and right leaves by 0. For a nonleaf node the label is the
greater of the labels of its children if these labels are unequal, and one greater than
the label of its children otherwise.

Incidentally, on most machines, if we computer first one subtree then the
other, we are treating the registers as a stack. Prabhala and Sethi [1977] show that
the labeling scheme can be parameterized to work over a class of stack machines.

What to Store?

While it is relatively easy to determine the minimal number of registers
needed to compute a node, it is not always obvious what should be done when we
run out of registers. Clearly some node has to be stored, but which one?

The Dynamic Programming Algorithm

A general technique for finding optimal programs, including nodes to be
stored, can be based on dynamic programming [Aho and Johnson (1976)]. This
technique is applicable to a wide class of register machines in which each instruc-
tion is of the form r *-- E, where E is some expression in which each leaf refers to
a register or to a memory location. A typical example of such an instruction is
r ~-- r + ind(m) which, graphically depicted, is:

r * ' - r ind

I
m

This instruction results in the contents of memory location m' being added to regis-
ter r, where m' is the value contained in location m Instructions such as
ri '-'- ri + rj and r *-- r + m also fit this model.

For the tree in Fig. 2.2 the last instruction can be r~ *-- r~ + rj or r ~ r + m,

or any other instruction with + at the root that "covers" the tree of Fig. 3.2 An
instruction r ,--- E is said to c o v e r a tree T if by pruning some of the subtrees of T
we get a tree differing from E at the leaves only. The instruction r *-- r + m covers
the tree in Fig. 2.2 The instruction also specifies that the left son of the root should
appear in a register and the right son should appear in memory. With instruction
r~ *-- r~ + rj, which also covers the tree, the left and right sons of the root should
both appear in registers.

We can generate an optimal program by considering all possibilities systemati-
cally. Look at all instructions that cover a tree. Each instruction leaves us with a
set of subtrees that have to be computed into registers or memory as specified by
the instruction.

Dynamic programming allows us to check all the possibilities mentioned in
the above paragraph. Working up from the leaves, for each node n we determine
the minimum cost of computing the node into a register, using i registers, or into
memory using all registers. For instruction r ,-- E, match the root of E with the

- 7 -

subtree at node n, looking for subtrees that match the leaves of E. From the
normal-form theorem any subtrees matching leaves labeled m in E can be precom-
puted into memory using all registers for the computation. Let the remaining sub-
trees be Sl, s2 s~. These subtrees must be computed into registers.

For all permutations ~- of 1,2 j, sum the cost of computing s,,o) with i
registers, s~(2~ with i -1 registers, and so on. Picking the cost for the cheapest per-
mutation gives us the least cost for using r "-- E to compute node n. Picking the
cheapest instruction among all instructions covering the subtree at node n, we can
find the least cost for computing node n with i registers.

Treating the number of registers and the number of instructions as a constant,
the amount of work done by the dynamic programming approach is linear in the
number of nodes in the tree. The constant of proportionality depends on the set of
instructions.

The advantage of the dynamic programming algorithm is that it can be used as
a universal code generation technique; it can be used to produce optimal code for
any machine in which all registers are interchangeable. (Knuth [1977] provides a
generalization to classes of symmetric registers.) The disadvantage is that the con-
stant of proportionality can be high and, more seriously, that it cannot handle
noninterchangeable registers, such as even-odd register pairs.

An Algorithm for Simple Register Machines
If we are given the instruction repertoire of a machine in advance, we may be

able to significantly reduce the amount of time needed to generate optimal code.
By way of example, consider a simple N-register machine with LOAD, STORE, and
instructions of the form:

r * - - r o p m

ri ' - - rj op r~

Sethi and Ullman [1970] show how an integer label, giving the number of registers
needed to compute the node without stores, can be used to locate nodes to be
stored. The idea is to find the lowest node x such that left son y and right son z of
x both require all N registers. Precompute the right subtree for z using all N regis-
ters. Form a new tree T' by replacing node z by a leaf. Repeat the process on T'.
This procedure will construct optimal code for all trees on the above machine in
linear time.

Once we have a procedure for generating code as above we can take advantage
of algebraic laws to reduce the "cost" of a tree. Sethi and Ullman [1970] and
Beatty [1972] show how the usual algebraic laws like associativity and commuta-
tivity can be accommodated. The distributive law has not been handled adequately.

Bouncing
With the increasing use of small word-length machines, it is important to treat

efficiently multiple-precision quantities that take two or more registers. Unfor-
tunately, the normal-form theorem may not apply in this case, and an optimal pro-
gram can "'bounce" back and forth between subtrees of a node, computing a little

- 8 -

of each subtree on each bounce. The number of bounces depends on the form of
double-register instructions. For machines in which a double quantity can occupy
any pair of registers (the unrestricted register-pair machine) the number of bounces
in an optimal program can be limited to two, and a modified linear-time dynamic
programming algorithm can be developed. For even-odd register pair machines,
however, the number of bounces in an optimal program can be proportional to the
size of the tree, and no polynomial-time optimal code-generation algorithm is
known. We refer the reader to [Aho, Johnson, and Ullman (1977a)] for details.

4. Dags
When an expression contains common subexpressions, the dag for the expres-

sion will no longer be a tree, but will contain a shared node for each common
subexpression. Dags can be constructed relatively easily. In practice, the "value
number" method [Cocke and Schwartz (1970), Aho and Utlman (1972)] can con-
struct the dag for an expression in linear time on the average.

Height-One Dags
Although it is easy to construct a dag for an expression, generating optimal

code from a dag is considerably harder. Bruno and Sethi [1976] show that the
problem of generating optimal code from a dag for a one-register machine is NP-
complete. Aho, Johnson, and UUman [1977b] show that the problem remains NP-
complete even if the only sharing is at height-one nodes (nodes whose descendants
are leaves).

We can easily transform an instance of the well-known NP-complete problem,
feedback node set (FNS), to an instance of optimal code generation for one-register
machines. The FNS problem is: Given a directed graph (7, find a smallest set of
nodes F (a feedback node set) such that removing F from G eliminates all cycles
from G.

Given the instance G of FNS, we can construct a dag D representing an
expression to be evaluated as in Fig. 4.1. D has a height 1 node x0 for each node x
of G. At node x of G number all the edges leaving x in some order. If there are j
edges leaving x, construct a left chain xl , x2 xj, where x~-I is the left son of
x~, 1 ~< i ~<j. If the ith edge leaving x in G is (x, y) , then make Y0 a right son of
xi.

It can now be shown that we can construct a minimal feedback node set F for
G from an optimal program P for D, and conversely, thereby establishing that
optimal code generation is NP-complete.

- 9 ~

Graph G

b2 /

, / \ , / \
Corresponding dag D.

Fig. 4.1. Removing node b breaks all cycles in G.
Precomputing and storing node b0 in D results in an optimal program.

Infinite-Register Machines
The same proof technique can be used to show that even if the number of

registers is unlimited, optimal code generation remains NP-complete, That is, con-
sider a dag in which the only sharing is of leaves, which we assume are labeled by
register names rather than by memory locations. The only machine instructions are
of the form

ri '-- ri op r/
r~'-r/

Deciding an evaluation order for a dag in which the number of register copy
instructions is minimized is NP-comptete.

Heuristic Techniques
As with any NP-complete problem, there are two possible approaches to

finding reasonable solutions in practice:

I) Find heuristic techniques that give approximate, but not necessarily optimal,
answers.

2) Find useful special cases for which exact polynomial-time algorithms can be
found.

Both approaches have been used on the code-generation problem for dags.
One heuristic which is often used in practice [Waite (1974)] is to transform a dag

- 10 -

into a forest of trees in which each multiply-used interior node is made into a root.
Multiply-used leaves are treated as distinct nodes. Each tree in this forest can be
evaluated optimally and stored.

Another heuristic suggested for dags is the top-down greedy algorithm [Aho
and Ullman (1973), Aho, Johnson, and Ultman (1977b)]. Here a dag is partitioned
into a sequence of "left chains" (sequences of left children), which are evaluated
bottom-up. It can be shown that this approach never generates code that is more
than 3/2 times optimal.

As an example of a special case for which a polynomial-time algorithm can be
developed, for a one-register machine there is an algorithm that is linear in the size
of a dag and exponential only in the amount of sharing [Aho, Johnson, and Ullman
(1977b)].

Series-Parallel Graphs

Most of the dags that occur in practice have a fairly simple structure. Com-
plexity results that apply to all dags are therefore not necessarily applicable to dags
that appear in practice. A subclass of dags that may be more representative is the
class of series-parallel graphs (see Simon and Lee [1971] for a definition). Abdel
Wahab and Kameda [1977] consider a scheduling problem that is related to code
generation. Their results imply that the minimal number of registers needed to
compute a series-parallel graph can be found in O(nlogn) time. However, much
remains to be done to solve the code generation problem for series-parallel graphs.

Related Problems

Code generation is really one instance of a very general resource allocation
problem. Consider a pebble game defined as follows. We are given a dag D and a
supply of pebbles. The rules of the game are:

1) a pebble can always be placed on a leaf.

2) if all sons of a node x have pebbles on them, then a pebble can be placed on
node x.

3) a pebble can be removed from a node at any time.

Notice that the rules permit a pebble to be placed on a node more than once.
In the code-generation framework we place a pebble exactly once on each node.
We invite the reader to simulate the distinctions between registers and memory by
using pebbles of different colors.

The pebble game was used by Paterson and Hewitt [1970] and Walker and
Strong [1973] to study the connection between flowchart schemes and recursive
schemes. In a flowchart, the number of locations to which a computation can refer
is fixed. However, Paterson and Hewitt [1970] show that there exist recursive
schemes for which there is no bound on the number of locations that might be
referred to during the computation of the scheme, thereby establishing that there
are recursive schemes that are not flowchartable.

Hopcroft, Paul, and Valiant [1975] use pebble games to show that space is a
strictly more powerful resource than time for multitape Turing machines. Their

- t l -

basic idea is to represent a Turing machine computation taking time t by a dag D
whose size depends on t. They relate the number of pebbles needed by dag D to
the amount of space needed to perform the same Turing-machine computation.
Since a dag with n nodes can be pebbled using O(n/logn) pebbles~ it can be shown
that DTIME(tlogt) ~< DSPACE(t). Paul, Tarjan, and Celoni [1976] have shown
that there exist n-node dags for which O(n/logn) is a lower bound on the number
of pebbles needed. Most pebbling schemes that try to use few pebbles do a lot of
recomputation.

While we know that O(n/logn) pebbles are enough, Sethi [1975] shows that
it is at least NP-hard to determine if say k pebbles are enough. This problem is
widely suspected to be PSPACE-complete, but the proof is elusive.

Evidence that a lot of pebbles are needed to compute certain dogs is used by
Cook [1974] and Cook and Sethi [1976] to support Cook's conjecture that
O((logn) k) space, for any k, is not enough to recognize languages recognizable in
polynomial time.

5. Loops
So far we have considered only the evaluation of straight-line blocks. Once

we consider the evaluation of an entire flow graph, a host of additional questions
arise. Many of these problems concern loops. Since most programs spend most of
their time in relatively small portions of the code, it is reasonable to try to identify
these heavily-traveled regions (called the inner loops) of a program and to generate
as good code for these regions as possible.

We shall consider here the problem of how to assign values to registers across
loops (the register-assignment problem). Fortran H uses the rather simple technique
of noting which variables, constants, and base addresses are referenced most fre-
quently within a loop and assigning as many of them as possible to individual regis-
ters across the loop [Lowry and Medlock (1969)].

A common simplifying assumption made in the register-assignment problem
is to fix in advance the order of evaluation for the nodes of a dag. This order of
evaluation may well have been determined using the techniques discussed in the
last two sections. Beatty [1974] starts with such an evaluation order and partitions
the register-assignment problem into two phases. The first phase determines
whether a value should be in a register or in memory at any program point; the
second phase decides in which registers values are to reside. Day [1970], Harrison
[1975], Yhap [1975], and Kim and Tan [1976] investigate various aspects of the
register-assignment problem.

Returning to basic blocks, suppose that we are given an evaluation order for
the nodes of a basic block. How hard is it to find an optimal program that uses this
evaluation order? The answer to this question depends on the machine model.
Marill [1962] gives a simple algorithm that works for interchangeable registers.
Horowitz et al. [1966] minimize usage of index-registers--a problem that is
perhaps best viewed as a paging problem. At any time we may have at most M
pages in memory. The evaluation order specifies the order in which pages will be
referenced or changed. A page that is not changed need not be stored back into
memory. Horowitz et al. give an algorithm for minimizing the number of times a

page is loaded or stored. Luccio [1967] suggests improvements, but the overall
algorithm is still inherently exponential. Kennedy [1972] extends the results of
Horowitz et aL

If we change the cost criterion and do not differentiate between referencing or
changing a page, then Belady [1966] provides a linear algorithm: when necessary,
store the page whose next reference is furthest away.

To extend these register-assignment strategies to flow graphs, we run into the
problem of not knowing which branches will actually be taken. Beatty [1974]
describes one approach to this problem in which the number of intervening instruc-
tions between references is used in a heuristic.

6. Conclusions

In this paper we have considered only a small number of the many problems
that arise in the design of a code generator for a major programming language. We
have seen that some of the factors that affect the difficulty of generating good code
are the characteristics of the intermediate language and the register structure of the
underlying machine.

What of the Future?
An important side-effect of studying code generation is the insight it casts

upon machine design. We have seen that some language constructs are difficult to
implement efficiently even on the simplest of machines. We have also seen that
even expression trees are difficult to implement on certain kinds of register
machines.

It is quite apparent that it is much harder to generate good code for the com-
plicated machines currently used than the simple theoretical machines considered in
the literature. We suspect, therefore, that it will be a long while before we have
the understanding to design a universal code-generator generator that can deliver
production-quality code generators for the diverse machines available today.
Nevertheless, we feel that it is important to bring theory and practice closer
together. By developing more powerful theoretical tools and by carrying over some
of the attractive features of theoretical models into concrete machine designs, we
can foresee new machine designs for which it will be easier to devise good code
generators automatically. It is this goal that we hope will be nourished by a study
of code generation.

Bibliography

Abdel-Wahab, H. M., and T. Kameda [1977]. Scheduling to minimize maximum
cumulative cost subject to series-parallel precedence constraints, Operations
Research, to appear.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman [1974]. The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass.

ot3~

Aho, A. V., and S. C. Johnson [1976]. Optimal code generation for expression
trees, J. ACM23:3, 488~501.

Aho, A. V., S. C. Johnson, and J. D. Ullman [1977a]. Code generation for
machines with multiregister c~perations, ['roe. Fourth ACM Symposium on Princi-
ples of Programming Languages, pp. 21-28.

Aho, A. V., S. C. Johnson, and Jo D. Utlman [1977b]. Code generation for expres-
sions with common subexpressions, J. ACM24:l, 146-160.

Aho, A. V., and J. D. Uttman [1972]. Optimization of straight-line programs,
SIAM J. Computing l:l , 1-19.

Aho, A. V., and J. D. Ullman [1973]. The Theory of Parsing, Translation, and Com-
piling. Vol. 2: Compiling, Prentice-Hall, Englewood Cliffs, N. J.

Aho, A. V., and J. D. Utlman [1977]. Principles of Compiler Design, Addison-
Wesley, Reading, Mass.

Anderson, J. P. [1964]. A note on some compiling algorithms. Comm. ACM7:3,
149-150.

Beatty, J. C. [1972]. An axiomatic approach to code optimization for expressions,
J. ACM19:4, 613-640. Errata, 20:1 (Jan. 1973) 188, and 20:3 (July 1973) 538.

Beatty, J. C. [1974]. Register assignment algorithm for generation of highly optim-
ized object code, IBMJ. Res. Develop. 18:1, 20-39.

Belady, L. A. [1966]. A study of replacement algorithms for a virtual storage com-
puter, IBM Systems J. 5:2, 78-101.

Bruno, J., and T. Lassagne [t975]. The generation of optimal code for stack
machines, J. ACM22:3, 382-396.

Bruno, J., and R. Sethi [1976]. Code generation for a one-register machine, J.
ACM23:3, 502-510.

Chroust, G. [1971]. Scope conserving expression evaluation, IFIP71, TA-3, 178-
182.

Cocke, J., and J. T. Schwartz [1970]. Programming Languages and Their Compilers,
Preliminary Notes, Second Revised Version, Courant Institute of Mathematical
Sciences, New York.

Cook, S. A. [1974]. An observation on time-storage tradeoff, JCSS9:3, 308-316.

Cook, S. A., and R. Sethi [1976]. Storage requirements for deterministic polyno-
mial time recognizable languages, JCSS 13:1, 25-37.

Day, W. H. E. [1970]. Compiler assignment of data items to registers, IBMSystems
J. 9:4, 281-317.

Donegan, M. K. [1973]. An approach to the automatic generation of code genera-
tors, Laboratory for Computer Science and Engineering, Rice University, Hous-
ton, Texas.

- t 4 -

Ershov, A. P. {1958]. On programming of arithmetic operations, Comm. ACMI:8,
3-6.

Harrison, W. [1975]. A class of register allocation algorithms, RC-5342, IBM Tho-
mas J. Watson Research Center, Yorktown Heights, New York.

Hopcroft, J. E., W. J. Paul, and L. G. Valiant [1975]. On time versus space and
related problems, Proc. 16th Annual Symposium on Foundations of Computer Sci-
ence, pp. 57-64.

Horowitz, L. P., R. M. Karp, R. E. Miller, and S. Winograd [1966]. Index register
allocation, J. ACM13:I, 43-61.

Johnson, S. C. [1975]. YACC-yet another compiler-compiler, CSTR-32, Bell
Laboratories, Murray Hill, N. J.

Kennedy, K. W. [1972]. Index register allocation in straight-line code and simple
loops, in Rustin, R. (ed.) Design and Optimization of Compilers, Prentice-Hall,
Englewood Cliffs, N. J., pp. 51-64.

Kim, J., and C. J. Tan [1976]. Register assignment algorithm - II, Report RC
6262, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

Knuth, D. E. [1977]. A generalization of Dijkstra's algorithm, Dept. of Computer
Science, Stanford University.

Lesk, M. E. [1975]. LEX--a lexical analyzer generator, CSTR-39, Bell Labora-
tories, Murray Hill, N. J.

Lowry, E. S., and C. W. Medlock [1969]. Object code optimization, Comm. ACM
12:1, 13-22.

Luccio, F. [1969] A comment on index register allocation, Comm. ACMIO:9, 572-
574.

Marrill, T. [1962]. Computational chains and the simplification of computer pro-
grams, IRE Trans. on Electronic Computers, EC-11:2, 173-t80,

Miller, P. L. [1970]. Automatic Code-Generation from an Object-Machine
Description, MAC TM 18, Massachusetts Institute of Technology, Cambridge,
Mass.

Nakata, I. [1967]. On compiling algorithms for arithmetic expressions, Comm.
ACM IO:8, 492-494.

Newcomer, J. M. [1975]. Machine-independent generation of optimal local code,
Ph.D. Thesis, Computer Science Department, Carnegie-Mellon University.

Paterson, M. S., and C. E. Hewitt [1970]. Comparative schematotogy, Record of
Project MAC Conference on Concurrent Systems and Parallel Computation, pp.
119-128.

Paul, W. J., R. E. Tarjan, and J. R. Celoni [1976]. Space bounds for a game on
graphs, Proc. 8th Annual ACM Symposium on Theory of Computing, pp. 149-160.

Prabhala, B., and R. Sethi [19771. A comparison of instruction sets for stack
machines, Proc. 9th Annual Symposium ore Theory of Computing.

Redziejowski, R. R. [1969]. On arithmetic expressions and trees, Comm. ACM
12:2, 81-84.

Schneider, V. B. [1971]. On the number of registers needed to evaluate arithmetic
expressions, BITll : I , 84-93.

Sethi, R. [1975]. Complete register allocation problems, SIAM J. Computing 4:3,
226-248.

Sethi, R., and J. D. Ullman [19'70]. The generation of optimal code for arithmetic
expressions, J. ACM17:4, 715-728.

Simon, R., and R. C. T. Lee [19711. On the optimal solution to AND/OR series-
parallel graphs, J. ACM18:3, 354-372.

Stockhausen, P. F. [1973]. Adapting optimal code generation for arithmetic expres-
sions to the instruction sets available on present-day computers, Comm. ACM
16:6, 353-354. Errata, 17:10 (Oct. 1974) 591.

Ullman, J. D. [1976]. The complexity of code generation, in J. F. Traub (ed.)
Algorithms and Complexi(y, Academic Press, New York, pp. 53-70.

Waite, W. M. [19741. Optimization, in Bauer and Eickel (eds.) Compiler Construc-
tion: An Advanced Course, Springer-Verlag, New York, pp. 549-602.

Walker, S. A., and H. R. Strong [t973]. Characterization of flowchartable recur-
sions, JCSS 7:4, 404-447.

Wasilew, S. G. [1971]. A compiler-writing system with optimization capabilities for
complex order structures, Ph .D. Thesis, Northwestern University, Evanston,
Ill.

Yhap, E. F. [19751. General register assignment in presence of data flow, RC-
5645, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

