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Abstract. We consider the two-projection tomography problem, assum-
ing a priori known prohibited region. We show that a modification of
Ryser’s reconstruction algorithm gives a solution. We then study the re-
lation of the switching graph for the solution sets with and without the
prohibited region. Finally, we apply our idea to get a better reconstruc-
tion figure imposing prohibited region artificially.

1 Introduction

We consider the reconstruction problem of a discrete plain figure F contained
in a rectangle I from its two projections fy(x) and fx(y) along the y- and x-
axis, respectively. This is equivalent to finding a binary matrix from its column-
and row-sums, but we prefer the geometric notation better related with the
continuous tomography. See [11] for general reference on this problem. In this
report we assume that F is a priori known to have no building cell (that is, filled
with 0 for the binary matrix formulation) in a subregion J of I, and consider
the reconstruction problem with this constraint.

We show that under the assumption of uniqueness for J Ryser’s algorithm
for the reconstruction without constraint can be modified to obtain a solution
of this problem. Then we study the structure of the solution set by means of a
graph, extending our former work [7] for the full solution set without constraint.

Then we apply our idea to obtain a better solution of the reconstruction
problem without constraint, by setting artificial constraint as a priori knowledge.
This works faster than the strategy of successive improvement adopted so far.
In the final section we try characterization for the prohibited region.

The reconstruction problem with rectangular constraint was considered by
Brualdi and Dahl [3]. In [4] an equivalent result for unique figure J is announced
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without proof. We hope that our reconstruction algorithm is simple and practi-
cal. As further related works, Fulkerson [5] considered reconstruction of binary
square matrices with zero diagonal, which is a typical non-unique figure. Also,
Kuba [10] studied problem of reconstruction with prescribed 1’s, which is inti-
mately related with the present problem, but not equivalent (see Remark 1 (2)
of §2). The work of Anstee [1] can also be understood of reconstruction with
prescribed 1’s. We thank the referee for informing us these references.

2 Setting of the Problem and Reconstruction Algorithm

Let I denote the rectangular region a ≤ x < b, c ≤ y < d in the first quadrant of
RRR2, where a, b, c, d ∈ ZZZ. Let F be a subregion of I which is the union of integer
cells Cij := [i, i + 1) × [j, j + 1). We shall denote its characteristic function also
by F . Thus its y-projection fy(x), or x-projection fx(y) is defined as

fy(x) =
∫ d

c

F (x, y)dy, fx(y) =
∫ b

a

F (x, y)dx. (1)

These take integer values, representing the number of cells in the respective
columns or rows. The reconstruction problem from the two projections is to find
F from the projection data f = {fy(x), fx(y)}. Define the arrangements by

fxy(x) = meas{y; fx(y) ≥ x}, fyx(y) = meas{x; fy(x) ≥ y},
fyxy(x) = meas{y; fyx(y) ≥ x},

where meas denotes the one-dimensional length. In the discrete case, this is
equivalent (modulo measure 0) to the permutation of the columns or rows in
decreasing order and finally view all from the x-axis. Then the consistency con-
dition, that is, the condition for the existence of a solution, given by Lorentz,
Gale and Ryser is

∀x

∫ x

0

fxy(t)dt ≥
∫ x

0

fyxy(t)dt, and
∫ ∞

0

fxy(t)dt =
∫ ∞

0

fyxy(t)dt,

The uniqueness of the solution is assured if and only if the equality holds for all
x in the first inequality above. For further information about this problem see
the survey article [11]. We here recall only necessary materials.

First we review Ryser’s reconstruction algorithm in a form given in [6]. We
shall call this hereafter the Ryser-Kaori algorithm without constraint.

1. Choose the tallest column from fy(x). In case of tie, choose the leftmost one.
2. Remove this column from fy(x) and at the same time, remove the same

number of cells from fx(y) one for each row by the strategy of the longest
row first.

3. Modify the graph of fx(y) crashing the removed cells toward the y-axis.
4. Return to 1 if there still remain cells in the projection data.
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Now we have a subregion J ⊂ I where we should not place any cell in recon-
struction. In what follows we assume that J constitutes a unique figure, that is,
there is no other figure having the same projection data. Note the following.

Lemma 1. J is unique if and only if by a permutation of columns and rows it
is brought to the form of Lorentz’s renormalization of the projections, that is,
to the form of union of height-decreasing adjacent subrectangles with the lower
edge common to that of I (see Figure 1) :

J = J1 ∪ J2 ∪ · · · ∪ Jr. (2)

In fact, the sufficiency is obvious. For the necessity, we can obviously find a
permutation bringing the y-projection fy(x) to the monotone decreasing form.
Then by the assumption of uniqueness, the y-projection fxy(x)of the x-projection
fx(y) agrees with this. Since the y-projection is achieved by a permutation of
rows, after these two permutations the y- and x-projection of J agree with this
monotone figure. In view of the uniqueness, J itself has the same form.

Thus, we shall assume henceforth without loss of generality that J has the
above form (2).

J
I

x

y

f ( )x

xf ( )y

yf ( )xyxy

f ( )xxy

Fig. 1. Figure with prohibited region and its projections

Now we explain the reconstruction algorithm. We assume that the projection
data are J-consistent, that is, there exists at least a solution with J as prohibited
region.

1. For i = 1 to r do
2. Choose the tallest column from fy(x) among those above Ji. In case

of tie, choose the leftmost one.
3. Remove this column from fy(x) and at the same time, remove the

same number of cells from fx(y) one for each level by the strategy of
the longest level first, but among the rows not touching Ji.

4. Modify the graph of fx(y) crashing the removed cells.
5. Return to 2 if there still remain cells above Ji.
6. End for.
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Theorem 1. The above algorithm successfully gives a reconstruction figure
which does not contain any cell in J , provided that the projection data are
J-consistent.

Proof. We proceed by the induction of the total number of cells in the figure.
The case of one cell is trivial. Assume that the assertion is true for any J and for
any J-consistent projection data up to n cells, and consider a problem with n+1
cells. By the assumption of J-consistency, there exists a solution figure F which
we may not know concretely. Following the above algorithm, we first choose the
tallest column among those above J1. For each cell in this column, we pick up
a cell from fx(y) at the longest row not touching J1. If the chosen cell exists in
the figure F , we are correctly diminishing the data. If we chose a cell, say P ,
from a row where there was no cell in that column of the figure F , then there
should exist a cell of F , say P ′, in the column of P which was not chosen by the
reconstruction algorithm. On the other hand, P comes from a cell of F , say Q,
in another column by x-projection, There are several candidates of such Q, but
we claim that among them there is at least one such that P ′ and Q constitute
a switching component in F , that is, the place R in Figure 2 is vacant. In fact,
if all the counterparts in the row of P ′ are occupied by the cells of F , then the
x-projection at the row of P ′ will have length greater than that at the row of
P . This violates the rule of algorithm that we should pick up the cell from the
longer rows of fx(y) first. This argument applies to all cells chosen in relation to
this column. Thus after removing the column from fy(x) and the corresponding
cells from fx(y) there remain projection data which come from a true figure F ′

obtained by several switching as mentioned above from F . This means that the
remaining projection data are J-consistent, and by the induction hypothesis, we
can obtain a solution of reconstruction with the constraint. By adding the first
treated column to this solution, we obtain a solution for given size. �	

P

J

x
f ( )xy

1

P’

Q Q Q

R R R

’ ’’

’’’

Fig. 2. Proof of justification of reconstruction algorithm

The converse is obvious: if our algorithm ends up using all the cells in the pro-
jection, we obtain a reconstruction with the given constraint J . Thus it presents
a practical criterion for the J-consistency.

Remark 1. (1) The direct application of Ryser-Kaori algorithm, that is, process-
ing from the tallest of all columns ignoring J , does not work. Figure 3 is such
an example.
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(2) One may think of an alternative algorithm such as filling the prohibited
region by cells and applying Ryser-Kaori algorithm without constraint, then
removing the cells in the prohibited region will give a desired solution. But in
general it is not easy to obtain a reconstruction of which the prohibited region
is filled with cells. See, however, §5 in this respect.

J I

Fig. 3. Necessity of modification of reconstruction order

3 Switching Graph

It is well known that a figure is non-unique, namely, there is another figure with
the same y- and x-projections, if and only if it contains a switching component.
For a non-unique figure we can relate a graph to the solution set by considering
each solution as a vertex, and connecting a pair of solutions by an edge if and
only if they are transformed by one switching operation. This graph seems to
have been first introduced by Brualdi [2] under the name of interchange graph.
Later, [9] re-intruduced it and called Ryser graph. Ignoring these, we called it
the switching graph and studied its properties with many examples. Further we
gave a direction to each edge showing the type modification from type 2 to type
1 (see Figure 4), thus producing the switching digraph ([7]). Since we employ in
the sequel permutation of columns and rows which may change the direction of
engaged edges, we only consider the switching graph in this paper.

Fig. 4. Switching components and switching operation: type 2 (left) and type 1 (right)

We shall denote by GJ the switching graph for the solution set with constraint
J , and simply call it the J-constraint switching graph. If distinction is preferable,
we shall call the switching graph G of all the solutions without constraint the
full switching graph and further add the projection data like G[f ] or GJ [f ]. It is
obvious from the definition that for any J (not necessarily unique) GJ becomes
a full subgraph of G. Although G is known to be connected by Ryser’s theorem,
it is not obvious if GJ is connected, too. We shall first establish this.

Theorem 2. Let J be a prohibited region which is a unique figure. Then the J-
constraint switching graph GJ is a connected full subgraph of the full switching
graph G.
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Proof. The prohibited region J is constructed step by step, by adding a cell each
time from left and from bottom, so that

∅ = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jm = J,

where each Jk consists of k cells in the renormalized form, that is, consists of sub-
rectangles with the bottom edge on the x-axis and with decreasing heights. The
corresponding constraint switching graphs GJk

constitute a decreasing sequence
of full subgraphs

G = GJ0 ⊃ GJ1 ⊃ GJ2 ⊃ · · · ⊃ GJm = GJ .

Assume that GJ is not connected. Since G is connected, there exists the minimal
k such that Gj , j = 0, 1, . . . , k is connected but Gk+1 is not. Note that Jk+1 =
Jk∪{P}, for some cell P . Let A, B be two vertices of GJk+1 which are connected
by a path γ in GJk

, but never in GJk+1 . We can assume that the other vertices
of γ are not in GJk+1 , and moreover, γ is the shortest among such paths. These
vertices are obtained from A by several switching operations employing the cells
of A and using the place or cell at P . Since the region to the left and below P are
totally contained in Jk, the cells of A participating in the switching operations
together with P must lie to the right and above P . Thus in observing what
happens along the path γ we can restrict our consideration inside this rectangle.
(There may be cells below P and to the right of Jk, or above Jk and to the
left of P . But these do not mutually switch. Hence the argument below is not
essentially affected by these cells.) This means that we can only consider the
case where J consists of a single cell to the leftmost and the lowest place, which
we shall denote by J by abbreviation of notation, just like the initial step of an
induction argument.

Note also that since J is in the prohibited region, the figure A does not have
a cell at J . By the same reason, the figures corresponding to the vertices of γ
other than the endpoints should all have a cell at J . In fact, if there exists a
vertex C in the midst, which does not contain J in its cell, then it is a due vertex
of GJk+1 , hence either of the subpaths AC or CB would be a path shorter than
γ and connecting two vertices in GJk

which are disjoint in GJk+1 . This violates
the choice of γ. Just by the same reason, vertices not adjacent to the endpoints
of γ do not contain any cell which constitute a switching component with J .

Thus we assume hereafter that J is the left-lower corner cell of I and show a
contradiction, assuming that γ is a minimal path connecting two vertices A, Z
of G1 in G. The first edge of γ corresponds to the switching of P, Q ∈ A bringing
P to the hole J , and Q to some vacant place Q′ in I \ J , thus producing a new
figure B, the second vertex of γ. First note that

(0) Z can never be the next vertex of B.

In fact, if so, J must switch with another cell R, as in Figure 5. But if position U
is vacant in A, then we can execute this modification without using the position
J , namely as a path in G1, by the series of switchings Q-R, P -U . On the other
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hand, if U is occupied, then the same modification is also realized as a path
in G1 by the switchings P -U , Q-R. Thus the vertex C next to B should be
in G \ G1. The passage from B to C, or more generally, any inner edge of γ,

P
J

’

Q

R
’P

J

Q
R

’
P
J

Q

R

A B Z

U

Fig. 5. Case where the length of γ is 2

never corresponds to the switching of cells independent of those touched before,
because otherwise, that switching could be preprocessed before the first edge,
thus shortening γ. Hence the second edge B to C corresponds to either of

(i) the switching of Q′ with another cell R ∈ I \ J (see Figure 6 upper),
(ii) the switching of a new pair R, S in I \ J executed using the vacant place

after P or Q moved.

Since the essence of the problem does not change by the reflection with respect
to the diagonal passing through J , we can assume without loss of generality that
it is the place of Q which is used in (ii), as in Figure 6 lower.

P
J

’

Q

R ’’

P
J

Q
R

’P
J

Q

R

U

V

A B C

P

J

’

Q

R
P

J

Q
R ’

P

J

Q

R

A B C

S S

S
’

’

Fig. 6. Path A–B–C; upper: case (i), lower: case (ii) (only concerned cells are shown)

Let us consider case (i). Note that R can never be in the same column as P .
In fact, if so, we may directly switch R with Q, obtaining the same figure C,
thus shortening γ. Hence the above Figure 6 represents the general situation.
Next note that the places denoted U , V in A are both occupied by the cells of
A. In fact, assume e.g. that U is vacant. Then, we can preprocess the switching
of Q and R, to Q′′ and U . Then the above portion of γ is shortened to one
edge corresponding to the switching of P and U . The same is true of V . Now
we have to consider the next edge. Assume first that it ends at Z. Then a new
cell S switches with J . In this last figure, however, we can see the switchable
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P
J
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Q
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Q
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J

Q

R
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’P
J

Q

R

Z

S

S’
U

Fig. 7. Case (i) where γ = path A–B–C–Z
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Fig. 8. Shortened path A–B′–Z′–Z

pair Q′′-U . After switching this, we obtain another figure Z ′ contained in G1,
which can be connected with A by a shorter path as in Figure 8. This contradicts
the minimality of γ. There is a case where S is in the same row as P , but the
conclusion is the same.

Thus the above path continues to one more inner vertex A–B–C–D with
D ∈ G \G1. We can show in this way that we can never reach the end vertex Z.
See [8] for the detailed proof. The case (ii) can be discussed similarly. �	
Remark 2. When the prohibited region J is not unique, the connectivity of GJ

is not necessarily assured. Figure 9 presents such an example. There GJ consists
of the two shadowed vertices to the right at the top and the bottom of G.

J

Fig. 9. Example of disconnected constraint switching graph

4 Experiments

We apply our construction to discretized slant ellipse. Figure 10a is the original
figure. Figure 10b is the Ryser-Kaori reconstruction without constraint, and
Figure 10c the type 2 to 1 modification. The value indicated in each figure
denotes that of the standard weight function introduced in [6], which increases
by the type modification:

w(F ) :=
∑

Cij⊂F

ij, where Cij = [i, i + 1) × [j, j + 1).
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If we apply the combination of randomized regression and type 2 to 1 modifica-
tion, we soon fall in a strong local maximum as in Figure 10d hard to get rid
of. On the other hand, if we apply our algorithm with prohibited region J as in
Figure 10g, we obtain Figure 10e. The type 2 to 1 modification with J-constraint
gives Figure 10f. This time, a number of regression and type 2 to 1 modification
with J-constraint easily regains the original figure as shown in 10g.

a. 174074 b. 160008 c. 168356 d. 168735

e. 159944 f. 170293 g. 174074

Fig. 10. Reconstruction of slant ellipse

5 Condition for Prohibited Region

In the above experiment, we have set a prohibited region from the known orig-
inal figure. It is, however, desirable that we can set such a region only on the
knowledge of the projection data. We therefore examine here a necessary and
sufficient condition for J which allows at least one reconstruction for the given
projection data. In this section we treat general subsets as prohibited region and
do not necessarily require their uniqueness.

Lemma 2. Let J be unique, and let f = {fy(x), fx(y)}, f ′ = {f ′
y(x), f ′

x(y)} be
two pairs of J-consistent projection data. Assume that

∀x fy(x) ≤ f ′
y(x), ∀y fx(y) ≤ f ′

x(y), ‖f ′
y − fy‖L1 = 1, ‖f ′

x − fx‖L1 = 1,

that is, they are different only by one cell. Then there exist reconstruction F
from f and F ′ from f ′, each with J-constraint, such that the Hamming distance
of F, F ′ is equal to 1, that is, differing only by one cell.

Proof. We shall assume that the columns and rows are so arranged that J has
the renormalized form. We proceed by induction on the size n of f . For n = 0, the
assertion is trivial. Let it be true for any J and for any J-consistent projection
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data, where f has up to n − 1 cells, and consider the case of n cells. We apply
the modified Ryser-Kaori algorithm for reconstruction with J constraint. Let us
take the tallest column from fy(x) in the range of J1. By permutation of these
columns, we can assume without loss of generality that this column is leftmost
and that it is the tallest of f ′

y(x) among J1, too. In fact, if this is not the case, it
means that the cell was added to another column of fy(x) of the same height in
the range of J1. Then we could take this latter column from the beginning. Now
process the lowest cell of this column by the modified Ryser-Kaori algorithm and
stop. This should produce the same cell P outside J to the reconstruction figure.
By the permutation of rows above J1, we can assume without loss of generality
that P is just the next cell above the leftmost column of J1, hence J ∪ {P} is
still a unique figure. Since this algorithm can be continued to finally produce
a legitimate solution with J constraint for each projection data, the remaining
projection data should be J ∪{P}-consistent, and have n−1, resp. n cells. Thus
by the induction hypothesis, these should have at least one reconstruction F0,
F ′

0 with J ∪ {P}-constraint of Hamming distance = 1. Then F = F0 ∪ {P},
F ′ = F ′

0 ∪ {P} will be a desired pair of reconstructions with J-constraint. �	
Lemma 3. Let f = {fy(x), fx(y)} be a consistent pair of projection data. Then
for a cell P , the projection data augmented by P , f + proj(P ), is consistent if
and only if there exists a reconstruction F for f for which the place P is vacant.

Proof. The sufficiency is obvious: if f admits a reconstruction F for which the
place P is vacant, then, the augmented projection data will be those for a valid
figure F∪{P}. Let us prove the necessity. Assume that the augmented projection
data is consistent. Then there are reconstructions for the augmented data. If
there is one F ′ among them for which the place P is filled, then, F = F ′\{P} will
be a reconstruction for the original data with the place P vacant. Thus assume
that the place P is always vacant in any reconstruction F ′ for the augmented
projection data and nevertheless that P is always present in any reconstruction
F for the original data. Then the Hamming distance of F and F ′ gains one at P ,
and at least 2 outside P , because |F \{P}| = n−1 and |F ′ \{P}| = |F ′| = n+1.
Thus it is ≥ 3, contradicting Lemma 2 (applied with J = ∅). �	
Employing Lemma 3 repeatedly, we can add a cell at any place as well as the cor-
responding augmentation of the projection data keeps the consistency of Lorentz-
Ryser. Thus we can finally reach a unique figure. But this does not imply that
we can adopt the place of thus added cells as the constraint set. We have, how-
ever, the following criterion for prohibited region which is verifiable only from
the projection data:

Theorem 3. Let f = {fy(x), fx(y)} be a consistent projection data. A region
J (not necessarily unique) can be set as a prohibited region to the data f if
the augmented projection data f + proj(J) satisfies the consistency condition of
Lorentz-Ryser, and if J is incrementally constructed cell by cell in such a way
that each column is filled until it is maximal satisfying the consistency. Any (not
necessarily unique) subset of a set constructed in this way is again an admissible
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prohibited region. Especially, we can construct a subregion J such that I \ J is a
reconstruction from f .

Thus a subregion of such J consisting of rectangles in the renormalized form can
serve for our discussion hitherto.

Proof. Since the order of adding cells is inessential, we can assume without loss
of generality, that we add cells starting from the leftmost column and proceed
upward, verifying the consistency cell by cell. In view of Lemma 3, the first cell
can be added if and only if f admits a reconstruction with this cell vacant. Hence
this cell certainly constitute a part of J . Assume that we proceed in the first
column and successfully added J0k =

⋃k
j=0 C0j , where C0j = [0, 1) × [j, j + 1),

having a reconstruction from f + proj(J0k) with these cells filled. The next cell
C0,k+1 can be added, again in view of Lemma 3, if there exists a reconstruction
from f + proj(J0k) with this cell vacant. But this may have also vacant place
among J0k. We claim that nevertheless there is a reconstruction with J0k filled
and with C0,k+1 vacant. This is not obvious, but can be proved by an elementary
argument similar to that of Theorem 2. We omit the details. If on the other hand,
C0,k+1 cannot be added, it is filled for all reconstructions from f + proj(J0k),
hence especially for those with J0k filled. Thus we proceed to the next upper cell.
Continuing this, we finally fill whole the first column with original and added
cells. Therefore this column does not concern the problem hereafter, and the
argument goes just in the same way with the next column. �	
Though the cell-handling order can be arbitrary, a well arranged one is prefer-
able to obtain a better figure. In Figure 11 we show two examples against the
projection data of Figure 10a. In each figure, the black region shows J and the
complement presents a reconstruction canonical in some sense.

Remark 3. We cannot omit the assumption of maximality of J in the above
theorem. Actually we have a counter-example as in Figure 12. This shows in the

Fig. 11. Reconstructions of slant ellipse with maximal prohibited region; left: from
leftmost column; right: from the highest column

1 2 2 3 1 2 3

Fig. 12. Counter example without the assumption of maximality
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same time that the assertion “if f , f ′ are two pairs of consistent projection data
and f ∪ f ′ is also consistent, then there exist reconstructions F , F ′ of f , f ′ such
that F ∩ F ′ = ∅” is false even if all projections are unique.

In general, it is difficult to find the relation between switching graphs G[f ]
and G[f ∪ proj(J)]. We now see, however, that they are connected through the
common connected full subgraph GJ [f ].
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