
A Framework for Ontology Evolution in Collaborative
Environments

Natalya F. Noy, Abhita Chugh, William Liu, and Mark A. Musen

Stanford University, Stanford, CA 94305
{noy, abhita, wsliu, musen}@stanford.edu

Abstract. With the wider use of ontologies in the Semantic Web and as part of
production systems, multiple scenarios for ontology maintenance and evolution
are emerging. For example, successive ontology versions can be posted on the (Se-
mantic) Web, with users discovering the new versions serendipitously; ontology-
development in a collaborative environment can be synchronous or asynchronous;
managers of projects may exercise quality control, examining changes from pre-
vious baseline versions and accepting or rejecting them before a new baseline is
published, and so on. In this paper, we present different scenarios for ontology
maintenance and evolution that we have encountered in our own projects and in
those of our collaborators. We define several features that categorize these scenar-
ios. For each scenario, we discuss the high-level tasks that an editing environment
must support. We then present a unified comprehensive set of tools to support dif-
ferent scenarios in a single framework, allowing users to switch between different
modes easily.

1 Evolution of Ontology Evolution

Acceptance of ontologies as an integral part of knowledge-intensive applications has
been growing steadily. The word ontology became a recognized substrate in fields out-
side the computer science, from bioinformatics to intelligence analysis. With such ac-
ceptance, came the use of ontologies in industrial systems and active publishing of
ontologies on the (Semantic) Web. More and more often, developing an ontology is
not a project undertaken by a single person or a small group of people in a research
laboratory, but rather it is a large project with numerous participants, who are often
geographically distributed, where the resulting ontologies are used in production envi-
ronments with paying customers counting on robustness and reliability of the system.

The Protégé ontology-development environment1 has become a widely used tool
for developing ontologies, with more than 50,000 registered users. The Protégé group
works closely with some of the tool’s users and we have a continuous stream of requests
from them on the features that they would like to have supported in terms of managing
and developing ontologies collaboratively. The configurations for collaborative devel-
opment differ significantly however. For instance, Perot Systems2 uses a client–server

1 http://protege.stanford.edu
2 http://www.perotsystems.com

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 544–558, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://protege.stanford.edu
http://www.perotsystems.com


A Framework for Ontology Evolution in Collaborative Environments 545

mode of Protégé with multiple users simultaneously accessing the same copy of the on-
tology on the server. The NCI Center for Bioinformatics, which develops the NCI The-
saurus3 has a different configuration: a baseline version of the Thesaurus is published
regularly and between the baselines, multiple editors work asynchronously on their
own versions. At the end of the cycle, the changes are reconciled. In the OBO project,4

ontology developers post their ontologies on a sourceforge site, using the sourceforge
version-control system to publish successive versions. In addition to specific require-
ments to support each of these collaboration models, users universally request the abil-
ity to annotate their changes, to hold discussions about the changes, to see the change
history with respective annotations, and so on.

When developing tool support for all the different modes and tasks in the process of
ontology evolution, we started with separate and unrelated sets of Protégé plugins that
supported each of the collaborative editing modes. This approach, however, was diffi-
cult to maintain; besides, we saw that tools developed for one mode (such as change
annotation) will be useful in other modes. Therefore, we have developed a single uni-
fied framework that is flexible enough to work in either synchronous or asynchronous
mode, in those environments where Protégé and our plugins are used to track changes
and in those environments where there is no record of the change steps. At the center
of the system is a Change and Annotation Ontology (CHAO) with instances recording
specific changes and meta-information about them (author, timestamp, annotations, ac-
ceptance status, etc.). When Protégé and its change-management plugins are used for
ontology editing, these tools create CHAO instances as a side product of the editing
process. Otherwise, the CHAO instances are created from a structural diff produced by
comparing two versions. The CHAO instances then drive the user interface that displays
changes between versions to a user, allows him to accept and reject changes, to view
concept history, to generate a new baseline, to publish a history of changes that other
applications can use, and so on.

This paper makes the following contributions:

– analysis and categorization of different scenarios for ontology maintenance and
evolution and their functional requirements (Section 2)

– development of a comprehensive solution that addresses most of the functional
requirements from the different scenarios in a single unified framework (Section 3)

– implementation of the solution as a set of open-source Protégé plugins (Section 4)

2 Ontology-Evolution Scenarios and Tasks

We will now discuss different scenarios for ontology maintenance and evolution, their
attributes, and functional requirements.

2.1 Case Studies

We now describe briefly some specific scenarios that we encountered in studying vari-
ous collaborative projects which members work closely with the Protégé group. Most of

3 http://nciterms.nci.nih.gov/NCIBrowser/
4 http://obo.sourceforge.net

http://nciterms.nci.nih.gov/NCIBrowser/
http://obo.sourceforge.net


546 N.F. Noy et al.

these projects focus on developing ontologies in biomedical domain and thus represent
scenarios that occur when domain experts develop ontologies collaboratively.

Perot Systems5 provides technology solutions for organizations. In one of their
projects, they are developing an ontology for a Hospital Enterprise Architecture using
Protégé. There are almost 100 editors involved in ontology development. These editors
use a client–server version of Protégé. The ontology resides on a central server that all
editors access remotely. Changes made by one user are immediately visible to every-
one. Therefore, there is no separate conflict-resolution stage or maintenance of various
archived versions.

Another team with which we work closely is the team developing the NCI Thesaurus
at the NCI Center for Bioinformatics [1]. NCI regularly publishes baseline versions of
the NCI Thesaurus. Users access the Thesaurus through an API or browse it using
the NCI’s Terminology Browser.6 Intermediate versions between the baselines are for
internal editing only. Currently, each editor edits his own copy of the Thesaurus and
checks in his changes regularly. The tools then merge the changes from different editors
and identify conflicts. A conflict in this context is any class that was edited by more than
one person. A curator then examines the merged ontology and the changes performed
by all the editors, resolves the conflicts, and accepts or rejects the changes.

Currently, NCI is switching to producing the NCI Thesaurus directly in OWL and to
using Protégé for this purpose. In the new workflow, editors will use the Protégé client–
server mode and access the same version of the ontology. Therefore, the merging step
will no longer be needed. The curation step will still be present, as the curator still needs
to perform quality control and to approve the changes.

The Open Biomedical Ontology repository7 (OBO) is our final example of an ap-
proach to ontology development. OBO is a Web site established by the Gene Ontology
Consortium to enable biologists to share their ontologies. The OBO site is a sourceforge
site that serves many biological ontologies and vocabularies. Ontology developers post
successive versions of their ontologies in the repository, without posting a specific list
of changes between the versions. Developers use different tools to edit the ontologies
in their local environments (e.g., Protégé, OBO-Edit, Swoop) and create the ontologies
in different languages. In many cases, the tools do not create any record of changes and
when they do create such a record, the authors do not make it accessible to the outside
world when they post their ontology in a repository.

2.2 Attributes of Collaborative Development

Analyzing various scenarios (like the ones described in Section 2.1), we identified sev-
eral dimensions that we can use to classify scenarios for collaborative ontology evo-
lution. Depending on the values for each of these dimensions, projects have different
functional requirements, which we discuss in Section 2.3

Synchronous vs asynchronous editing. In synchronous editing, collaborators work on
the same version of an ontology that resides on a server accessible to all members
of the team. Changes made by one editor are immediately visible to others. Thus,

5 http://www.perotsystems.com
6 http://nciterms.nci.nih.gov/NCIBrowser
7 http://obo.sourceforge.net

http://www.perotsystems.com
http://nciterms.nci.nih.gov/NCIBrowser
http://obo.sourceforge.net


A Framework for Ontology Evolution in Collaborative Environments 547

the possibility of conflicts is reduced or, essentially, eliminated since users know
what changes others have made to the concept they are editing. With proper trans-
action support, where operations are wrapped in a transaction and two users cannot,
for example, overwrite each others’ values without knowing about it, conflicts are
technically impossible. In asynchronous editing, collaborators check out an ontol-
ogy or a part of it and edit it off-line. Then they merge their changes into the common
version. In this case, conflicts may occur and need to be resolved during the merge.

Continuous editing vs periodic archiving. In continuous editing, there is no separate
step of archiving a particular version, giving it a name, making it accessible. In
this case, the only version of an ontology that exists is the latest one, and any roll-
back is performed using an undo operation. Alternatively, versions can be archived
periodically, and one can roll back to any of the archived versions.

Curation vs no curation. In many centralized environments, new versions of an on-
tology do not get published externally until a designated curator or curators had a
chance to examine all the changes and accept or reject them, and to resolve con-
flicts. In these scenarios, after editors perform a set of edits, a separate curation step
takes place. By its nature, curation almost always happens in the scenarios with pe-
riodic versions, as the creation of a new archived version is a natural point for the
curation step.

Monitored vs non-monitored. In monitored editing, the tools record the changes and,
possibly, metadata about these changes, making the declarative description of
changes available to other tools. In non-monitored development, the tools either do
not log the changes, or these records are not readily available to other tools. For
instance, any case where successive versions are published in a repository without
change logs being available could be considered non-monitored editing.

2.3 Functional Requirements for Collaborative Ontology Development

We start by discussing the functional requirements that are relevant for all modes of on-
tology evolution and maintenance. Essentially in any collaborative project users request
the following features:

– Change annotations that explain the rationale for each change, and refer to citations
or Web links that precipitated the change.

– Change history for a concept that describes all the changes that were made to the
concept, who performed the changes, when, what was the rationale for the change.
Programmatic access to such information is particularly important as tools may rely
on earlier versions of the concept definition and they must be able to process the
changes and adjust to them.

– Representation of changes from one version to the next, including information on
• which classes were changed, added, deleted, split, merged, retired;
• which elements of each class definitions where added, deleted, changed;
• who edited each change (possibly simply a list of editors that have altered a

class since the previous version; ideally, a more detailed account, with com-
plete trace of how each editor changed the class, with old and new values, etc);

• which classes have more than one editor.



548 N.F. Noy et al.

– Definition of access privileges where each author can edit only a particular subset
of an ontology, thus avoiding clashes with other editors.

– The ability to query an old version using the vocabulary of the new version.
– A printed summary of changes and a programmatically accessible record of changes

between an old and a new baseline.

If ontology editing by multiple authors is asynchronous, with each author editing
his own copy of the ontology, additional requirements ensure that authors can resolve
conflicts afterwards when the different copies are merged back together:

– Identification of conflicts between the local version being checked in and the shared
version This identification must include treatment of “indirect” conflicts: it is not
sufficient to identify concepts that were edited by more than one person. One person
may have edited a class A, and another person may have edited its subclass B.
While only one person has edited B, there may still be a conflict at B with the
changes it inherited from A.

– Negotiation mechanism to resolve conflicts if they are caused by someone else’s
changes. Since check-ins are usually prevented until conflicts are resolved, mech-
anisms such as chats and emails (integrated with the ontology-development envi-
ronment) can enable users to resolve conflicts efficiently.

In continuous editing, where essentially only a single version of the ontology exists
(the current one) and there is no archiving, the main additional requirement is being
able to revert back to an earlier version. Since in continuous editing no archives exist,
this capability is usually implemented through the undo mechanism and earlier versions
are virtual versions since they can be generated on demand, but are not explicitly saved.
In other words, the following key feature is required for continuous editing:

– An ability to roll-back to a particular state of the ontology, for example, to the state
of affairs in a particular date.

The following features provide support for curated editing by enabling the curator
to perform quality control before a new version of an ontology is made public or is used
in production:

– A mechanism to accept and reject individual changes and groups of changes; groups
can be identified structurally (e.g., accept all changes in a subtree) or based on who
performed the change and when (e.g., accept all changes from a particular editor);

– Ability to save the current state of reviewing (in the middle of the curation process)
and to come back to it to continue reviewing the changes;

– Specialized views of changes, such as changes from specific editors or views that
display only conflicts between editors.

In non-monitored editing, there is no explicit record of changes and all that the user
has available are two successive versions. Therefore, in this mode there are a number
of requirements that deal with comparing the versions and identifying and describing



A Framework for Ontology Evolution in Collaborative Environments 549

the changes. More specifically, the following features support change management in
non-monitored mode:

– Version comparison at the structural level, understanding what was added, what
was deleted, and what was modified.

– Ability to post and describe new versions, specify where the previous version is,
and whether the new version is backwards compatible (see, for example, work by
Heflin and colleagues on backwards compatibility of ontology versions [4]).

3 Components of a Comprehensive Ontology-Evolution System

Figure 1 presents the architecture for an ontology-evolution system that we developed
and that provides support for most of the tasks that we have outlined in Section 2. At
the center of the system is the Change and Annotation Ontology (CHAO) [8]. Instances
in this ontology represent changes between two versions of an ontology and user anno-
tations related to these changes. For each change, the ontology describes the following
information: its type; the class, property, or instance that was changed; the user who
performed the change; the date and time when the change was performed. In addition
to change information, we also record annotations on changes. In our implementation
(Section 4), we store the annotations as part of the change ontology, but the annotations
can be as easily separated into a different ontology with cross-references between the
two.8 Annotations are stored as instances that refer to the change instances (Figure 2).
Our representation of annotations extends the Annotea schema.9 Therefore, the anno-
tations can be saved to an Annotea store and be accessible to applications that process
Annotea data.

3.1 CHAO: The Change and Annotations Ontology

Our Change and Annotation Ontology (CHAO) is based on our earlier work [8] and
on the work of our colleagues [7]. In this paper, we highlight only the most relevant
features of the ontology. We suggest that the interested reader downloads the plugin
and examines the ontology that comes with it for specific details.

The ontology contains two main classes, the class Change represents changes in the
ontology and the class Annotation stores related annotations on changes. These two
classes are linked by a pair of inverse properties (Figure 2). Subclasses of the Change
class describe changes at a more fine-grained level. These subclasses include changes
to classes such as adding, deleting, or modifying class properties, subclasses, or restric-
tions; changes to properties; changes to individuals, and changes to a whole ontology,
such as creating or deleting classes. There is also a class to group multiple changes into
a higher-order change. Changes performed by users are represented as instances of the
corresponding subclass of the class Change. These instances contain the information
describing the change as well as the class, property, or individual to which the change
is applied. For example, if a superclass Csuper is added to a class Csub, we record that
a Superclass Added change is applied to the class Csub.

8 In Figure 1 we show the two parts—changes and annotations—separately.
9 http://www.w3.org/2001/Annotea

http://www.w3.org/2001/Annotea


550 N.F. Noy et al.

Ontology
version 1

Ontology
version 2

Editing

input

produces

Annotationhas subprocess

produces
produces

Instances in the 
change ontology

Annotation of 
changes

refers
to

PromptDif
algorithm

produces

input input

Text file with 
changes input

Changes per 
user/conflicts

Accept/reject
changes

input

input

Ontology
version 2'

produces

input

produces

produces
input

Version
comparison

Fig. 1. Components of the ontology-evolution framework. The rounded rectangles represent ver-
sions of an ontology. The diamonds represent processes performed by a user. Through the Edit-
ing and Annotation processes, an ontology version 1 becomes ontology version 2. The CHAO
instances are created as by-product of the editing process. If the CHAO instances are not present,
the two versions themselves serve as input to the PROMPTDIFF algorithm that creates a ver-
sion comparison, from which CHAO instances are generated. The CHAO instances and author,
timestamp, and annotation information contained therein are used in the process of accepting and
rejecting changes. Each accept or reject operation is recorded as a Boolean flag on the corre-
sponding change instance.

3.2 Generation of the CHAO Instances

We must use different mechanisms to generate instances in CHAO, depending on
whether editing is monitored or not (Section 2.2). With monitored editing, the tools
can generate CHAO instances as a by-product of the ontology-editing process. There-
fore, when users look at a new version of an ontology, they (or the tools they use) also
have access to the CHAO instances describing all the changes, and the corresponding
annotations.

In many cases, however, particularly in the de-centralized environment of the Se-
mantic Web, tools have access only to successive versions of an ontology, and not to
the description of changes from one version to another. In this case, we need to compare
the two versions first in order to understand what the differences are. We then can save
the differences as instances in CHAO. Naturally, we will not have specific author and
timestamp information for each change.

3.3 Using CHAO Instances in Ontology-Evolution Tasks

The instances in CHAO provide input for many of the tasks that support functional
requirements that we identified in Section 2.3.

Examining changes Many of the scenarios that we discuss involve having a user ex-
amine changes between versions. Users need to understand what changed between ver-
sions and what changes others have performed. The task is similar to tracking changes



A Framework for Ontology Evolution in Collaborative Environments 551

Fig. 2. The Change and Annotation classes in the change and annotations ontologies, a se-
lection of their properties, and some examples of subclasses of Change

in Microsoft Word. The instances in CHAO provide data that inform the display of
changes. Some examples of such a display include a table that lists concepts that have
been changed and what has been changed for each of the concepts and a tree of classes
with deleted, added, or moved classes marked in different fonts and colors and, possibly,
underlined or crossed-out (see Figure 3).

Accepting and rejecting changes. In curated ontology-evolution in particular, but also
in other modes, one may want not only to examine changes between two versions, but
also to accept or reject these changes (not unlike accepting or rejecting changes in a
Word document). We also need to save the state of the reviewing process (i.e, what has
been accepted or rejected) so that the user may come back to it. We use CHAO to record
the state of accept/reject decisions if the user wants to save a session and come back
to it later. Consider a non-monitored editing where CHAO instances are generated by
comparing the old and the new version of the ontology. Note that accepting a change
does not involve any actual change to the new version, it is just a decision approving a
change that has already been made. Therefore, if we start a new session and compare the
two versions again (the old one and the version with which the editor had been working),
the accepted change will appear as a change again. To avoid this behavior, any time a
user accepts or rejects a change, we record the decision in the corresponding instance
of CHAO. So, for instance, a change instance can be flagged as “accepted.” A rejection
of a change is an actual change, and we record this as another instance in CHAO. The
link to the annotation instances enables the user to put additional annotations that, for
example, explain his acceptance or rejection decision.

Viewing concept history. For each change, CHAO contains the information on the
concept to which the change was applied and author and timestamp of the change (if
the editing was monitored). We can readily process this information to provide con-
cept history. Thus, for each concept, we can present the history of its changes, who
performed them and when. Because CHAO links the changes to the annotations where
users can describe rationale for and make other comments about each change or a group
of changes, we can also provide annotations in the concept history. As a result, the user
can see not only what changes where made to the concept, but also the explanation of
why the changes were made, and, if available, the discussion about these changes.



552 N.F. Noy et al.

Fig. 3. Comparison of versions in PROMPTDIFF. Classes that were added are underlined; deleted
classes are crossed out; moved classes are grayed out.

Providing auditing information. We can compile the information about authors and
timestamps for the changes to create auditing information for a curator. For instance, a
curator can see which editors have performed changes in a particular time period, how
many concepts each editor has edited, how many concepts where edited by more than
one editor in a particular time period.

The use of an ontology to record changes and annotations enables us to have a mod-
ular system that supports multiple tasks. For instance, regardless of how the CHAO
instance are generated (as a by-product of monitored editing or through version com-
parison in non-monitored editing), once we have it, we can use it in other tasks, such
as presenting concept history, displaying changes between versions, and so on. When
the user accepts or rejects a change, we can again use the same set of structures to
record his decisions and corresponding annotations. As a result, when a user, for in-
stance, accepts a change to a concept C and records his rationale for this decision, this
comment appears in the concept history for C. Furthermore, the use of an ontology
to record changes and annotations can potentially enable sharing of this information
between ontology-editing tools.

4 Implementation Details

We have implemented a system to support the different modes of ontology evolution in
a single comprehensive framework that we described in Section 3 as a set of plugins to
the Protégé ontology-development environment. The framework is implemented as two
related Protégé plugins:

The Change-management plugin provides access to a list of changes and enables
users to add annotations to individual changes or groups of changes; when this



A Framework for Ontology Evolution in Collaborative Environments 553

plugin is activated, the changes are stored as instances in CHAO. Further, this
plugin enables users to see a concept history for the class and the corresponding
annotations, when they are examining the classes in the standard Classes tab.

The PROMPT plugin for ontology management provides comparisons of two versions
of an ontology and facilities to examine a list of users who performed changes and
to accept and reject changes [9].

In addition, the Protégé environment itself provides many of the facilities necessary to
support the scenarios we outlined in Section 2, such as synchronous editing in a client–
server mode, transaction support, undo facilities, and other features. The Protégé API
provides convenient access to changes as they are performed, to facilities to create and
edit ontologies, and to the user interface components that the plugins use.

We now describe these components and where they fall in the overall framework.

4.1 The Change-Management Plugin

The Change-management plugin to Protégé performs several functions. First, when the
user enables the plugin, each ontology change is recorded as an instance in CHAO with
the timestamp and the author of the change. Thus, with this plugin in place, the editing
is monitored and a declarative record of changes is stored. CHAO instances are saved
when the user saves the project. If needed, users can open CHAO in Protégé or access
it through the Protégé knowledge-base API, just as they would any other ontology.

Second, users can see the “Changes” tab that provides an overview of changes and
corresponding annotations (Figure 4). There are two views for the changes: the “de-
tailed” view shows low-level changes that correspond to each operation in the ontology.
The “summary” view (the default) groups the low-level changes into higher-level ones
that roughly correspond to the operations that the user performs in the user interface.
For instance, when a user creates an OWL restriction for a class, a series of low-level
operations happen: an anonymous class is created, property values for this class are
assigned, and this class becomes a superclass for the class that it restricts. This set of
operations corresponds to a single high-level operation “Restriction added.”

The user can select a change and view annotations for this change and any of the
groups of changes that involve the selected change. The user can also provide annota-
tions for the selected change or select a group of changes and provide annotation for the
whole group. For example, a user can describe the rationale for adding a set of classes.
The tab also provides search capabilities.

In the Classes tab (the standard Protégé tab for browsing and editing classes), an ad-
ditional menu item—“Change info”—appears when the Change-management plugin is
activated. Through this menu, the user can view the concept history and the correspond-
ing annotations for the class selected in the Classes tab. The display is similar to the
change and annotation display in Figure 4, but the list of changes is limited to the changes
that pertain to the class of interest. The user can also create additional annotations here.

4.2 The PROMPT Tab

PROMPT is a Protégé plugin that provides a number of ontology-management functions.
Here we discuss only the functionality that is relevant for ontology evolution.



554 N.F. Noy et al.

A

B

C

D

Fig. 4. The Change-management tab in Protégé. The table at the top (A) displays all the changes
to the current project. When the user selects a change in the top table, the middle table(B) shows
all annotations associated with this change. For selected annotation, the bottom table (C) shows
other changes in the group if annotation applied to a group of changes rather than a single change.
The user can create new annotations, examine the details of existing ones through this display,
and search through annotations (D).

When the user activates the PROMPT tab and instructs it to compare two versions of
an ontology, one of the two things happens: (1) If instances of CHAO are present (the
editing was monitored), PROMPT uses these instances to compile the changes and to
present them to the user. (2) If there are no CHAO instances and the user has only the
two version of the ontology, and no record of the changes between them, the PROMPT-
DIFF algorithm compares the two versions and creates a structural diff, using a set of
heuristics to determine what has changed between the versions. It determines, for exam-
ple, when classes are renamed, when classes are moved in the class hierarchy, or when
their definitions change. Recall that we designed the architecture for ontology evolu-
tion to have CHAO drive all other components in order to have a modularized structure
and to have the same components work in different editing modes. Thus, if there is no
declarative record of changes in the form of CHAO, PROMPT generates these instances
from the results of the PROMPTDIFF algorithm.

One of the unique features of version comparison in PROMPT, is the ability to exam-
ine changes using an intuitive interface, based on the Protégé interface for class editing
(Figure 3), and to accept and reject changes. In the class hierarchy, the users can see
which classes and subtrees were deleted or added, which were changed, moved, and so
on. For each class, PROMPT provides a list of changes for that class. Users can also view
the old and the new definitions of the class side-by-side. Users then can accept or reject
each specific change, all changes for a class, or all changes for a particular subtree.

If CHAO exists, PROMPT also generates a list of users who changed the ontology.
For each user, PROMPT displays the number of concepts he created or modified, and the
number of concepts that are in conflict with modification performed by others. Here we
define a conflict (something that a curator might want to verify) as one concept modified



A Framework for Ontology Evolution in Collaborative Environments 555

by more than one user. Curators can also accept or reject all changes performed by a
specific user in a single click or all changes that are not in conflict with others.

4.3 Client–Server Mode for Ontology Editing in Protégé

Of the many features of the Protégé core system that support ontology evolution, we
focus on the one that specifically addresses one of the modes of ontology editing: syn-
chronous editing by multiple users. The multi-user mode in Protégé uses a client–server
architecture, with the ontologies being stored on the machine running the Protégé server.
Users then remotely connect to this server using a thick Protégé client. All users editing
an ontology always see the same version of it, and changes made by one user are visible
immediately to other users. If the Change-management plugin is installed on the server,
it records all the changes that happen on the server machine made by different users.

Most of the features described in this Section are already available for beta-testing
at the time of this writing as part of the Protégé beta distribution. A small number of
features, such as saving to Annotea, are currently in alpha-testing or under development.

5 Related Work

We have developed initial ideas on how a change ontology can drive various ontology-
evolution tasks in our earlier work [8]. We have borrowed many ideas on the CHAO
structure from there, but extended it with additional pragmatic information such as
identification of a concept to which the change applies, author and timestamp of the
change, and link to relevant annotations. Thus, in this paper, we have not focused on
the representation of changes per se using the detailed work by others in this area [7].

Many ontology-development tools support monitored ontology evolution by record-
ing change logs. However, in most cases, the changes are recorded as sequences of
changes rather than a set of instances in a change ontology [6,11]. While one form of
representation can be inferred from the other and vice versa, representation in the form
of ontology instances facilitates querying for concept histories and enables attaching
annotations to changes.

The SWOOP ontology editor [6] supports an extensive set of annotations, distin-
guishing between comments, advices, examples, and so on. We currently do not enable
users to categorize annotations in different ways, but plan to add such capability in the
future. As a practical matter, since our annotation ontology already extends the Annotea
RDF Schema, we need to develop only the user interface for such support.

The ontology-evolution support in KAON [13,3] focuses on the effects of changes.
Users can specify their desired strategies for ontology evolution in terms of handling
of changes. Recent work [3] focuses on maintaining consistency during evolution for
DL-based ontologies. The authors consider various scenarios, such as maintaining con-
sistency as the ontology changes, repairing inconsistencies, or answering queries over
inconsistent ontologies.

There is one aspect of ontology evolution and versioning that we do not currently
deal with in this work—effects of changes on applications. This analysis requires an
understanding of which version of an ontology an application is compatible with, in



556 N.F. Noy et al.

particular in the context of ongoing ontology development where newer versions may
not be consistent. The issue of compatibility is addressed in the MORE framework for
reasoning with multi-version ontologies [5] and in the work of Heflin and colleagues
on declarative specifications of compatibility between versions [4].

6 Discussion

In summary, the two plugins—the Change-management plugin and the PROMPT

plugin—in combination with Protégé’s own facilities, provide support for all modes
of ontology evolution that we have identified among our projects.

Because Protégé can import ontologies developed by other tools (in OWL, RDFS, and
a number of other formats), developers can benefit from the Protégé change-manage-
ment facilities even if they first develop their ontologies in a different tool. For example,
if an OWL ontology was originally developed in SWOOP, the developer can still use
PROMPT to compare its versions, accept or reject changes, create a new baseline, and
then continue editing in SWOOP.

While we have not yet performed a summative evaluation of our tools, we have
run formative evaluations with the developers of NCI Thesaurus. In these evaluations,
five NCI Thesaurus editors and a curator used Protégé and some of the tools we de-
scribed here to edit portions of the Thesaurus in parallel with their regular environment
(Apelon’s TDE). Mainly, the curator used the PROMPT plugin to examine the changes
performed by the editors and to accept or reject them. We also used the PROMPT rep-
resentation of changes to generate the concept-history output in a database format that
the APIs for accessing the NCI Thesaurus expect. Many of the features we discussed
here (e.g., side-by-side views of the old and the new version of the class, the ability to
save the status of the accept/reject process, the ability to annotate changes and curation
decisions, etc.) resulted from usability studies during these evaluations. As the result of
the studies, NCI is moving towards switching to Protégé and its change-management
plugins as their primary editing environment for NCI Thesaurus.

There are several limitations of our current work that we plan to address in the future.
First, we currently assume that when there is a record of changes between two versions,
this record is complete. In many cases, however, this record will not be complete. For
instance, a user may disable the change-management support, perform edits, and then
enable it again or he may edit a portion of the ontology in a different tool and then
import it back into Protégé. We need to address two questions to deal with incomplete
change records: (1) how do we determine automatically that a record is indeed incom-
plete; and (2) in the case of incomplete change record, can we have a hybrid solution
that uses the author, date, annotation, and other pertinent information that is available
in the incomplete record and combines it with the record generated by PROMPTDIFF.

Migration of instances from one version of an ontology to the next is a critical issue
in the context of evolving ontologies. Some ontology changes, such as creating new
classes or properties, do not affect instances; when these changes occur, instances that
were valid in the old version are still valid ini the new version. However, a large num-
ber of changes may potentially affect instances. In this latter case, some strategies can
include having tools take their best guess as to how instances should be transformed,



A Framework for Ontology Evolution in Collaborative Environments 557

allowing users to specify what to do for a specific class of changes (e.g., similar to
evolution strategies [13]), or flagging instances that might be invalidated by changes.

Ontology modularization [12,2] is also critical for support of ontology evolution, in
particular in the asynchronous mode. It will be impractical if the whole ontology is the
only unit that users can check out. Rather, editing in asynchronous mode would be much
more effective if ontology consists of well-delineated modules that cross-reference one
another. Users must be able to check out a specific module rather than a whole ontology.

Finally, consistency checking and ontology debugging [14,10], while important for
ontology development in general, are particularly critical in the collaborative setting.
Users must be able to understand what the effects changes performed by others have,
to understand the rationale for those changes, and to check consistency of the ontology
when all the changes are brought together.

We continue to work with our collaborators that use Protégé in large collaborative
ontology-development projects to identify new requirements and modes of collabora-
tion. As it exists today, however, we believe that the environment that we described in
this paper is one of the most complete sets of components to support ontology evolution
today. And the framework that underlies our implementation provides for flexible and
modular development of ontology-evolution support.

Acknowledgments

This work was supported in part by a contract from the U.S. National Cancer Institute.
Protégé is a national resource supported by grant LM007885 from the United States
National Library of Medicine.

References

1. G. Fragoso, S. de Coronado, M. Haber, F. Hartel, and L. Wright. Overview and utilization of
the nci thesaurus. Comparative and Functional Genomics, 5(8):648–654, 2004.

2. B. C. Grau, B. Parsia, and E. Sirin. Working with multiple ontologies on the semantic web.
In Third Internatonal Semantic Web Conference (ISWC2004), 2004.

3. P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A framework for
handling inconsistency in changing ontologies. In Fourth International Semantic Web Con-
ference (ISWC2005), 2005.

4. J. Heflin and Z. Pan. A model theoretic semantics for ontology versioning. In Third Interna-
tional Semantic Web Conference, page 6276. Springer, 2004.

5. Z. Huang and H. Stuckenschmidt. Reasoning with multiversion ontologies: a temporal logic
approach. In Fourth International Semantic Web Conference (ISWC2005), 2005.

6. A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, and J. Hendler. SWOOP: A web ontology
editing browser. Journal of Web Semantics, 2005.

7. M. Klein. Change Management for Distributed Ontologies. PhD thesis, Vrije Universiteit
Amsterdam, 2004.

8. M. Klein and N. F. Noy. A component-based framework for ontology evolution. In Workshop
on Ontologies and Distributed Systems at IJCAI-03, Acapulco, Mexico, 2003.



558 N.F. Noy et al.

9. N. F. Noy and M. A. Musen. The PROMPT suite: Interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies, 59(6):983–1024, 2003.

10. B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In 14th Intl Conference
on World Wide Web, pages 633–640, New York, NY, 2005. ACM Press.

11. P. Plessers and O. De Troyer. Ontology change detection using a version log. In Fourth
International Semantic Web Conference (ISWC2005), 2005.

12. J. Seidenberg and A. Rector. Web ontology segmentation: Analysis, classification and use.
In 15th International World Wide Web Conference, Edinburgh, Scotland, 2006.

13. L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, University of Karl-
sruhe, 2004.

14. H. Wang, M. Horridge, A. Rector, N. Drummond, and J. Seidenberg. Debugging OWL-
DL ontologies: A heuristic approach. In 4th International Semantic Web Conference
(ISWC2005), Galway, Ireland, 2005. Springer.


	Evolution of Ontology Evolution
	Ontology-Evolution Scenarios and Tasks
	Case Studies
	Attributes of Collaborative Development
	Functional Requirements for Collaborative Ontology Development

	Components of a Comprehensive Ontology-Evolution System
	{\sc ChAO}: The Change and Annotations Ontology
	Generation of the {\sc ChAO} Instances
	Using {\sc ChAO} Instances in Ontology-Evolution Tasks

	Implementation Details
	The Change-Management Plugin
	The {\sc Prompt} Tab
	Client--Server Mode for Ontology Editing in Protégé

	Related Work
	Discussion

