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Abstract. Watershed transformation is introduced as a computation in
image graph of a path forest with minimal modified topographic distance
in (R+)2. Two algorithms are presented for image segmentation that
use a metric defined by a unit neighborhood as well as a chamfer (a, b)-
metric. The algorithms use ordered queues to propagate over image pixels
simulating the process of flooding. Presented algorithms can be applied
to gray-scale images where objects have noticeable boundaries.

1 Introduction

Watershed transformation of gray-scale images often results in better segmenta-
tion and contour detection outcomes in comparison with other methods. Image
segmentation by watershed transformation belongs to the region growing meth-
ods that combine pixels according to similarity of their properties relative to
the properties of their local neighbors. This method works good for images with
objects characterized by brightness or color characteristics rather than texture
features.

Watershed transformation of gray-scale images was firstly described by
S. Beucher and C. Lantuéjoul [1] in their paper devoted to contour detection
of objects on metallographic pictures. The authors adopted geographic termi-
nology for describing the contour detection process, based on the disclosure of
the areas with the greatest absolute gradient values. The image was presented
as a topographic surface the drops of water fall on, stream down and come into
local minima. Each local minimum has its own set of points of the surface named
catchment basin. If a drop falls on a point belonging to a catchment basin, it
will come down into a corresponding local minimum. Several catchment basins
may intersect - their common points form watersheds. Formal construction of
watershed points was based on the detection of points equidistant from different
catchment basins lying on a given level λ.

In a later work S. Beucher [2] considered two groups of watershed trans-
formation algorithms. The first group contained algorithms which simulate the
flooding process (or immersion into water). An algorithm based on morphological
operations was taken as an example. The second group was made of procedures
detecting watershed points directly.
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L. Vincent and P. Soille in their work [3] presented an algorithm of watershed
transformation based on immersion process described in terms of morphological
operations and graph theory. The immersion process used FIFO queues to prop-
agate over the pixels. Their algorithm was faster and more exact than any other
algorithm presented at the moment of their publication.

In addition to morphological approach to calculation of watershed transfor-
mation of discrete images there is another way based on presentation of image in
the form of a graph and calculation a shortest path forest for given local minima.
S. Beucher and F. Meyer have developed an algorithm using a queue for finding
the shortest path between arbitrary nodes of the graph in the process of building
a tree of shortest paths [4]. However, if the image has ”flat” regions (plateau),
such an algorithm will result in errors at the regions. To use the algorithm in the
presence of plateaus, the image should be corrected to remove them. A. Lotufo
and R. Falcão proposed an algorithm using the ordered queue which allows to
solve the problems with plateaus [5]. However, their algorithm has drawbacks:
one pixel might be pushed into the queue more than once.

There is a number of other approaches to calculation of watershed transfor-
mation. J. Roerdink and A. Meijster in their review article [6] have discussed
two groups of watershed transformation algorithms: based on immersion, and
on topographical distance calculation. They also discussed problems of paral-
lelization of watershed transform calculation and concluded that it is hard to
parallelize because of its inherently sequential nature.

Another approach to watershed transform calculation is the topological
one [7]. Topological watershed transform uses a graph representation of the im-
age and is based on a notion of ”simple” topology. Such a transformation of
gray-scale image results in another gray-scale image preserving topological in-
formation. Topological transform calculation is based on detection of ”simple”
points on each cross section of gray-scale image.

In this paper an algorithm of watershed transform calculation is based on
detection of minimal cost paths. The path cost consists of two components. The
first characterizes maximal intensity of pixels along the path. The second compo-
nent of the cost gives the length of the ”flat” path part and is determined using
a chosen metric. This allowed to extend the algorithm to the case of chamfer
metric.

2 Basic Notions and Definitions

Given a set of pixels X ⊆ Zn, where n is image dimension, let Y be a set of
intensity values of the image. Digital n-dimension gray-scale image is a
function f : X → Y where the value f(p) ∈ Y defines intensity of pixel p ∈ X .
We will consider a case when function f is discrete. Watershed transformation
is interpreted as a result of immersion of surface f into water. It is assumed that
at selected local minima mi ∈ M of function f the holes are pierced such that
water will be gradually filling up ”cavities” starting from the minima.
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Graph of gray-scale image f is a weighted graph G = (X, Γ, f, d), with
function f defined on the set of graph nodes. Arc (p, q) with weight d(p, q)
between nodes p, q ∈ X exists iff q belongs to the neighborhood Γ (p) of p. Hence,
image graph contains information about intensity of pixels and their adjacency.
For each node p of graph G the value η = |Γ (p)| is called the connectivity of
node p. For our task the connectivities of all graph G nodes are the same: for 2D
images given on rectangular lattice η = 4 or η = 8, for 3D images η = 6, η = 14,
or η = 26.

Path π = (p0, p1, . . . , pk) from node p0 to node pk of graph G is an ordered
sequence of pixels (p0, p1, . . . , pk), such that pi+1 ∈ Γ (pi) and pi �= pj for j �=
i, 0 ≤ i ≤ k − 1. Path (p0, p1, . . . , pk) is denoted by πk or simply π and its part
(pi, pi+1, . . . , pj), 0 ≤ i ≤ j ≤ k from node pi to node pj in graph G is denoted
by πi,j . If i = 0, then the first index in the designation of path is omitted.

Let Π be a set of all paths in graph G. Function ρ : Π →
(
R

+
)2 is called

path function of graph G if for any πi, πj such that πi is a part of πj (denoted
as πi ⊂ πj), the following inequality is always true:

ρ(πi) < ρ(πj),

with ρ(π0) = (0, 0). In other words, appending at least one pixel to any path
results in increasing its path function. Increasing path function is treated in the
sense of lexicographic ordering in (R+)2.

The value C(pi) = ρ(πi), i � k, πi ⊆ πk is called the cost of pixel pi on the
path πk. The value C(pi) is a vector in (R+)2. The first and second coordinates
of vector C(pi) are denoted by Cx(pi) and Cy(pi) respectively.

The distance δ(p, q) between any pixels p, q ∈ X is defined as follows:

δ(p, q) = min
π∈Πp,q

{
ρ(π)

}
,

where Πp,q is a set of all paths between pixels p and q in graph G.
Let M be a set of selected pixels (markers) of graph G, |M | > 1, and IM is a

set of marker indices. Catchment basin CB(mi) of marker mi ∈ M, i ∈ IM is
defined as a set of points x ∈ X which satisfy the following condition:

CB(mi) =
{
p ∈ X |δ(mi, p) < δ(mj , p), i �= j

}
.

Watershed W (G) of graph G is a set of points not belonging to any catchment
basin:

W (F ) = X\
(

∑

mi∈M

CB(mi)

)

.

Catchment basins and watershed points define a segmentation of image. For
simplicity it is possible to include watershed pixels into the relevant catchment
basins in order to get segmentation just by catchment basins. Usually markers
mi ∈ M are chosen as representative pixels of image objects as well as the
background (i.e. not belonging to any object).
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It is clear that catchment basins are Voronoi cells of the selected local minima.
Therefore standard algorithms developed for Voronoi cells construction can be
used for building catchment basins.

Let G be a graph of image f with selected markers mi ∈ M, i ∈ IM and ω
is an arbitrary label, ω /∈ IM . Watershed transformation of image f is a
mapping λ : X → IM ∪ {ω} such that λ(p) = i if p ∈ CB(mi), and λ(p) = ω if
p ∈ W (f).

3 Path Function

Choosing a path function having maxima at edges between different source image
objects is an important task. It is based on the assumption that all objects of
source gray-scale image f differ in intensity level, and there is a noticeable leap
of intensity at edges between different objects.

As a simplest example of path function one can take a function l(π) defined
as follows:

l(π) =

(

0,

k−1∑

i=0

d(pi, pi+1)

)

,

where pi+1 ∈ Γ (pi). The function l(π) is called the length of flat path π.
A drawback of the function l(π) is that it does not depend on intensity values

of pixels pi lying at the path π and considers image f as being flat. Therefore,
function l(π) can not be used as a criterion to join pixels into one region based
on their intensities.

Topographical distance takes care of relief of image [8]. Since path func-
tion should have maxima for pixels lying on edges between objects, a gradient
image |∇f | is often used instead of original one. Every pixel of the gradient
image has intensity value equal to the absolute gradient value of the source im-
age in this pixel. The value of absolute gradient of each pixel can be calculated
based on discrete approximation. Later on the gradient image obtained from the
source image f will be denoted by ψ.

The absolute gradient value can be approximated as follows:

ψ(p) = max
γp∈Γ (p)

{∣
∣f(p) − f(γp)

∣
∣
}

.

Watershed transformation of source image f can be computed in one of the
following ways:

1. Transform source image f into gradient image ψ, and then make the water-
shed transform on gradient image ψ.

2. Make watershed transform directly on the source image f . The approxima-
tion of absolute gradient value ψ(p) is calculated for each pixel p in the
process of watershed transformation.

Regardless of the selected way the value ψ(p) can be treated as an intensity
of pixel p of the gradient image. Therefore one can build graph G of the image
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ψ. All definitions that use image f are correct for gradient image ψ too. Taking
this into account, we assume that graph G is built for image ψ unless otherwise
specified.

Topographical length lψ(πk) of path π in G is defined as follows:

lψ(πk) =

{
(0, 0), if k = 0,(
maxi=0,...,k

{
ψ(pi)

}
,
∑k−1

i=0 d(pi, pi+1)
)

, if k > 0.
(1)

For k > 0 the expression (1) can be formulated as follows:

lψ(πk) =
(

max
i=0,...,k

{
ψ(πi)

}
, 0

)
+ l(πk).

Gradient image usually has local maxima on object edges. At areas where maxi-
mal pixel intensity is constant, topographical length increases due to the second
coordinate.

Topographical distance Tψ(p, q) between pixels p, q ∈ X is equal to to-
pographical length of the shortest path π from p to q in X . The lengths are
compared in lexicographic sense.

The definition of topographical distance as a vector value allows to calculate
correctly the distance between points in images with arbitrary intensities. The
original definition of the topographical distance as a scalar value introduced in [8]
was restricted to a class of images with non-marked pixels having at least one
neighbor with lower intensity value. Such images do not contain non-minimal
flat regions (plateaus).

As it was stated above, the watershed points are located on the same topo-
graphical distance from markers of at least two different objects. If topographical
length lψ is used as path function, the watershed points are not always located
on the place with maximal absolute gradient value indicating the edge of objects.
Therefore we introduce a notion of a modified topographical distance which al-
lows to create a set of watershed points located on the areas with maximal
absolute gradient value.

Modified topographical length l′ψ(πk) of path πk is a path function defined
as follows:

l′ψ(π0) = (0, 0);

l′ψ(π1) =
{(

ψ(p1), 0
)
, if ψ(p1) > ψ(p0);(

ψ(p0), d(p0, p1
)
, if ψ(p1) � ψ(p0).

And for 1 < i � k:

l′ψ(πi) =
{(

ψ(pi), 0
)
, if ψ(pi) > maxj=0,...,i−1

{
ψ(pj)

}
;

l′ψ(πi−1) +
(
0, d(pi−1, pi)

)
, if ψ(pi) � maxj=0,...,i−1

{
ψ(pj)

}
.

The expression for l′ψ(πi), 0 < i � k can be rewritten in the following form:

l′ψ(πi) =
(

max
j=0,...,i

{
ψ(pj)

}
, 0

)
+ l(pi, pi−1, . . . , pi−n).
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Here n is calculated as follows:

n = max
{

t | 0 � t � i, ψ(pi−t) = max
s=0,...,i

{
ψ(ps)

}
}

.

Hence, pi−t is the first pixel of the path πk which has maximal intensity value
along the whole path.

For 0 < i � k the following relation is true:

C(pi) = l′ψ(πi) =
{(

ψ(pi), 0
)
, if ψ(pi) > Cx(pi−1),

C(pi−1) +
(
0, d(pi−1, pi)

)
, if ψ(pi) � Cx(pi−1).

Modified topographical distance T ′
ψ(p, q) between arbitrary pixels p and

q of graph G is equal to the modified topographical length of the shortest path π
from p to q in G. Here like above the shortest path is treated in the lexicographic
sense.

4 Algorithms Implementing Watershed Transformation

The algorithms implementing watershed transformation (see algorithms 1 and 2)
define the shortest paths between arbitrary nodes of image graph using ordered
queues [9, 10]. Now let us define operations with ordered queues. The operation
Enqueue

(
p, C(p)

)
pushes pixel p into the tail of queue with priority C(p). The

operation DequeueMin() pops one pixel from the head of the first non-empty
queue with minimal priority.

Let us discuss the algorithm of gray-scale image segmentation using a simple
metric (the distances to adjacent pixels equal to 1). Priorities of the queues in
this algorithm are scalars because ordered queues automatically sort pixels lying
along every path by the second coordinate of their costs: the closer (in the sense
of flat path) a pixel is from the object marker, the sooner it will be pushed into a
queue with priority equal to the first coordinate of its cost, and the earlier it will
be popped from the queue as compared to other pixels with the same priority.

The algorithm starts from the initialization step. At this step each marked
pixel p ∈ M gets a unique label λ(p) > 0 of the object it belongs to, and the cost
Cx(p) = 0. After that the pixel is pushed into a queue with priority Cx(p) (see
lines 9-13 of algorithm 1). Each not marked pixel p /∈ M gets cost Cx(p) = ∞ and
label λ(p) = 0. Not marked pixels are not pushed into queue (see lines 5-8). At
the initialization step all pixels of graph G are considered to be non-examined,
so they have flag TEMP (see lines 2-4).

At the second step (propagation) one pixel p is popped from the head of the
first non-empty queue with minimal priority by DequeueMin() operation (see
line 16). If it has flag TEMP (not examined before), then it already has the
minimal cost at the path from the marker, so it is now considered to be examined
and gets flag DONE (see lines 17-18). One distinction of the proposed algorithm
from the Lotufo-Falcão algorithm [5] is that in the algorithm 1 each pixel being
popped from the queue is checked to have flag TEMP . Therefore a not examined
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Algorithm 1. Gray-scale image segmentation by watreshed transformation (using a
metric defined by a unit neighborhood)
Require: Graph G of gradient image ψ; a set of markers M with indices in IM . The

priorities are scalars.
1: {Initialization}
2: for all p ∈ X do
3: flag(p) ⇐ TEMP ;
4: end for
5: for all p /∈ M do
6: Cx(p) ⇐ ∞;
7: λ(p) ⇐ 0;
8: end for
9: for all p ∈ M do

10: Cx(p) ⇐ 0;
11: Enqueue(p, Cx(p));
12: λ(pi) ⇐ i, i ∈ IM , i > 0;
13: end for
14: {Propagation}
15: while Queue not empty do
16: p ⇐ DequeueMin();
17: if flag(p) == TEMP then
18: flag(p) ⇐ DONE;
19: if λ(p) �= w then
20: for all neighbor q of p and flag(q) == TEMP do
21: C′

x(q) ⇐ max{Cx(p), ψ(q)}
22: if C′

x(q) < Cx(q) then
23: Cx(q) ⇐ C′

x(q);
24: λ(q) ⇐ λ(p);
25: Enqueue(q,Cx(q));
26: else
27: if C′

x(q) == Cx(q) andλ(q) �= λ(p) then
28: λ(q) ⇐ w, w /∈ IM ;
29: end if
30: end if
31: end for
32: end if
33: end if
34: end while

pixel may have several ”copies” in the queue. A pixel popped in that way will
always have the minimal cost and, consequently, there is no necessity to check
the queue for the presence of its ”copy” each time it is pushed into the queue,
as it is done in Lotufo-Falcão algorithm. If pixel p does not belong to a set of
watershed points, then each its neighbor q ∈ X having flag TEMP is determined
(see lines 19,20). Then the cost of each pixel q is calculated relative to the path
passing through pixel p: C′

x(q) = max
{
Cx(p), ψ(q)

}
and if pixel q had cost

C′
x(q) < Cx(q), it gets a new cost Cx(q) = C′

x(q) and label λ(p) ∈ IM showing
that pixel q now belongs to the same object as pixel p. Besides, pixel q is pushed
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Fig. 1. Catchment basins for two selected markers using modified topographical dis-
tance T ′

ψ. Gradient image ψ is shown by bold line. Modified topographical distance
from marker m1 to other pixels (top row) and from marker m2 to other pixels (lower
row) is shown in the brackets.

into the tail of queue with priority C′
x(q) (see lines 21-25). If pixel q has been

already pushed, the first ”copy” of this pixel being popped from the queue has
the least priority (and therefore the least cost). All other ”copies” of this pixel
having greater priority when popped from the queue will already have the flag
DONE and will not be examined (see line 17).

If pixel q is located on the same distance from markers of different catchment
basins and has cost C′

x(q) = Cx(q) and label λ(p) �= λ(q), then this means that
the pixel belongs to a set of watershed points and gets new label w /∈ IM (see
lines 26-29). The algorithm finishes when the queue is empty. Each pixel p having
label λ(p) ∈ IM belongs to the object corresponding to this label. If graph G
is connected, all pixels not belonging to the watershed should have the label
λ(p) ∈ IM . If pixel p has label λ(p) = w /∈ IM , it belongs to the set of watershed
points.

The set of watershed points, that is built by the proposed algorithm, not
necessarily forms a closed contour lying at object edges (see fig. 1). If width of
the segment of pixels with maximal cost (emphasized by gray color at the fig.1)
is even, then there is no watershed point, since no pixels of the path lie on the
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Algorithm 2. Gray-scale image segmentation by watreshed transformation (using
chamfer (a, b)-metric)
Require: Graph G of gradient image ψ; a set of markers M with indices in IM . The

priorities are 2D vectors.
1: {Initialization}
2: for all p ∈ X do
3: flag(p) ⇐ TEMP ;
4: end for
5: for all p /∈ M do
6: C(p) ⇐ (∞, ∞);
7: λ(p) ⇐ 0;
8: end for
9: for all p ∈ M do

10: C(p) ⇐ (0, 0);
11: Enqueue(p, C(p));
12: λ(pi) ⇐ i, i ∈ IM , i > 0;
13: end for
14: {Propagation}
15: while Queue not empty do
16: p ⇐ DequeueMin();
17: if flag(p) == TEMP then
18: flag(p) ⇐ DONE;
19: if λ(p) �= w then
20: for all neighbor q of p and flag(q) == TEMP do
21: if ψ(q) > C(p) then
22: C′(q) ⇐ (ψ(q), 0);
23: else
24: C′(q) ⇐ C(p) +

(
0, d(p, q)

)
;

25: end if
26: if C′(q) < C(q) then
27: C(q) ⇐ C′(q);
28: λ(q) ⇐ λ(p);
29: Enqueue(q,C(q));
30: else
31: if C′(q) == C(q) andλ(q) �= λ(p) then
32: λ(q) ⇐ w, w /∈ IM ;
33: end if
34: end if
35: end for
36: end if
37: end if
38: end while

same distance from both markers m1 and m2 (see fig.1a). The path illustrated in
the fig. 1b includes the watershed point lying on the same distance from the both
markers. This feature of the algorithm makes information about watershed points
almost useless for extraction of object contours. Watershed points are extracted
merely to show that they may belong to any adjacent object. Therefore, user can
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put them to any object at his discretion using some extra information contained
in the image. If watershed points are unnecessary, the algorithm can be modified
not to extract them, but put them to any adjacent catchment basin. It can be
done by just removing the lines 19, 26-29, 32 of the algorithm 1 and substituting
”<” by ”�” in the line 22.

Let us consider the algorithm of gray-scale image segmentation using chamfer
(a, b)-metric (see fig. 2). In this case the priorities are vectors, because the dis-
tances to adjacent pixels are different and, therefore, different pixels get different
second coordinate of the cost value. The segmentation algorithm (see algorithm
2) is similar to the algorithm 1. The only distinction is in using vector costs
of pixels and increasing the second coordinate of the cost in accordance with
chamfer (a, b)-metric.

Fig. 2. The illustration of chamfer (a, b)-metric for two-dimensional rectangular lattice.
Central pixel is emphasized with gray color. There are two groups of neighbor pixels:
the distance to one group is a, and that to another group is b.

If watershed points are unnecessary, the algorithm 2 can be modified not to
extract them, but put them to any adjacent catchment basin. It can be done by
removing the lines 19, 30-33, 36 of the algorithm 2 and substituting ”<” by ”�”
in the line 26.

5 Algorithm Discussion

Fig. 3 shows the results of a synthetic image segmentation containing an ellip-
sis against a homohenious background. This figure illustrates ”the reaction” of
algorithms to ”the noise”. One can see that chamfer metric gives better results
as compared with the metrics defined by a singular vicinity. Ideally the image
should have been divided into halves.

Fig. 4 shows the result of segmentation of a 3D tomographic image of pelvis
given by algorithm 1. Markers are selected automatically where intensities exceed
some threshold value. The time of segmentation of the image with 512*512*136
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(a) (b) (c) (d)

Fig. 3. The result of segmentation by the proposed algorithms
(a) Gradient image to be segmented. Markers are noted with numbers at image corners.
(b) Result of segmentation by algorithm 1 using ”city block” metric.
(c) Result of segmentation by algorithm 1 using ”chessboard” metric.
(d) Result of segmentation by algorithm 2 using chamfer (a, b)-metric with a = 3,
b = 4.

Fig. 4. CT image segmentation by a watershed algorithm

voxels, 16 bits per voxel by algorithm 1 without extracting watershed points is
about 800ms. Not optimized algorithm 2 does it in about 4.5 seconds.

6 Conclusion

The paper formulates the notion of watershed transformation in terms of graph
theory. Presented graph approach abstracts from specific metric and topology
of the image, allowing to be applied to various data sets. The chamfer met-
ric allows approximate more precisely Euclidean metric when calculating path
lengths. Two algorithms of segmentation are presented: using a metric defined
by singular neighborhood, and using chamfer (a, b)-metric. These algorithms use
ordered queues permitting effective implementation. Unlike the similar algorithm
proposed by Lotufo and Falcão, the presented in this paper algorithm gives more
accurate result and allows extending for the Euclidean metric.

The work was partially carried out in the framework of INTAS N 04-77-7003
project.
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