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1. Introduction 

Over the past two decades great strides have been made in understanding how 
to design lexical and syntactic analyzers for programming-language compilers. 
Theory and practice have proceeded to the point where usable lexical and syntactic 
analyzers can be generated automatically from notations based on regular expres- 
sions and context-free grammars [Aho and Ullman (1977), Johnson (1975), Lesk 
(1975)]. 

Unfortunately, our understanding of code generation has not kept pace with 
the developments in the syntactic domain. Recently, however, a number of 
theoretical results have been obtained which suggest how well and how extensively 
code generation can be automated. This paper summarizes these results and 
discusses the problems that still remain to be solved. 

2. The Problem 

A program in a high-levei language, by its very nature, does not specify the 
routine, hardware-specific computations needed to implement the program on a 
given machine; it is the function of the compiler to supply these details. In 
translating a source program into machine language, many compilers first translate 
the source program into an intermediate form, which is then subsequently 
transformed into the final object program. This paper discusses some of the 
difficulties of translating the intermediate-language program into machine code. 

Intermediate Code 

We assume that an intermediate program is a sequence of primitive statements 
such as: 

A:--- Bop C 
A : -  uop C 
A:= B 
A:= B[C] 
A[B]:= C 
return A 
goto L 
ff (condition) goto L 

where condition is a Boolean variable, or a simple relational expression of the form 
A relop B. 
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The intermediate code represents a flow graph such as the one in Fig. 2.1, 
where each node represents a straight-line (basic) bIock--a sequence of statements 
in which control enters at the top and leaves at the bottom. Thus a branch state- 
ment can occur only at the end of a basic block. 

start: j :~- 0 B1 
term : = 1 
exp := 1 
goto test 

test: I if (term ~ EPS) goto done [ B2 

j : = j + l  
t : =  z/j 
term :---- term • t 
exp := exp + term 
goto test 

) 

B3 done :~re turn(exp)  [ B 4 

Fig. 2.1. Flow graph for a program computing e z, z>~0, using 

Z Z 2 
e Z = l + - ~ - !  + - ~ ( +  + . . .  

EPS is some constant to be specified. 

Each basic block in a flow graph can be represented by a dag (directed acyclic 
graph) in which each interior node represents an operation and each leaf represents 
an initial value [Aho and Ullman (1972)]. A dag represents the set of expressions 
computed in a basic block, making explicit the partial order that must be satisfied 
by the source program. A compiler is free to evaluate the expressions in a basic 
block in any order consonant with this partial order. Unconditional gotos are not 
represented in the dag, and only the condition of a conditional goto is represented. 
The dag for block B3 from Fig. 2.1 is shown in Fig. 2.2. This dag happens to be a 
tree 

The overall problem of code generation is to start with a flow graph and con- 
struct a machine-language program. We would like the resulting machine-language 
program to be optimal, but even if we qualify the word "optimal" suitably, we are 
far from being able to solve the overall problem completely. Some of the 
difficulties arise from the fact that generating optimal code from dags is an NP- 
complete problem for any realistic machine. Additional difficulties arise from the 
fact that target machines often have special hardware features that are hard to han- 
dle analytically. 
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Fig. 2.2. The dag for the expression 
exp + term • ( z / ( j + l ) ) .  

Machine Models 

A variety of  machine models have been considered in the literature. Here we 
shall consider only the register-machine model  and provide references for some of 
the other models. An N-register machine consists of a sequence of memory loca- 
tions m0, ml . . . .  in which values can be stored, and a set of  registers 
r0, rl . . . . .  rN-1 in which all computations are performed. The following types of  
instructions are available: 

1. LOAD r, m 
2. STORE r, m 
3. r . ' - r o p m  
4. r * - - r o p r '  

Here, r, r ' a re  registers, m is a memory location or literal, and op is a machine-code 
operation. 

Example 2.1. The following register-machine program computes the tree of 
Fig. 2.2. 

1. LOAD rl, j 
2. rl *-- ri + 1 
3. LOAD r2, z 
4. r2 *-- r2 / rl 
5. LOAD r b  term 
6. r 1 *-  r 1 * r 2 
7. LOAD r2, exp 
8. r2 *-- r2 + rl 

Variations on the above instructions are possible. 
instructions of  the form 

For example, we might have 

r, " -  rj op ri, or 
rj ~--- rj op r~ 

Register machines have been considered in a number of papers, including Ershov 
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[1958], Anderson [1964], Nakata [1967], Redziejowski [1969], Sethi and Ullman 
[1970], Chroust [1971], Schneider [1971], Wasilew [1971], Beatty [1972], Stock- 
hausen [1973], Aho and Johnson [19761 consider a class of machines that includes 
these models. 

Another popular machine model is the stack machine, considered by Bruno 
and Lassagne [1975], and by Prabhala and Sethi [1977]. Finally, register-machine 
models in which each value may occupy either a one or two registers are considered 
by Aho, Johnson, and Ullman [1977a]. 

Some Questions 
No matter what machine model is used, a number of fundamental questions 

arise. Here are a few that have received some theoretical attention. 

1. Automatic code generation. Devise an algorithm that takes as input a 
description of a machine and delivers as output a good code generator for that 
machine. Although a number of preliminary reports have been issued on this sub- 
ject [Miller (1970), Donegan (1973), Newcomer (1975)], practical automatic code 
generation is still beyond our present capabilities, We are much better prepared for 
the following: 

2. Automatic code generation from expression trees. For expression trees we can 
generate optimal code for certain classes of machines. However, even for this res- 
tricted problem we have trouble generating optimal code for more complicated 
machines, such as even-odd register-pair machines which require double-length 
values to reside in even-odd register pairs. 

3. Common subexpresswns. One code-improvement technique is to identify 
common computations so they need to be performed only once. This process can 
complicate the process of code generation in that if common subexpressions in 
expression trees are merged to give dags, then generation of optimal code becomes 
an NP-complete problem on typical machines. 

4. Code generation in the presence of  flow of control. Good code generation 
requires knowing how to properly allocate machine resources during a computation. 
Assignment of registers to hold frequently-accessed values is one example of this 
kind of resource allocation problem. Since virtually all programs spend most of 
their time in loops, knowing the looping structure of a program is useful. A 
number of code-generation problems are concerned with the detection of loops in 
programs and the assignment of registers across loops. 

5. What is the best machine from a code-generation stan@oint? This is perhaps 
the most interesting question of all. Given a programming language, how do we 
design a machine for which we can generate efficient code efficiently? Notice that 
there are two parts to this problem. We want the code generator to produce object 
code that utilizes the target machine in an efficient manner. We also want the code 
generator itself to be efficient. Both questions have received relatively little atten- 
tion. 
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3. Expression Trees 

Consider, for the moment, an intermediate language in which every value can 
be held in a single register and every operator can be executed by a machine opera- 
tion code. For such expression ~rees we can generate optimal code for register 
machines in time linearly proportional to the size (number of nodes) of the tree. 

Consider the tree in Fig. 3.l. Once we bring a value from, say, the subtree 
for y into a register, then we may as well continue working on the subtree for y 
until a store occurs. 

y z 

Fig. 3.1. On a register machine, if we compute the 
subtree for y using m registers, hold the value of y, 

and then compute z, we need max(m, n+l )  registers. 

For a large class of machine models Aho and Johnson [1976] prove a 
"normal-form theorem" to the effect that there is an optimal program which com- 
putes an entire subtree of a node before starting work on another subtree of that 
node. 

More precisely, a program P = PaP 2 . . .  PkQ, is in normal form if P has no 
"useless" instructions, and 

(i) STORE's occur exactly at the end of each of the program fragments 
P1,P2 ..... Pk, and all instructions in Pi compute portions of the subtree for the 
node stored by the last instruction in P~. 

(ii) Within P~ and Q the instructions for computing any subtree are contiguous. 

In Fig. 3.1 let m and n be the least number of registers required to compute 
the subtrees for y and z, respectively. From the normal-form theorem, we know 
that we can compute either y before z or z before y in an optimal program. Ershov 
[1958] notes that we need max(re, n) registers for x if m;~n and m+l  registers for 
x if m=n. (Nakata [1967] has a similar observation; Redziejowski [1969] supplies a 
proof.) Basically, there are two possibilities for computing the subtrees of x and we 
must consider both of them. 

We can label each node with an integer which gives the least number of regis- 
ters required to compute the node using a simple N-register machine having LOAD, 
STORE, and the following instructions 

r ~ - r o p m  
ri "-- rj op rk 

(It is important to note that while the right operand may be in a memory location, 
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the left operand must be in a register.) The labeling algorithm proceeds as follows: 
Label left leaves by 1 and right leaves by 0. For a nonleaf node the label is the 
greater of the labels of its children if these labels are unequal, and one greater than 
the label of its children otherwise. 

Incidentally, on most machines, if we computer first one subtree then the 
other, we are treating the registers as a stack. Prabhala and Sethi [1977] show that 
the labeling scheme can be parameterized to work over a class of  stack machines. 

What to Store? 

While it is relatively easy to determine the minimal number of registers 
needed to compute a node, it is not always obvious what should be done when we 
run out of registers. Clearly some node has to be stored, but which one? 

The Dynamic Programming Algorithm 

A general technique for finding optimal programs, including nodes to be 
stored, can be based on dynamic programming [Aho and Johnson (1976)]. This 
technique is applicable to a wide class of register machines in which each instruc- 
tion is of  the form r *-- E, where E is some expression in which each leaf refers to 
a register or to a memory location. A typical example of  such an instruction is 
r ~-- r + ind(m) which, graphically depicted, is: 

r * ' -  r ind 

I 
m 

This instruction results in the contents of memory location m' being added to regis- 
ter r, where m' is the value contained in location m Instructions such as 
ri '-'- ri + rj and r *-- r + m also fit this model. 

For the tree in Fig. 2.2 the last instruction can be r~ *-- r~ + rj or r ~ r + m,  

or any other instruction with + at the root that "covers"  the tree of Fig. 3.2 An 
instruction r ,--- E is said to c o v e r  a tree T if by pruning some of the subtrees of T 
we get a tree differing from E at the leaves only. The instruction r *-- r + m covers 
the tree in Fig. 2.2 The instruction also specifies that the left son of  the root should 
appear in a register and the right son should appear in memory. With instruction 
r~ *-- r~ + rj, which also covers the tree, the left and right sons of the root should 
both appear in registers. 

We can generate an optimal program by considering all possibilities systemati- 
cally. Look at all instructions that cover a tree. Each instruction leaves us with a 
set of subtrees that have to be computed into registers or memory as specified by 
the instruction. 

Dynamic programming allows us to check all the possibilities mentioned in 
the above paragraph. Working up from the leaves, for each node n we determine 
the minimum cost of computing the node into a register, using i registers, or into 
memory using all registers. For instruction r ,-- E, match the root of E with the 
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subtree at node n, looking for subtrees that match the leaves of E. From the 
normal-form theorem any subtrees matching leaves labeled m in E can be precom- 
puted into memory using all registers for the computation. Let the remaining sub- 
trees be Sl, s2 . . . . .  s~. These subtrees must be computed into registers. 

For all permutations ~- of 1,2 . . . . .  j, sum the cost of computing s,,o) with i 
registers, s~(2~ with i -1 registers, and so on. Picking the cost for the cheapest per- 
mutation gives us the least cost for using r "-- E to compute node n. Picking the 
cheapest instruction among all instructions covering the subtree at node n, we can 
find the least cost for computing node n with i registers. 

Treating the number of registers and the number of instructions as a constant, 
the amount of work done by the dynamic programming approach is linear in the 
number of nodes in the tree. The constant of proportionality depends on the set of 
instructions. 

The advantage of the dynamic programming algorithm is that it can be used as 
a universal code generation technique; it can be used to produce optimal code for 
any machine in which all registers are interchangeable. (Knuth [1977] provides a 
generalization to classes of symmetric registers.) The disadvantage is that the con- 
stant of proportionality can be high and, more seriously, that it cannot handle 
noninterchangeable registers, such as even-odd register pairs. 

An Algorithm for Simple Register Machines 
If we are given the instruction repertoire of a machine in advance, we may be 

able to significantly reduce the amount of time needed to generate optimal code. 
By way of example, consider a simple N-register machine with LOAD, STORE, and 
instructions of the form: 

r * - - r o p m  

ri ' - -  rj op r~ 

Sethi and Ullman [1970] show how an integer label, giving the number of registers 
needed to compute the node without stores, can be used to locate nodes to be 
stored. The idea is to find the lowest node x such that left son y and right son z of 
x both require all N registers. Precompute the right subtree for z using all N regis- 
ters. Form a new tree T' by replacing node z by a leaf. Repeat the process on T'. 
This procedure will construct optimal code for all trees on the above machine in 
linear time. 

Once we have a procedure for generating code as above we can take advantage 
of algebraic laws to reduce the "cost" of a tree. Sethi and Ullman [1970] and 
Beatty [1972] show how the usual algebraic laws like associativity and commuta- 
tivity can be accommodated. The distributive law has not been handled adequately. 

Bouncing 
With the increasing use of small word-length machines, it is important to treat 

efficiently multiple-precision quantities that take two or more registers. Unfor- 
tunately, the normal-form theorem may not apply in this case, and an optimal pro- 
gram can "'bounce" back and forth between subtrees of a node, computing a little 
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of each subtree on each bounce. The number of bounces depends on the form of 
double-register instructions. For machines in which a double quantity can occupy 
any pair of registers (the unrestricted register-pair machine) the number of bounces 
in an optimal program can be limited to two, and a modified linear-time dynamic 
programming algorithm can be developed. For even-odd register pair machines, 
however, the number of bounces in an optimal program can be proportional to the 
size of the tree, and no polynomial-time optimal code-generation algorithm is 
known. We refer the reader to [Aho, Johnson, and Ullman (1977a)] for details. 

4. Dags 
When an expression contains common subexpressions, the dag for the expres- 

sion will no longer be a tree, but will contain a shared node for each common 
subexpression. Dags can be constructed relatively easily. In practice, the "value 
number" method [Cocke and Schwartz (1970), Aho and Utlman (1972)] can con- 
struct the dag for an expression in linear time on the average. 

Height-One Dags 
Although it is easy to construct a dag for an expression, generating optimal 

code from a dag is considerably harder. Bruno and Sethi [1976] show that the 
problem of generating optimal code from a dag for a one-register machine is NP- 
complete. Aho, Johnson, and UUman [1977b] show that the problem remains NP- 
complete even if the only sharing is at height-one nodes (nodes whose descendants 
are leaves). 

We can easily transform an instance of the well-known NP-complete problem, 
feedback node set (FNS), to an instance of optimal code generation for one-register 
machines. The FNS problem is: Given a directed graph (7, find a smallest set of 
nodes F (a feedback node set) such that removing F from G eliminates all cycles 
from G. 

Given the instance G of FNS, we can construct a dag D representing an 
expression to be evaluated as in Fig. 4.1. D has a height 1 node x0 for each node x 
of G. At node x of G number all the edges leaving x in some order. If there are j 
edges leaving x, construct a left chain xl ,  x2 . . . . .  xj, where x~-I is the left son of 
x~, 1 ~< i ~<j. If the ith edge leaving x in G is (x, y ) ,  then make Y0 a right son of 
xi. 

It can now be shown that we can construct a minimal feedback node set F for 
G from an optimal program P for D, and conversely, thereby establishing that 
optimal code generation is NP-complete. 
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Graph G 

b2 / 

, / \  , / \  
Corresponding dag D. 

Fig. 4.1. Removing node b breaks all cycles in G. 
Precomputing and storing node b0 in D results in an optimal program. 

Infinite-Register Machines 
The same proof technique can be used to show that even if the number of 

registers is unlimited, optimal code generation remains NP-complete, That is, con- 
sider a dag in which the only sharing is of leaves, which we assume are labeled by 
register names rather than by memory locations. The only machine instructions are 
of the form 

ri '-- ri op r/ 
r~'-r/ 

Deciding an evaluation order for a dag in which the number of register copy 
instructions is minimized is NP-comptete. 

Heuristic Techniques 
As with any NP-complete problem, there are two possible approaches to 

finding reasonable solutions in practice: 

I) Find heuristic techniques that give approximate, but not necessarily optimal, 
answers. 

2) Find useful special cases for which exact polynomial-time algorithms can be 
found. 

Both approaches have been used on the code-generation problem for dags. 
One heuristic which is often used in practice [Waite (1974)] is to transform a dag 
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into a forest of trees in which each multiply-used interior node is made into a root. 
Multiply-used leaves are treated as distinct nodes. Each tree in this forest can be 
evaluated optimally and stored. 

Another heuristic suggested for dags is the top-down greedy algorithm [Aho 
and Ullman (1973), Aho, Johnson, and Ultman (1977b)]. Here a dag is partitioned 
into a sequence of "left chains" (sequences of left children), which are evaluated 
bottom-up. It can be shown that this approach never generates code that is more 
than 3/2 times optimal. 

As an example of a special case for which a polynomial-time algorithm can be 
developed, for a one-register machine there is an algorithm that is linear in the size 
of a dag and exponential only in the amount of sharing [Aho, Johnson, and Ullman 
(1977b)]. 

Series-Parallel  Graphs 

Most of the dags that occur in practice have a fairly simple structure. Com- 
plexity results that apply to all dags are therefore not necessarily applicable to dags 
that appear in practice. A subclass of dags that may be more representative is the 
class of series-parallel graphs (see Simon and Lee [1971] for a definition). Abdel 
Wahab and Kameda [1977] consider a scheduling problem that is related to code 
generation. Their results imply that the minimal number of registers needed to 
compute a series-parallel graph can be found in O(nlogn) time. However, much 
remains to be done to solve the code generation problem for series-parallel graphs. 

Related Problems 

Code generation is really one instance of a very general resource allocation 
problem. Consider a pebble game defined as follows. We are given a dag D and a 
supply of pebbles. The rules of the game are: 

1) a pebble can always be placed on a leaf. 

2) if all sons of a node x have pebbles on them, then a pebble can be placed on 
node x. 

3) a pebble can be removed from a node at any time. 

Notice that the rules permit a pebble to be placed on a node more than once. 
In the code-generation framework we place a pebble exactly once on each node. 
We invite the reader to simulate the distinctions between registers and memory by 
using pebbles of different colors. 

The pebble game was used by Paterson and Hewitt [1970] and Walker and 
Strong [1973] to study the connection between flowchart schemes and recursive 
schemes. In a flowchart, the number of locations to which a computation can refer 
is fixed. However, Paterson and Hewitt [1970] show that there exist recursive 
schemes for which there is no bound on the number of locations that might be 
referred to during the computation of the scheme, thereby establishing that there 
are recursive schemes that are not flowchartable. 

Hopcroft, Paul, and Valiant [1975] use pebble games to show that space is a 
strictly more powerful resource than time for multitape Turing machines. Their 
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basic idea is to represent a Turing machine computation taking time t by a dag D 
whose size depends on t. They relate the number of pebbles needed by dag D to 
the amount of space needed to perform the same Turing-machine computation. 
Since a dag with n nodes can be pebbled using O(n/logn) pebbles~ it can be shown 
that DTIME(tlogt) ~< DSPACE(t). Paul, Tarjan, and Celoni [1976] have shown 
that there exist n-node dags for which O(n/logn) is a lower bound on the number 
of pebbles needed. Most pebbling schemes that try to use few pebbles do a lot of 
recomputation. 

While we know that O(n/logn) pebbles are enough, Sethi [1975] shows that 
it is at least NP-hard to determine if say k pebbles are enough. This problem is 
widely suspected to be PSPACE-complete, but the proof is elusive. 

Evidence that a lot of pebbles are needed to compute certain dogs is used by 
Cook [1974] and Cook and Sethi [1976] to support Cook's conjecture that 
O((logn) k) space, for any k, is not enough to recognize languages recognizable in 
polynomial time. 

5. Loops 
So far we have considered only the evaluation of straight-line blocks. Once 

we consider the evaluation of an entire flow graph, a host of additional questions 
arise. Many of these problems concern loops. Since most programs spend most of 
their time in relatively small portions of the code, it is reasonable to try to identify 
these heavily-traveled regions (called the inner loops) of a program and to generate 
as good code for these regions as possible. 

We shall consider here the problem of how to assign values to registers across 
loops (the register-assignment problem). Fortran H uses the rather simple technique 
of noting which variables, constants, and base addresses are referenced most fre- 
quently within a loop and assigning as many of them as possible to individual regis- 
ters across the loop [Lowry and Medlock (1969)]. 

A common simplifying assumption made in the register-assignment problem 
is to fix in advance the order of evaluation for the nodes of a dag. This order of 
evaluation may well have been determined using the techniques discussed in the 
last two sections. Beatty [1974] starts with such an evaluation order and partitions 
the register-assignment problem into two phases. The first phase determines 
whether a value should be in a register or in memory at any program point; the 
second phase decides in which registers values are to reside. Day [1970], Harrison 
[1975], Yhap [1975], and Kim and Tan [1976] investigate various aspects of the 
register-assignment problem. 

Returning to basic blocks, suppose that we are given an evaluation order for 
the nodes of a basic block. How hard is it to find an optimal program that uses this 
evaluation order? The answer to this question depends on the machine model. 
Marill [1962] gives a simple algorithm that works for interchangeable registers. 
Horowitz et al. [1966] minimize usage of index-registers--a problem that is 
perhaps best viewed as a paging problem. At any time we may have at most M 
pages in memory. The evaluation order specifies the order in which pages will be 
referenced or changed. A page that is not changed need not be stored back into 
memory. Horowitz et al. give an algorithm for minimizing the number of times a 



page is loaded or stored. Luccio [1967] suggests improvements, but the overall 
algorithm is still inherently exponential. Kennedy [1972] extends the results of 
Horowitz et aL 

If we change the cost criterion and do not differentiate between referencing or 
changing a page, then Belady [1966] provides a linear algorithm: when necessary, 
store the page whose next reference is furthest away. 

To extend these register-assignment strategies to flow graphs, we run into the 
problem of not knowing which branches will actually be taken. Beatty [1974] 
describes one approach to this problem in which the number of intervening instruc- 
tions between references is used in a heuristic. 

6. Conclusions 

In this paper we have considered only a small number of the many problems 
that arise in the design of a code generator for a major programming language. We 
have seen that some of the factors that affect the difficulty of generating good code 
are the characteristics of the intermediate language and the register structure of the 
underlying machine. 

What of the Future? 
An important side-effect of studying code generation is the insight it casts 

upon machine design. We have seen that some language constructs are difficult to 
implement efficiently even on the simplest of machines. We have also seen that 
even expression trees are difficult to implement on certain kinds of register 
machines. 

It is quite apparent that it is much harder to generate good code for the com- 
plicated machines currently used than the simple theoretical machines considered in 
the literature. We suspect, therefore, that it will be a long while before we have 
the understanding to design a universal code-generator generator that can deliver 
production-quality code generators for the diverse machines available today. 
Nevertheless, we feel that it is important to bring theory and practice closer 
together. By developing more powerful theoretical tools and by carrying over some 
of the attractive features of theoretical models into concrete machine designs, we 
can foresee new machine designs for which it will be easier to devise good code 
generators automatically. It is this goal that we hope will be nourished by a study 
of code generation. 
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