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Abstract. In this paper we define the notion of gap in an arbitrary dig-
ital picture S in a digital space of arbitrary dimension. As a main result,
we obtain an explicit formula for the number of gaps in S of maximal
dimension. We also derive a combinatorial relation for a digital curve.
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1 Introduction

A gap is a location in a digital picture (that is any finite set of pixels/voxels
in 2D/3D) through which a “discrete path” can pass. Gaps are considered in
rendering pixelized/voxelized scenes, which is done by casting digital rays from
the image to the scene [1, 2]. Therefore, it is useful to know whether a digital
picture has gaps of certain type or is gap-free. This is particularly interesting
when dealing with digital curves or surfaces. It is also helpful to have an estima-
tion for the number of gaps (if any) in a considered digital object, possibly as a
function of other object parameters. Such kind of information may help better
understand the topological structure of a binary picture and is of potential inter-
est in property-based image analysis. Of special interest are the gaps of maximal
dimension (to be defined later) since they can be penetrated by a digital ray
of any connectivity. Moreover, estimations of the number of such kind of gaps
may be useful for evaluating the performance of some polyhedra decomposition
algorithms (see comments in Section 4). Moreover, digital picture gap-freeness
appears to be equivalent to the notion of well-composedness of a set of pixels
proposed by Latecki, Eckhardt, and Rosenfeld [3]. This last paper demonstrates
the advantages of using well-composed (gap-free) sets in image analysis.

Theoretical studies of this sort are related to combinatorial topology, but are
also of interest in several other disciplines, such as digital geometry, combina-
torial image analysis, and theory of computer graphics. A classical result is the
famous Descartes-Euler formula v−e+f = 2 that relates the number of vertices
(v), edges (e), and facets (f) of a polytope. For various applications of this last
formula and other similar results to image analysis and digital geometry, see
Chapters 4 and 6 of [4].
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Conditions for existence of gaps in digital lines and planes are available, e.g.,
in [5,6,7]. The notion of gap has been used in higher dimensions, too [8]. However,
a rigorous definition that applies to arbitrary digital pictures is still missing.
Approaches to estimating the number of gaps have been, overall, unclear.

A recent work [9] provided the formula

g = v − 2(p + c − h) + b, (1)

where g is the number of gaps, v the number of vertices, p the number of pixels, h
the number of holes, c the number of connected components, and b the number
of 2 × 2 grid squares in a digital picture. For another similar result we refer
to [10].

In the present paper we define the notion of gap in arbitrary dimension and
obtain a formula for the number of gaps of maximal dimension n. We also derive
a combinatorial relation for an n-dimensional digital curve.

In the next section we introduce some basic notions and notations of digital
topology. In Section 3 we present our main results. In Section 3.4 we comment
on a computer program that was developed to facilitate our theoretical research.
We conclude with some remarks in Section 4.

2 Preliminaries

In this sections we introduce some basic notions of digital geometry to be used
in the sequel. We conform to terminology used in [4] (see also [11]).

All considerations take place in the grid cell model that consists of the grid
cells of Z

n, together with the related topology. In the grid cell model we represent
n-cells as hyper-cubes, called hyper-voxels, or voxels, for short. Their edges and
vertices are 1-cells and 0-cells, respectively. For every i = 0, 1, . . . , n, the set of
all cells of dimension i (or i-cells) is denoted by C

(i)
n . Further, we define the space

Cn =
⋃n

k=0 C
(i)
n . We say that two n-cells e, e′ are k-adjacent for 0 ≤ k ≤ n − 1

if they share a k-cell. Two n-cells are strictly k-adjacent if they are k-adjacent
but not (k + 1)-adjacent.

A digital object S ⊂ Cn is a finite set of n-cells. A k-path (0 ≤ k ≤ n−1) in S
is a sequence of voxels from S such that every two consecutive voxels on the path
are k-adjacent. Two voxels of a digital object S are k-connected (in S) iff there is
a k-path in S between them. A subset G of S is k-connected iff there is a k-path
connecting any two pixels of G. The maximal (by inclusion) k-connected subsets
of a digital object S are called k-components of S. Components are nonempty,
and distinct k-components are disjoint.

The grid cell model can be considered as an abstract cell complex (Cn, <, dim)
(see [12]), where < is a bounding relation, that is antisymmetric, irreflexive, and
transitive, and such that for every e, e′ ∈ Cn, e < e′ if and only if eIe′ and
dim(e) < dim(e′). The relation < is a partial order on Cn. The corresponding
order topology τ(<) is called the grid cell topology.1 In the rest of the paper,
1 In that topology the open sets are precisely the sets U ⊆ Cn, such that, for every

u ∈ U and every v ∈ Cn with u < v, we have v ∈ U .
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we will assume that the abstract cell complex (Cn, <, dim) is equipped with the
topology τ(<). Then, for any subset A of Cn, its boundary ∂A is defined as the
set of all points x of Cn such that every open neighborhood of x meets A and
Cn \ A, while its interior int(A) is the set of all points x of Cn such that there
exists some open neighborhood of x contained in A. The points of int(A) will
be called internal points of A.

Given a digital object S, note that its closure S̄ is naturally a subcomplex of
Cn. In the sequel, we will denote by Sk the set of k-cells of S̄, i.e., Sk = S̄∩C

(k)
n .

In particular, we have Sn = S̄ ∩ C
(n)
n = S.

3 Combinatorial Relations

In this section we first introduce the notions of tandem, gap, and brim of arbi-
trary dimension. Then we obtain a formula for the number of gaps of maximal
dimension and a combinatorial relation for digital curves.

3.1 Tandems, Gaps, and Brims

A 2 × · · · × 2
︸ ︷︷ ︸

k

× 1 × · · · × 1
︸ ︷︷ ︸

n−k

grid parallelepiped in Cn will be called 2k1n−k-block

(0 ≤ k ≤ n). In particular, any voxel is a 1n-block. See Figure 1a for illustrations.

(a) (b) (c)

Fig. 1. Illustration to some notions in 3D. (a) Top: 23-block; Bottom: 2211-block. (b)
Top: 0-tandem; Bottom: 1-tandem. (c) Top: Configuration exposing a 0-gap (in two
different orientations); Bottom: Configuration exposing a 1-gap.

Now we are able to give the following definition.

Definition 1. A pair tk = (v1, v2) of two strictly k-adjacent voxels v1 and v2,
for 0 ≤ k ≤ n − 1, is called a k-tandem. Then the complement of tk w.r.t. a
2n−k1k-block, for 0 ≤ k ≤ n − 2, determines a k-gap of S.
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Remark 1. Technically, the complement of an (n− 1)-tandem to a 211n−1-block
can be considered as a (n − 1)-gap. These are similar to “tunnels” known in
classic combinatorial topology, see [4]. Since tunnels are well-studied object of
essentially diverse type, we will not consider them here.

There are n − 1 types of gaps: 0, 1, 2, . . . , and (n − 2)-gaps. For a given digital
object S, the number of its tandems and gaps will be denoted by b0, b1, . . . , bn−1

and g0, g1, . . . , gn−2, respectively. Figure 1b,c illustrates tandems and gaps in
dimension three.

(a) (b)

Fig. 2. (a) Possible 1-brims in 2D. (b) Possible 2-brims in 3D.

In the sequel we will also use the following technical notion.

Definition 2. Let c ∈ ∂Sk−1 for some k (1 ≤ k ≤ n) and let bk(c) be the set
of elements of ∂Sk incident to it. Then the pair brk(c) = (c, bk(c)) is called a
k-brim of S. We will say that brk(c) is hinged on c.

Basically, k-brims of a digital object delineate its “k-dimensional” boundary. A
set of voxels in a digital object will be called configuration. Figure 2 displays
possible configurations of pixels/voxels that expose 1-brims in C2 and 2-brims
in C3. (Note that there is one-to-one correspondence between both. There are
19 distinct configurations of voxels that expose 1-brims in C3.)

3.2 Formula for the Number of (n − 2)-Gaps

For a given digital object S ⊂ Cn, let si = |Si|, 0 ≤ k ≤ n. In this section we
prove the following theorem.

Theorem 1. For a given digital object S ⊂ Cn,

gn−2 = −2n(n − 1)sn + 2(n − 1)sn−1 − sn−2 + b, (2)

where b is the number of 221n−2-blocks of S.

Proof. For any c ∈ Sk−1, 1 ≤ k ≤ n − 1, we define

Ik(c) = {c′ ∈ Sk : c is incident with c′}.
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We also define

intSk−1 ={c ∈ Sk−1 : c ∈ intS}
∂Sk−1 ={c ∈ Sk−1 : c ∈ ∂S}

∂Sk ={c ∈ Sk : c ∈ ∂S}
It is easy to see that a (k − 1)-cell belongs to intSk−1 iff it is incident with
2n−(k−1) n-cells of S. Otherwise, it belongs to the boundary of S.

For c ∈ Sn−1 we can consider In(c) = {c′ ∈ Sn : c is incident with c′}. The
possible values for |In(c)| are 1 and 2. More precisely, we have

intSn−1 ={c ∈ Sn−1 : In−1(c) = 2}
∂Sn−1 ={c ∈ Sn−1 : In−1(c) = 1}
Sn−1 = intSn−1 ∪ ∂Sn−1

Let us denote sint
n−1 = |intSn−1|, and s∂

n−1 = |∂Sn−1|. Then sn−1 = sint
n−1 + s∂

n−1.
Since every n-cell of S is incident with 2n (n − 1)-cells from Sn−1, we obtain

2n|S| = s∂
n−1 + 2sint

n−1.

From here we get

sint
n−1 = nsn − s∂

n−1

2
.

Next we consider incidence relations between elements of ∂Sn−1 and Sn−2.
For any c ∈ Sn−2 we consider the brim hinged on c:

brn−1(c) = {c′ ∈ ∂Sn−1 : c is incident with c′}.
The possible values for |brn−1(c)| are 0, 2, and 4. This partitions Sn−2 as follows:

Sn−2 = S0
n−2 ∪ S2

n−2 ∪ S4
n−2, (3)

where Si
n−2 = {c ∈ Sn−2 : |brn−1(c)| = i}, for i = 0, 2, 4. If denote s̄i

n−2 =
|Si

n−2|, i = 0, 2, 4, we get sn−2 = s̄0
n−2 + s̄2

n−2 + s̄4
n−2. From here, we obtain

s̄2
n−2 = sn−2 − s̄0

n−2 − s̄4
n−2.

Every cell x ∈ S∂
n−1 is incident with 2(n − 1) cells y ∈ Sn−2. Then it follows

that

2(n − 1)s∂
n−1 =4s̄4

n−2 + 2s̄2
n−2 = 4s̄4

n−2 + 2(sn−2 − s̄0
n−2 − s̄4

n−2) =

=2s̄4
n−2 + 2sn−2 − 2s̄0

n−2

from where we obtain

s∂
n−1 =

s̄4
n−2 + sn−2 − s̄0

n−2

n − 1
.

Then

sn−1 = sint
n−1 + s∂

n−1 = nsn − s∂
n−1

2
+ s∂

n−1 = nsn +
s∂

n−1

2
,
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i.e.,

sn−1 = nsn +
s̄4

n−2 + sn−2 − s̄0
n−2

2(n − 1)
. (4)

Thus
2(n − 1)sn−1 = 2n(n − 1)sn + s̄4

n−2 + sn−2 − s̄0
n−2,

and
s̄4

n−2 = −2n(n − 1)sn + 2(n − 1)sn−1 − sn−2 + s̄0
n−2.

We also have the following fact.

Fact 1. For any n ≥ 2, the sets of (n− 2)-gaps and (n− 2)-tandems are deter-
mined by the same configurations.

Then it is enough to observe that s̄4
n−2 = gn−2 is the number of (n − 2)-gaps

(that are also (n− 2)-tandems) and s̄0
n−2 = b the number of 221n−2-blocks of S,

and we obtain the result stated. �	
Note that for n = 2 the only gaps in S are the 0-gaps. For this case equality (4)
has the form s1 = 2s2 + 1

2 (g0 + s0 − b), where b is the number of (2 × 2)-blocks
in S. Now, by Euler-Poincaré characteristic we have s0 − s1 + s2 = β0 − β1 + β2,
where β0, β1, β2 are the Betti numbers [4]. From here we get s2 − (2s2 + 1

2 (s0 −
b + g0)) + s0 = β2 − β1 + β0.

Since S is homotopic to a 1D CW-complex, we have β2 = 0 . Moreover, β0 is
the number of connected components of S, while β1 is the number of its holes.
From here we immediately obtain formula (1).

3.3 Relations for Digital Curves

A digital curve admits various equivalent definitions [13]. One of them is the fol-
lowing. A simple digital k-curve is a set Γ = {c1, c2, . . . , cl} of voxels that satisfy
the following two axioms: (A1) ci is k-adjacent to cj iff i = j ± 1(modulo l),
and (A2) ρ is one-dimensional with respect to k-adjacency. To get acquainted
with the classical definition of dimension of a digital object the reader is re-
ferred to [14]. For further developments and various results see [13, 4] and the
bibliography therein. For example, we have the following:

Fact 2. Let M be a finite set of pixels which is one-dimensional with respect to
0-adjacency. Then M does not contain any 221n−2-block.

Figure 3 illustrates curves in C2 and C3.

Theorem 2. Let Γ ⊂ Cn be a digital 0-curve. Then:

gn−2 = −2n(n− 1)sn + 2(n − 1)sn−1 − sn−2.

Moreover, letting b0, . . . bn−1 be the number of its k-tandems, for 0 ≤ k ≤ n − 1
we have the relation

sk = 2n−k

(
n

k

)

sn −
n−k−1∑

i=0

2i

(
k + i

k

)

bi+k (5)
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Fig. 3. Simple closed curves in C2 (left) and C3 (right)

Proof. Let Γ = 〈c1, c2, . . . , cm〉 be a closed digital 0-curve, i.e., it satisfies
conditions (A1) and (A2) and Fact 2 applies, as well. None that Γ consists of
consecutive tandems of the form (c1, c2), (c2, c3), . . . , (cm−1, cm), (cm, c1).

The first assertion follows immediately from Theorem 1 and Fact 2.
For the second assertion, let c be a k-cell for k �= n.
We say that c is a totally boundary cell if c is incident with exactly one n-cell.

If c is not totally boundary, then c belongs to the closure of the shared face of a
tandem tj in dimension j ≥ k; we then say that c is involved in tj .

Since Γ is a 0-curve, every k-cell is incident with at most two n-cells and,
thus, every non totally boundary cell is involved in exactly one tandem. Now
the number of k-cells involved in a j-dimensional tandem tj is easily seen to be
2j−k

(
j
k

)
. Therefore the number of non totally boundary cells sntb

k is:

sntb
k = bk + 2

(
k + 1

k

)

bk+1 + . . . + 2n−1−k

(
n − 1

k

)

bn−1, (6)

whereas the number of totally boundary k-cells is given by stb
k = sk −sntb

k . Since
every n-cell is incident with 2n−k

(
n
k

)
k-cells, we have:

2n−k

(
n

k

)

sn =1 · stb
k + 2 · sntb

k

=sk + sntb
k (7)

The second assertion now follows straightforwardly from eq. (6) and eq. (7). �	
Remark 2. Note that (n−2)-gaps are the only gaps a digital curve Γ may have.
Note also that if Γ is a digital (n−2)-curve,2 then the number of (n−2)-gaps of
Γ matches the number of “linear segments” into which Γ can be decomposed.

Remark 3. Since Γ is a closed curve, its Euler-Poincaré characteristic χ(Γ ) is
zero. We then have:

0 = χ(Γ ) =
n∑

k=0

(−1)ksk

2 That is, any two consecutive voxels of Γ are (n − 2)-adjacent.
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Fig. 4. Sample output of the computer program

Using the expression for the si found in eq. (5), we recover, after elementary
manipulations, the not-surprising relation:

sn = b0 + b1 + . . . + bn−1

The used approach allows to obtain similar (although more complex and thus
less compact and elegant) relations for k-curves with k �= 0, as well as for arbi-
trary digital object.

3.4 Experimental Software

The theoretical results described in the previous sections have been supported
and verified by an experimental computer program.

Given a digital picture S represented by the coordinates of its voxels, our
program takes as an input a file with the list of the voxel coordinates. It outputs
the number of the 0-, 1-, and 2-facets, 2211-blocks, and 0- and 1-gaps of S. Com-
putation of the number of the 0-/1-gaps is performed by appropriate scanning
of S by 2 × 2 × 2-cubes/2 × 2 × 1- blocks and counting the distinct gaps. The
number of 1-gaps can alternatively be found by using formula (2).

The program is written in Visual Studio C++ 6.0 and uses OpenGL. It runs
under Windows 98 or higher. It allows to visualize the digital picture S and to
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interactively rotate it along the Ox-, Oy-, and Oz- axes so that the object can be
seen from different viewpoints. In Figure 4, a snapshot of the running program
is displayed.

4 Concluding Remarks

In this paper we provided a rigorous definition of gaps in a digital picture and
derived a formula for the number of (n−2)-gaps, as well as certain combinatorial
relations for digital curves. A supporting computer program has been developed
as well.

Knowledge of the number of gaps of maximal dimension can be useful in
several aspects. Among these we would like to mention an application to the well-
known polyhedron decomposition problem [15, 16], that is to partition a given
non-convex polyhedron into as small as possible number of convex polytopes.
Specifically, let P be the rectilinear polyhedron defined as a union of a set of
voxels of C3. It is not hard to see that the number of gaps in the discrete
surface constituted by the boundary voxels of P is an upper bound for the
number r of “notches” of P , that are locations causing non-convexity.3 The fact
is that all bounds on the number of convex polytopes obtained by decomposition
algorithms are in terms of that parameter r. A more careful study of this aspect
is seen as a further task. Another one is seen in seeking approaches that would
allow to obtain more compact characterizations of lower dimensional gaps in
digital pictures.
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