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Abstract. Switching components play an important role investigating
uniqueness of problems in discrete tomography. General projections and
additive projections as well as switching components w.r.t. these projec-
tions are defined. Switching components are derived by combining other
switching components.

The composition of switching components into minimal ones in case
of additive projections is proved. We also prove, that the product of
minimal switching components is also minimal.

1 Introduction

In many scenarios of discrete tomography the so-called switching components
play an important role. In the current paper we consider switching components
from a more general point of view. The paper is intended to serve as a starting
point for further description or even construction of the set of all switching
components w.r.t. a given projection. This may be done via composing switching
components into bigger ones. For projections derived from lower dimensional
projections – let them be additive, as in the unabsorbed or absorbed case, or
even more general – we can decide whether a switching component is minimal.
This will possibly give the opportunity to describe or construct the set of all the
switching components of this kind of projections.

2 Switching Components

2.1 Generalized Projections

Consider a finite or countably infinite set L (for example an integer lattice) and
a set R containing the so-called rays of L. This set may, but need not be a set
of certain subsets of L. A ray of L will be denoted by R, the set of the rays is
R(L).

Given a (finite or countably infinite) set L and a set of rays R = R(L) on L.
Furthermore, let F be a (commutative) ring, for example the ring of the integer,
real or complex numbers.

Definition 1. A function P is called a generalized (F-valued) projection of the
pair (L,R(L)), if for every (finite) subset G ⊂ L and for every ray R ∈ R(L) P
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returns a value P(G, R) ∈ F. In order to emphasize the projection as a function
on the subsets of the set L we will also write

P(R)(G) := P(G, R) .

Definition 2. A generalized projection P is called an additive projection, if

P(R)(G1 ∪ G2) = P(R)(G1) + P(R)(G2) (1)

for all rays R ∈ R(L)
for all (finite) sets G1, G2 ⊂ L with G1 ∩ G2 = ∅ .

Let P an additive projection. Considering the projection on an arbitrary ray R
as above, we then get for a (finite) subset G of L

P(R)(G) =
∑

g∈G

P(R)({g}) =
∑

g∈L
χG(g) · ω(R)

g . (2)

with the weights ω
(R)
g := P(R)({g}) ∈ F.

2.2 Product of Projections

Let (L1,R1(L1),P1) and (L2,R2(L2),P2) be two projections. L := L1 × L2.
Let a ray on the base set L be defined either as a pair (g1, r2) with g1 ∈ L1

and r2 ∈ R2(L2) or as a pair (r1, g2) with r1 ∈ R1(L1) and g2 ∈ L2. Hence, the
rays on L form the set

R(L) = (L1 ×R2(L2) ) ∪̇ (R1(L1) × L2 ) .
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Fig. 1. Rays on the Cartesian Product

Let the transections of a subset G ⊂ L be defined by

T2(G | g1) := {g ∈ L2 | (g1, g) ∈ G}
and

T1(G | g2) := {g ∈ L1 | (g, g2) ∈ G} .
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Definition 3. Let

∀ (g1, r2) ∈ L1 ×R2(L2) P(g1,r2)(G) := P(r2)
2 (T2(G | g1))

∀ (r1, g2) ∈ R1(L1) × L2 P(r1,g2)(G) := P(r1)
1 (T1(G | g2)) . (3)

We call the triple (L,R(L),P) the product of the projections (L1,R1(L1),P1)
and (L2,R2(L2),P2) and denote it by P1 × P2.

2.3 Generalized Switching Components

Let L be a given set, R(L) a set of rays in L and P a given projection. Let G
be a (finite) subset of L and c and cS two functions on G with values in {0 ; 1}.
Definition 4. We say a function ε on L switchable w.r.t. the pair (G, c) if

∀ g ∈ G : ε(g) = c(g) .

Definition 5. If ε is switchable w.r.t. (G, c), then we say the function εS =
εS
(G, c, cS) that we get by replacing the values of ε by those of cS on the set G, the

switching result of ε with respect to the triplet (G, c, cS).

εS(g) = εS
(G, c, cS)(g) :=

{
cS(g) if g ∈ G
ε(g) otherwise . (4)

Definition 6. The triplet (G, c, cS) is said a switching component with respect to
the projection function P, if whenever ε is switchable w.r.t. (G, c) the projection
values Pε and PεS

(G, c, cS) are identical.

∀ R ∈ R(L) : P(R)(εS
(G, c, cS)) = P(R)(ε) . (5)

For a switching component S = (G, c, cS) we call the set G the domain of S and
denote it by G = dom(S).

Lemma 1

(i) For every set G ⊆ L and every function c : G → {0; 1} the triplet (G, c, c)
is a switching component of each projection P.

(ii) If (G, c, cS) is a switching component with respect to the projection function
P, then (G, cS , c) is also a switching component.

(iii) If (G, c, c(1)) and (G, c(1), c(2)) are switching components with respect to the
projection function P then (G, c, c(2)) is also a switching component.

Proof
The proof is evident and can be omitted. 
�
For a switching component S = (G, c, cS) we say the switching component
(G, cS , c) the switched switching component and denote it by Ssw = (G, cS , c).

The empty switching component is denoted by E = (∅, ∅, ∅).
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Definition 7. Let P be a projection on L and (G, c, cS) a switching component
w.r.t. this projection. The switching component is called a minimal switching
component if whenever (G′, c′, c′S) is also a switching component w.r.t. P and
G′ is a subset of G and c|G′ = c′ and cS |G′ = c′S then G′ = G or G′ = ∅.

Lemma 2. If P is an additive projection on L and S = (G, c, cS) is a minimal
switching component w.r.t. P, then

∀ g ∈ G : c(g) �= cS(g) .

Proof
Let Ge = {g ∈ G | c(g) = cS(g)}. Consider the set G − Ge and the restrictions
of c and cS to this set. Let R be an arbitrary ray of R(L) and ε : L → {0 ; 1} a
function on L with values in {0 ; 1}. Suppose that ε is switchable w.r.t. (G−Ge, c).

Since P is additive we can calculate the projections value P(R) of ε on a ray
R ∈ R as follows

P(R)(ε) = PGc(ε) + PG−Ge(ε) + PGe(ε) ,

where PG(f) := P(R)(f · χG) for a set G and a function f , and Gc := L − G.
ε equals c on G − Ge, i.e.

P(R)(ε) = PGc(ε) + PG−Ge(c) + PGe(c) − PGe(c) + PGe(ε)
= PGc(ε) + PG(c) − PGe(c) + PGe(ε) .

Since (G, c, cS) is a switching component we have PG(c) = PG(cS). Additionally,
c and cS are identical on Ge, thus PGe(c) = PGe(cS) also holds. Replacing these
expressions we get

P(R)(ε) = PGc(ε) + PG(cS) − PGe(c
S) + PGe(ε)

= PGc(ε) + PG−Ge(c
S) + PGe(ε) ,

which means that replacing the values of c on G − Ge by those of cS already
results in the same projection value, i.e. (G − Ge, c|G−Ge , c

S |G−Ge) is also a
switching component w.r.t. P . Since (G, c, cS) is minimal, Ge = ∅. This is what
we wanted to show. 
�

3 Deriving Switching Components

In the following we are going to derive switching components from other, known
switching components.

3.1 Composition of Switching Components

Let P be a given projection, S1 = (G1, c1, c
S
1 ) and S2 = (G2, c2, c

S
2 ) two switching

components with respect to P .
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Definition 8. If the functions cS
1 and c2 are identical on the set G1 ∩ G2, i.e.

∀ g ∈ G1 ∩ G2 : cS
1 (g) = c2(g) ,

then the two switching components are called composible.

Note, that the composible relation betwen switching components is not sym-
metric.

Lemma 3. Suppose that S1 and S2 are two composible switching components.
Defining c and cS as

c(g) =
{

c1(g) if g ∈ G1

c2(g) if g ∈ G2 − G1

and

cS(g) =
{

cS
1 (g) if g ∈ G1 − G2

cS
2 (g) if g ∈ G2

,

the triplet (G1∪G2, c, c
S) is a switching component with respect to the projection

P.

c2

c1

⇔

c1

S

c2

S

Fig. 2. The composition of two switching components

Proof
Let R ∈ R(L), and ε a function L → {0 ; 1} switchable w.r.t to (G1 ∪ G2, c).

Because of the definition of c, ε is identical to c1 on G1. Thus, the switching
component (G1, c1, c

S
1 ) can be applied, and as the result we get the following

P(R)(ε) = P(R)(ε1) ,

where

ε1(g) =
{

cS
1 (g) if g ∈ G1

ε(g) otherwise .

Now, (G2, c2, c
S
2 ) can be applied, since cS

1 and c2 are identical on the set
G1 ∩ G2 and ε and also ε1 are equal to c2 on G2 − G1 and we have

P(R)(ε1) = P(R)(ε2) ,
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where

ε2(g) =
{

cS
2 (g) if g ∈ G2

ε1(g) otherwise =

⎧
⎨

⎩

cS
2 (g) if g ∈ G2

cS
1 (g) if g ∈ G1 − G2

ε(g) otherwise
.

This is the function after applying (G1 ∪ G2, c, c
S) and, hence, the projection

value is the same. 
�
Definition 9. Given two composible switching components S1 and S2. The
switching component constructed in Lemma 3 is called the composition of the
switching components, and we write

(G1 ∪ G2, c, c
S) = (G1, c1, c

S
1 ) ◦ (G2, c2, c

S
2 )

Lemma 4. Let L be a set, R(L) a set of rays of L and P a projection on
(L,R(L)). Let S = (G, c, cS), S1 = (G1, c1, c

S
1 ), S2 = (G2, c2, c

S
2 ) and S3 =

(G3, c3, c
S
3 ) be switching components w.r.t. (L,R(L),P). For the composition of

switching components w.r.t. (L,R(L),P) the following properties hold.

(i) S and the empty switching component E are composible and

S ◦ E = E ◦ S = S .

(ii) The switching components S and Ssw as well as Ssw and S are composible
and

S ◦ Ssw = (G, c, c) and Ssw ◦ S = (G, cS , cS)

(iii) If S1 and S2 are composible, then Ssw
2 and Ssw

1 are also composible and

Ssw
2 ◦ Ssw

1 = (S1 ◦ S2)sw .

(iv) If S1 and S2 are composible and S1 ◦ S2 and S3 are also composible, then
S2 and S3 are composible as well as S1 and S2 ◦ S3 and

(S1 ◦ S2) ◦ S3 = S1 ◦ (S2 ◦ S3) .

Proof
The proof of these properties follow immediately from the definition. 
�

3.2 Symmetric Composition of Switching Components

In the following, let P be an additive projection. S1 = (G1, c1, c
S
1 ) and S2 =

(G2, c2, c
S
2 ) two switching components w.r.t. P .

Definition 10. The switching components S1 and S2 are called symmetric com-
posible, if

∀ g ∈ G1 ∩ G2 : cS
1 (g) = c2(g) and cS

2 (g) = c1(g) .

Note, that the symmetric composible relation betwen switching components is
a symmetric one.
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Lemma 5. Assume, that S1 and S2 are symmetric composible. Define c and cS

on G1 � G2, the symmetric difference of G1 and G2, as

c(g) :=
{

c1(g) if g ∈ G1 − G2

c2(g) if g ∈ G2 − G1

and

cS(g) :=
{

cS
1 (g) if g ∈ G1 − G2

cS
2 (g) if g ∈ G2 − G1

Then the triplet (G1 � G2, c, c
S) is a switching component with respect to the

projection P.

c1

c2

⇔

c1

S

c2

S

Fig. 3. The symmetric composition of two switching components

Proof
Let R ∈ R(L) be a ray, and ε : L → {0 ; 1} a function switchable w.r.t. (G1 �
G2, c).

For a set G and a function f , we denote

PG(f) := P (R)(f · χG) .

Gc denotes the complement of the set G w.r.t. to the set L, i.e. Gc = L−G.
Since the projection P is additive and ε equals c1 and c2 on G1 − G2 and

G2 − G1 respectively, for the projection of ε we then have

P(R)(ε) = P(G1∪G2)c(ε) + PG1−G2(c1) + PG1∩G2(ε) + PG2−G1(c2) .

From the additivity of P we have

PG1−G2(c1) = PG1(c1) − PG1∩G2(c1)

and, hence,

P(R)(ε) = P(G1∪G2)c(ε) + PG1(c1) − PG1∩G2(c1) + PG1∩G2(ε) + PG2−G1(c2) .

(G1, c1, c
S
1 ) is a switching component w.r.t. R, that’s why we can replace c1 by

cS
1

P(R)(ε) = P(G1∪G2)c(ε) + PG1(c
S
1 ) − PG1∩G2(c1) + PG1∩G2(ε) + PG2−G1(c2) .
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Since P is additive and cS
1 = c2 on the set G1 ∩ G2

PG1(c
S
1 ) = PG1−G2(c

S
1 ) + PG1∩G2(c

S
1 ) = PG1−G2(c

S
1 ) + PG1∩G2(c2)

and
PG2−G1(c2) + PG1∩G2(c2) = PG2(c2)

and, thus,

P(R)(ε) = P(G1∪G2)c(ε) + PG1−G2(c
S
1 ) − PG1∩G2(c1) + PG1∩G2(ε) + PG2(c2) .

From (G2, c2, c
S
2 ) also being a switching component w.r.t. P we get

P(R)(ε) = P(G1∪G2)c(ε) + PG1−G2(c
S
1 ) − PG1∩G2(c1) + PG1∩G2(ε) + PG2(c

S
2 ) .

From the additivity of P again and from cS
2 = c1 on the set G1 ∩ G2 it follows

PG2(c
S
2 ) = PG2−G1(c

S
2 ) + PG1∩G2(c

S
2 ) = PG2−G1(c

S
2 ) + PG1∩G2(c1)

and replacing this expression we get

P(R)(ε) = P(G1∪G2)c(ε) + PG1−G2(c
S
1 ) + PG1∩G2(ε) + PG2−G1(c

S
2 ) .

The expression on the right hand side is an expression for P(R)(εS) and, hence,
as the final result we have

P(R)(ε) = P(R)(εS) .

This is what we wanted to prove. 
�
Definition 11. For two symmetric composible switching components S1 and
S2, the switching component constructed in Lemma 5 is called the symmetric
composition of the two switching components, and we write

(G1 � G2, c, c
S) = (G1, c1, c

S
1 ) � (G2, c2, c

S
2 ) .

The following properties of the symmetric composition hold.

Lemma 6. Let L be a set, R(L) be a set of rays on L and P be an additive
projection on these rays. Furthermore, let S = (G, c, cS), S1 = (G1, c1, c

S
1 ), S2 =

(G2, c2, c
S
2 ), and S3 = (G3, c3, c

S
3 ) switching components w.r.t. (L,R(L),P).

(i) S and E are always symmetric composible and

S � E = E � S = S .

(ii) S and Ssw are symmetric composible and

S � Ssw = Ssw � S = E .
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(iii) If S1 � S2 and S3 are symmetric composible then S1 and S2 � S3 are also
symmetric composible and

(S1 � S2) � S3 = S1 � (S2 � S3) .

(iv) If S1 and S2 are symmetric composible, then

S2 � S1 = S1 � S2 .

Proof
The proof of these properties follows immediately from the definition. 
�

Proposition 1. Let S be an arbitrary switching component w.r.t. an additive
projection P. There exists a constant switching component S0 and a sequence
of minimal switching components {Si}N

i=1 with pairwise disjunct domains with
the symmetric composition being S

S = S0 � S1 � · · · � SN

with
c |S0 ≡ cS |S0 and dom(Si) ∩ dom(Sj) = ∅ for i �= j .

Proof
This easily follows from the definitions. 
�

3.3 Product of Switching Components

Let P1 be a generalized projection w.r.t. (L1,R1(L1)) and P2 a generalized
projection w.r.t. (L2,R2(L2)) and P = P1 × P2 their product as defined in
Section 2.2.

Furthermore, let S1 = (G1, c1, c
S
1 ) and S2 = (G2, c2, c

S
2 ) be a switching com-

ponent w.r.t. P1 and P2, resp.
The following figure gives an idea how to create the switching component on

the set G1 × G2 or on a subset of G1 × G2 based on the two given switching
components.

Let

G1 ×(c1, c2) G2 := G1 × G2 − {(g1, g2) | c1(g1) = cS
1 (g1) ∧ c2(g2) = cS

2 (g2)} .

For c1(g1) �= cS
1 (g1) ∧ c2(g2) �= cS

2 (g2) we define

c(g1, g2) =
{

0 if c1(g1) = c2(g2) ∧ cS
1 (g1) = cS

2 (g2)
1 if c1(g1) = cS

2 (g2) ∧ cS
1 (g1) = c2(g2)

and

cS(g1, g2) =
{

1 if c1(g1) = c2(g2) ∧ cS
1 (g1) = cS

2 (g2)
0 if c1(g1) = cS

2 (g2) ∧ cS
1 (g1) = c2(g2)

.
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For the other cases we define

c(g1, g2) =
{

0 if c1(g1) = cS
1 (g1) = 0 ∨ c2(g2) = cS

2 (g2) = 0
1 if c1(g1) = cS

1 (g1) = 1 ∨ c2(g2) = cS
2 (g2) = 1

and

cS(g1, g2) =
{

0 if c1(g1) = cS
1 (g1) = 0 ∨ c2(g2) = cS

2 (g2) = 0
1 if c1(g1) = cS

1 (g1) = 1 ∨ c2(g2) = cS
2 (g2) = 1 .

Lemma 7. The triple (G1 ×(c1, c2) G2, c, c
S) with the two functions c and cS as

defined above is a switching component w.r.t. the product projection P = P1×P2.

Proof
Let ε : A → {0 ; 1} an arbitry function for which

∀ (g1, g2) ∈ G1 ×(c1, c2) G2 : ε(g1, g2) = c(g1, g2)

and we investigate the function εS with

εS(g1, g2) :=
{

cS(g1, g2) if (g1, g2) ∈ G1 ×(c1, c2) G2

ε(g1, g2) otherwise

We define
∀ g ∈ G1 : ε

(g2)
1 (g) := ε(g, g2)

and
∀ g ∈ G2 : ε

(g1)
2 (g) := ε(g1, g)

The appropriate projections P1 and P2 can be applied to the functions ε
(g2)
1

and ε
(g1)
2 .

First, let (g1, r2) ∈ L1 ×R2(L2). For g1 /∈ G1 the following equality is trivial.

P(g1,r2)(εS) = P(r2)
2 ([εS

2 ](g1)) = P(r2)
2 (ε(g1)

2 ) = P(g1,r2)(ε)

G2

G1
c1

c2c2

S

0

0

1

1

0 0

0 0

0 0

0 0

0

1

1

0

0

1 1

1 1

1 1 X X

XX

c1

S1 10

1 1

Fig. 4. Product of Switching Components
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Let now g1 ∈ G1 and c1(g1) �= cS
1 (g1). As we can see from the definition of c, in

this case it holds that

c(g1, g) ≡ c2(g) and cS(g1, g) ≡ cS
2 (g) for g ∈ G2 ,

or
c(g1, g) ≡ cS

2 (g) and cS(g1, g) ≡ c2(g) for g ∈ G2 .

Since (G2, c2, c
S
2 ) is a switching component for the projection P2, again we have

P(g1,r2)(εS) = P(g1,r2)(ε)

If g1 ∈ G1 and c1(g1) = cS
1 (g1) we can see from the definition of c that cS(g1, g) ≡

c(g1, g) for g ∈ G2, if c2(g2) �= cS
2 (g2). Hence, ε(g1, g) ≡ εS(g1, g) for these

g ∈ G2 and, again,
P(g1,r2)(εS) = P(g1,r2)(ε) .

The second case, namely if (r1, g2) ∈ R1(L1)×L2, can be shown similarly. 
�
Definition 12. We call the switching component S = (G1 ×(c1, c2) G2, c, c

S) the
product of the switching components S1 = (G1, c1, c

S
1 ) and S2 = (G2, c2, c

S
2 ) and

denote it by S = S1 × S2 = (G1, c1, c
S
1 ) × (G2, c2, c

S
2 ).

Proposition 2. If S1 = (G1, c1, c
S
1 ) and S2 = (G2, c2, c

S
2 ) are two minimal

(non-empty) switching components w.r.t. the generalized projections P1 and P2

then their product S = S1 × S2 is also a minimal switching component w.r.t. to
the product projection P = P1 × P2.

Proof
Suppose that S = S1×S2 is not a minimal switching component, i.e. there exists
a (G′, c′, c′S) switching component w.r.t. P = P1 × P2 for which ∅ � G′

� G =
G1 ×(c1, c2) G2 and c(S)|G′ = c′ and c(S)S |G′ = c′S .

G2

G1
c1

c2

0

0

0 0

1

1

1 1

(g ,g )1 2

Fig. 5. Product of minimal switching Components
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Let (g1, g2) ∈ G1 ×(c1, c2) G2 − G′ and consider the sets T2(G′ | g1) and
T1(G′ | g2).

Since (g1, g2) ∈ G1 ×(c1, c2) G2 we have c1(g1) �= cS
1 (g1) or c2(g2) �= cS

2 (g2).
If c1(g1) �= cS

1 (g1) then

c |T2(G | g1) ≡ c2 or c |T2(G | g1) ≡ cS
2

and, hence, T2(G′ | g1) = T2(G | g1) or T2(G′ | g1) = ∅ because c2 is minimal.
Similarly, if c2(g2) �= cS

2 (g2) then

c |T1(G | g2) ≡ c1 or c |T1(G | g2) ≡ cS
1

and, hence, T1(G′ | g2) = T1(G | g2) or T1(G′ | g2) = ∅ because c1 is minimal.
Equality cannot hold because we supposed (g1, g2) ∈ G1 ×(c1, c2) G2 − G′.

Hence, the appropriate transection sets are all empty.
As one of the possibilties, let’s suppose now, that c1(g1) �= cS

1 (g1). In this case
T2(G′ | g1) = ∅. This implies that ∀j ∈ G2 : (g1, j) /∈ G′ and so, whenever
j ∈ G2 ∧ c2(j) �= cS

2 (j) we have T1(G′ | j) = ∅ also.
From this, on the other hand, it follows that whenever i ∈ G1 ∧ c1(i) �= cS

1 (i)
we have T2(G′ | i) = ∅, and as the final consequence G′ = ∅. This completes
the proof. 
�
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