
D. Gaiti et al. (Eds.): AN 2006, LNCS 4195, pp. 188 – 200, 2006.
© IFIP International Federation for Information Processing 2006

Implicit Context-Sensitive Mobile Computing Using
Semantic Policies

Hamid Harroud and Ahmed Karmouch

Multimedia & Mobile Agent Research Laboratory,
School of Information Technology & Engineering (SITE), University of Ottawa,

161 Louis Pasteur St. Ottawa, ON, Canada K1N 6N5, Canada
{hharroud, karmouch}@site.uottawa.ca

http://deneb.genie.uottawa.ca

Abstract. The availability of portable computing devices and advances in wire-
less networking technologies have contributed to the growing acceptance of
mobile computing applications and opened the door for the possibility of seam-
less and pervasive services in mobile environments. However, with the dilem-
mas of limited device capabilities, network connectivity, transmission range and
frequent changes, due to users and/or devices mobility, Internet-oriented wire-
less applications face challenges in terms of computation and interaction. These
challenges elaborate with the inevitable demand for such applications to adapt
to users’ situations, their profiles, and the resources provided by the operating
environment. Taking into account contextual information is an essential ingre-
dient to cope with the frequent changes in mobile environments and hence
provide adequate solutions for achieving adaptability, reliability, and seamless
service provisioning. This paper introduces the use of policies over semantically
modeled context as a technique for generating implicit context information and
making use of context in mobile computing in general and internet-computing
in specific. A context-sensitive instant messaging application demonstrates our
proposed model using agent technology.

1 Introduction

Current dynamism in life is driving people’s behaviour towards mobility and towards
the usage of wireless devices. These devices are getting more powerful in terms of
hardware characteristics such as power and memory as well as computing capabili-
ties. Consequently, applications and services are developed to bring user’s desktop
environment to her/his hand-held devices. Some of these applications include
emailing, chatting, web browsing, online banking, distributed games, multimedia
streaming and recently web services [1]. In fact, services designed for use in mobile
computing are expected to experience rapid growth. This transition from the desktop
environment to the portable devices environment did not come free of problems but is
overwhelmingly loaded with challenges such as content adaptation, mobility man-
agement, network reliability, and application interoperability to name but few.

Mobile computing needs solutions for providing dynamic interaction between us-
ers and applications on one hand and solutions for autonomic adaptation to users and
environments context on the other hand.

 Implicit Context-Sensitive Mobile Computing Using Semantic Policies 189

Context-aware computing has been advocated as a mechanism for providing such
dynamic interactions and autonomic adaptation. Context awareness refers to the ability
of an application or a service to adapt its behaviour in response to environmental
changes. Accordingly, we designed a multi-agent system, MAS, that provides interop-
erability, adaptability and seamless service provisioning to users in mobile computing
environment. MAS system is built on the concept of semantic modeling of context, its
inference to policies, and the usage of inferred context policies enforcement.

Semantic can be defined as the study of meaning or change of meaning. When
mapped to Internet applications it represents the ability of the applications to under-
stand what they are performing as services, how to implicitly adapt to changes in the
environment and how to interact with other entities.

Policies deal with the methods of manipulating applications and their profiles ac-
cording to current situation. This includes where and how to store these profiles, how
to automate adaptation, how to provide contextual access rights and how to retrieve
relevant information at the right time, at the right place and to the right entity.

Our goal is to provide a model and infrastructure to support the development of
context-sensitive applications and services by generating new contextual information
using the semantic modeling of acquired context (implicit context information), and
by inferring semantic context policies which, in turn, dynamically adapt the behaviour
of different entities and services by enabling and executing appropriate policy actions
(implicit use of context). In addition, the use of context level agreements (CLA) in the
form of context negotiation [2] enables the ability to restrict an application agent’s
context to a subset of its specific policies. The CLA guides the interaction and infor-
mation exchange among agents as they receive the agreed context in the form of se-
mantic policies and make decisions accordingly on users’ behalf.

The rest of the paper is organized as follows. Section 2 describes the multi-agent
system in terms of agents’ role and algorithms used. Section 3 discusses the automa-
tion process of manipulating contextual information and the semantic policies infer-
ence used by the system agents. Section 4 demonstrates an instant messaging applica-
tion developed using the MAS. Section 5 presents the related work. And finally,
section 6 concludes our work and highlights the future work.

2 Multi-agent System for Context Provisioning

We consider agents as the main computational entities of our system, as well as of
applications and services requesting context information. Agents are provided with
control abilities to govern their behavior and to make decisions autonomously by
means of policies.

The introduction of policies inside agents increase their pro-activeness in facing
new situations occurring in the surroundings due to users’ mobility, devices’ capabil-
ity constraints, possibility of discontinuous interconnection and changes in the
environment. The separation of the agents’ coding logic (i.e. tasks) from their govern-
ing behaviors (i.e. policies) allows the reuse of agents’ strategies and their overall

190 H. Harroud and A. Karmouch

behavior in order to dynamically adapt to various context information without signifi-
cant impact on the mechanism used for their implementation.

An agent becomes context-sensitive, meaning that it can sense changes in its con-
text and adapt its behavior in response, by making use of semantic context policies.

Figure 1 depicts the proposed agents, context sources, presence interpretation and
inference process. The proposed MAS system consists of two main agents: the con-
text management agent and the reasoner agent.

2.1 The Context Management Agent

The context management agent (CMA) is responsible for monitoring on-going con-
text-based sessions and managing the environment resources. The CMA has the au-
thority to cancel, modify and/or renegotiate context specifications according to
changes that might occur in the environment, or if agents violate the tasks assigned to
them during negotiation [2]. Agents register with the CMA both to project their pres-
ence to other agents in the environment and to obtain the authorization policies
needed to use available services and have access to other agents and information. The
CMA stores relevant information in a knowledge base repository for inference, con-
sistency maintenance and knowledge sharing. It models context and system informa-
tion using ontologies implemented using the Ontology Web Language (OWL) [3].

It formulates context specifications from agents’ requests and profiles according to
the designed ontology constructs, axioms and rules of composition.

Fig. 1. The multi-agent system model

 Implicit Context-Sensitive Mobile Computing Using Semantic Policies 191

2.2 The Reasoner Agent (RA)

The RA contains novel inference machinery that integrates logical reasoning, fuzzy
reasoning and semantic rule representation in one system. Context captured from
sensors and from users’ and services’ profile is treated as facts in the inference proc-
ess. The reasoner agent uses these facts to deduce new context information and/or
trigger actions. The reasoner agent uses logic-reasoning to insure that captured con-
texts are consistent both with each other and with constructs defined in the context
ontology. It uses fuzzy logics to cope with the uncertainty in captured context and
generates implicit context information which is then issued to different entities in the
environment requesting context.

The MAS uses an RF-tag system for acquiring contextual information. We ex-
tended the RF-tags to provide other contexts than just identity and location. By taking
advantage of the unique ID value of each tag, ontology profiles of entities are indexed
in the system repository using these ID values. These ontology profiles include infor-
mation such as activities of the user holding the tag, capabilities of the service with
the assigned tag and the policy profile generated for each entity holding a tag in the
environment. Figure 1 shows the categories we developed for the different entities in
the environment and how they are associated to the tag IDs. For example a detected
tag with the ID 111754 is automatically interpreted by the CMA to be a device of type
laptop. From the detected tag it knows the laptop location while it uses the Tag ID
number to fetch the OWL profile from the repository and thus gains knowledge of its
implicit context and its governing policies.

The RA also uses these OWL profiles along with the inference algorithm to build
an inductive fuzzy inference decision tree capable of extracting features embedded in
the contextual information and inferring policies that will be used by the CMA for
monitoring and governing the environment and entities interaction.

3 The Automation Process of Context Provisioning

As described in our work detailed in [4], we divided the process of automating con-
text provisioning into three parts: generating implicit contextual information, inferring
context to semantic policies governing the system’s behaviour and supporting entities
at runtime in accordance to the inferred policies. The first process requires a semantic
modeling of context so that generating implicit contextual information could be pre-
formed based on explicit context. Context inference is performed by transforming the
ontology-based context instances to a set of linguistic terms over the context’s range
of values. Each term has a certain membership function to be used instead of the
original context instance. As shown in figure 2, each entity in the environment (i.e.
user, device, service …) is associated with two configuration files: the Agent Con-
figuration File (ACF) and the Context Information File (CIF). ACF holds information
about the agent that represents the entity (i.e. contact information for a user and the
service description for a service with the reference to the CIF file location). These

192 H. Harroud and A. Karmouch

files are used by the inference agent to provide semantic policies and by the CMA to
enforce and manage these policies.

Fig. 2. Components used in the automation of context provisioning

A relation between a device and its owner is a sample example that illustrates the
generation of implicit context. A crisp relation will have the following ontological
representation.

<DeskTop rdf:ID="MMARL-10">
<hasLocation rdf:resource="&Loc;B502"/>
<belongsTo rdf:resource="& Confoaf ;Bob"/>
….

</DeskTop>

The captured context indicates that MMARL-10 is a device of type DeskTop, it is
located in B502 and it belongs to user Bob. This information is acceptable if user Bob
is actually the only person who is using this desktop all the time. But he might be
using it only during the morning hours which will make this fact inaccurate and might
cause unacceptable actions. When fuzzy logic is used in this situation to represent the
uncertainty in the relation between the desktop and the user, the semantic representa-
tion will include the property hasSimilarity that will link the crisp context ontology to
fuzzy ontology, then linguistic terms are defined that describe the membership
functions used in the relation.

 Implicit Context-Sensitive Mobile Computing Using Semantic Policies 193

In this example, we defined three linguistic terms that describe the temporal rela-

tion between the desktop and the user. The first term is the “Morning” that defines the
degree of certainty that Bob is using MMARL-10 during the morning from 8:00 AM
till 12:00 PM. It is represented as a trapezoidal function which indicates that between
9:00 and 11:00 the system is certain that MMARL-10 belongs to user Bob. The sec-
ond term is the “AfterNoon” which is described as a triangular function between
11:00 AM and 3:00 PM and the last term is the “Night” which is described as a crisp
function with value equal to zero. This means that MMARL-10 is not belonging to
Bob during the night.

With the aforementioned example that clarifies our intention of using fuzzy ontol-
ogy to represent uncertainty in the context information, the next subsections describe
the steps performed by the inference agent for reasoning about implicit context infor-
mation.

3.1 Defining Linguistic Terms and Generating Membership Functions

Defining the linguistic terms and membership functions lie with our inference agent
as users and application developers are assumed not to be expert in fuzzy logic and
domain mapping techniques. Application developers will use the designed fuzzy-API
to specify the number of linguistic terms to be used by the inference agent to map the
context construct to them. For example, a developer may state that the location con-
text inside a meeting room is specified by two linguistic terms “near” and “far”.

These two linguistic terms need to be mapped to the standard membership func-
tions defined in the fuzzy ontology and stored in the system. For example, the two
linguistic terms can be represented by Gaussian functions that have mean and vari-
ance determined by the range of the location and the overlap region. To generate the
required membership functions, the context ontology is first used to check the range
and the domain of the context construct and provides the result to the inference agent.
The inference agent then uses a simple algorithm for membership function generation
to achieve the low overhead in computation requirements. The algorithm starts by

<Fuzz:hasFuzzyTerm>
 <Fuzz:FuzzyTerm rdf:ID="Afternoon">
 <Fuzz:hasMembershipFn>
 <Fuzz:triangular>
 <Fuzz:hasCenter>13.0</Fuzz:hasCenter>
 <Fuzz:hasEndPoint>15.0</Fuzz:hasEndPoint>
 <Fuzz:hasStartPoint>11.0</Fuzz:hasStartPoint>
 </Fuzz:triangular>
 </Fuzz:hasMembershipFn>
 </Fuzz:FuzzyTerm>
</Fuzz:hasFuzzyTerm>

<Fuzz:hasFuzzyTerm>
 <Fuzz:FuzzyTerm rdf:ID="Night">
 <Fuzz:hasMembershipFn>
 <Fuzz:Crisp rdf:ID="Zero"/>
 </Fuzz:hasMembershipFn>
 </Fuzz:FuzzyTerm>
 </Fuzz:hasFuzzyTerm>

 <Fuzz:hasFuzzyTerm >
 <Fuzz:FuzzyTerm rdf:ID="Morning">
 <Fuzz:hasMembershipFn>
 <Fuzz:trapezoidal>
 <Fuzz:hasFirstpnt>9.0</Fuzz:hasFirstpnt>
 <Fuzz:hasEndPoint>12.0</Fuzz:hasEndPoint>
 <Fuzz:hasScndpnt>11.0</Fuzz:hasScndpnt>
 <Fuzz:hasStartPoint>8.0</Fuzz:hasStartPoint>
 </Fuzz:trapezoidal>
 </Fuzz:hasMemebrshipFn>
 </Fuzz:FuzzyTerm>

194 H. Harroud and A. Karmouch

dividing the context range into 2n+2 equal slots, where n is the number of linguistic
terms required (in the location example above, n=2). It then assigns four slots to each
linguistic term; each adjacent terms share one slot in common that will represent the
overlapping region in the fuzzy sets. The four slots concept is chosen because of the
trapezoidal function that is considered to be the general membership function from
which other membership functions can be derived. After successfully dividing the
context range into its 2n+2 regions, the CMA randomly selects samples from each
region and requests from the application developer, or user, to specify the expected
membership function for each of these values. This step is required in order for the
inference agent to correctly deduce the best membership functions that resemble user
expectation. After this decision, the inference agent applies the Lagrange’s interpola-
tion mechanism on these samples data followed by Euclidian similarity measure to
decide the standard membership functions that best resemble user-defined data.

3.2 Building the Fuzzy Inductive Decision Tree

After deciding the membership functions for the context information, the inference
agent begins to build the fuzzy decision tree [5], shown at the bottom right in figure1,
to perform the second process in the automation. Fuzzy decision trees improve the
inference, robustness and generalization of classification, action triggering, and deci-
sion-making in context aware environments. In general, building an inductive deci-
sion tree requires a set of training examples, a heuristic method for choosing the best
attribute to split at any node, and an inference process mechanism. Training examples
in our system are acquired either from experts in the application domain or from sen-
sors and historical actions of users. These examples are saved in the knowledge base
and can be manipulated through the knowledge base API. The inference agent uses a
heuristic splitting criterion that tries to predict the classification of context attributes.
These values are used in conjunction with the entropy measurement to decide the
winning attribute to use for splitting at any node.

The heuristic method used by the inference agent has two fold contributions. First,
it reduces the example space through which the computation is performed, thus reduc-
ing complexity and increase speed of convergence. Second, it reduces the effect of a
dominant linguistic term in the calculation because repeated values are counted using
the fuzzy projection and then averaged. The root of the tree contains all the training
examples. It represents the whole description space since no restrictions are imposed
yet. Each node is recursively split by partitioning its examples. A node becomes a leaf
when either its samples come from a unique class or when all attributes are used on
the path. When it is decided to further split the node, one of the remaining attributes
(i.e., not appearing on the current path) is selected. The examples present in the node
being split are partitioned into child nodes according to their matches to linguistic
terms of the wining attribute.

3.3 Policy Inference Process

From this inductive fuzzy tree, the IA proceeds to infer policies used in the inference
process. Each path along the generated tree from root to leaf is converted into a policy
with the antecedent part representing the context attributes of each succeeding branch,

 Implicit Context-Sensitive Mobile Computing Using Semantic Policies 195

and the consequent part representing the class at the leaf with highest membership
value. The membership value at each leaf is taken to be equal to the maximum mem-
bership value of all instances reaching that leaf and having that class as their output.

After generating these fuzzy policy sets from the tree, the inference agent sends
them to the CMA in order to be used in the policy enforcement and provisioning of
services. The process of inference with new instances and new implicit context infor-
mation is processed from the generated tree. In this approach, context information is
traversed along branches of the tree that satisfies its membership value. After reaching
leafs, the class association value for each leaf is calculated. This is accomplished by
taking the T-norm between the membership values of classes in the leaf, and the T-
norm of that instance with the attributes along the branch from the root to the corre-
sponding leaf.

3.4 Policy Specification and Enforcement

The last step in the automation of context provisioning is representing policies that
govern the choices in behavior of the system in machine readable format.

We modeled policy information using OWL language [6] to easily integrate it with
our developed ontologies for modeling context and fuzzy inference. The semantic
policies in our MAS encapsulate the inferred policies from the fuzzy decision tree
with meta-data information and enforcement role. The policy ontology has the follow-
ing classes and properties:

• Policy (issuedBy*, appliesTo*, appliesWhen*, name*, appliesWhere*, priority*, equivalentTo*,
composedOfPolicies*, policyRule*, enforcementType*, requiresOtherPolicies*)

o Authorization ()
o ContextSpecificPolicy (category*, description*)
o Obligation ()

• PolicyEnforcement ()
 instance Inform
 instance Negative
 instance Negotiable
 instance Positive
 instance Restricted

• PolicySimilar (degreeOfCertain*, similarIn*, similarTo*)
• Rule (hasAntecedent*, hasConsequent*, hasInferenceType*)

Policies are divided into: authorization and obligation policies [7]. We also have a
generic policy class, ContextSpecificPolicy that can be used by application developers
to specify its category and gives a description to it. Each policy has properties that
state the entity issued the policy, the entities for which it applies the time and location
of enforcing it. In addition the developer may state the equivalence of a policy with
another one and state the degree of equivalence using ‘Similar’ class defined in the
fuzzy ontology. This concept allows the MAS system to invoke other policies in case
of uncertainty and vagueness and thus increases its robustness and performance. To
allow the MAS system deduce what action to perform at a policy enforcement, every
policy is associated with PolicyEnforcement value that could, for instance, have the

196 H. Harroud and A. Karmouch

value of ‘Negative’ to prohibit doing the rule in the policy, or it could be ‘Negotiable’ to
allow agents to negotiate how to enforce this policy in case of conflict or inconsistency.

3.5 Semantic Context Modeling

The introduction of ontology, as a paradigm for modeling and representing the con-
text, provides the ability to reason and deduce implicit information and enables the
reuse of domain knowledge. As shown in figure 3a, we modeled the context in the
form of expressiveness levels, starting from a high level of context abstraction down
to levels, where context is expressed and refined in more detail. The highest level of
abstraction is the ContextView which represents different types of context that belong
to an entity (i.e. a user, a service, a device or the environment itself). ContextView
has properties contains and invokes. The classes ContextFeatures and ContextEn-
gagements are the respective ranges of those properties.

Context view

Context
Features

Context
Dependencies

Context
Engagements

contai
ns

associated

invoked

Physical

System

Network

Personal

Context
Features

Location.
Temperature.
Light.
Time

Services.
Applications.
Agents.
Presence.

Activity.
Information.
Calendar.
Privacy

Availability.
response.
capability

Context
Type

Simple Composite Collection

Context
Type

Simple Composite Collection

Fig. 3a. The upper context ontology Fig. 3b. The defined context features and the
associated context types

The ContextFeatures, shown in figure 3b, consists of classes related to the physical
environment (i.e. location), classes related to the system (i.e. services), classes related
to users (i.e. identities and activities) and classes related to the network (i.e. availabil-
ity and bandwidth.) Each of these classes is categorized to be either simple, a compos-
ite of other context information, or a collection of similar context information [2].

4 Implementation

In order to test the feasibility of the proposed MAS system, we have implemented a
context-aware instant messaging system (CIMS). CIMS is an extended version of
buddy space open source [8] where we wrapped its interaction mechanism with agent
technology and modified its internal structure to provide contextual information about
users and services registered with our MAS system. CIMS provides tailored contex-
tual information such as location, presence, event monitoring, activity alert …etc,
based on the generated semantic context information and inferred context policies.
ACF and CIF files for each entity are stored in the knowledge base repository. They

 Implicit Context-Sensitive Mobile Computing Using Semantic Policies 197

are used by the inference agent to provide semantic policies and by the CMA to en-
force and manage these policies.

Fuzzification of the semantic context is provided by the application developer and
stored in the knowledge repository and is used to generate the initial training exam-
ples that will be used to build the inductive fuzzy tree. The life cycle of context provi-
sioning is depicted in the table above.

198 H. Harroud and A. Karmouch

The first row represents the context information types used by CIMS to deduce the
presence of entities in the environment. The second row shows the membership func-
tions used to fuzzify these three contexts.

We divided the location information of the fifth floor in Colonel-by building at the
university of Ottawa with respect to the MMARL laboratory into three categories
(near, within and far) while the IA chosen the respective membership functions of
these three categories according to the algorithm in section 3-1, the same process
applies to the other two contexts as shown in the second row. Rows from 3 till 8 illus-
trate samples of the training examples used by the inference agent to build the induc-
tive fuzzy tree (IFT). The inference agent builds the IFT shown in the first column of
the 9th row while the second column depicts the rule surface extracted from the IFT.
Sample of the inferred policies are shown in the last row of the table, where the first
column represents a positive obligation policy of the rule shown in the second column
of the last row, {If Identity is certain, Location is near, Time is prior then Presence is
unaware}. The policy is applied to MMARL group, issued by the CMA and applies
only to MMARL lab.

Figure 4a shows a snapshot of the CIMS user interface of user Bob. The figure
shows the services that can be used by this user, the HP printer and the MMARL
projector, according to his location, time and generated policies. The figure also
shows that the projector is currently busy, as it has the red light, and also shows that
his friend Balo is in a meeting. Hamid is unclear to user Bob which is an indication
that the MAS system is un-aware of the presence status of Hamid. It means that
Hamid could be present in the environment but his presence is vague.

Fig. 4a. Snapshot of the CIMS user Interface Fig. 4b. The map GUI with entities activities
 and location projected on it

Figure 4b is a map that projects the activity and location of entities found in the
user’s presence list. It is a two layer map where the above layer is the map of the fifth

 Implicit Context-Sensitive Mobile Computing Using Semantic Policies 199

floor while the lower map is the map of Bob’s office. Every user is projected in the
map so that Bob can have knowledge about their location context spontaneously as
they move in the fifth floor. Finally, every user can manipulate his ACF and CIF
through the OntoWizard menu item and at the same time browse and search profiles
of other entities if their policies authorize such actions.

5 Related Work

While the field of context-aware computing is relatively young, a number of powerful
context-aware systems such as Context Toolkit [9] and Hewlett Packard’s Cooltown
[10] have been developed, but most of them shared a weakness in supporting knowl-
edge sharing and context reasoning because of their lack of ontology [11]. This weak-
ness has been addressed by projects like GAIA [12], PSI [13] and VTT research [14].
GAIA brought the functionality of an operating system to physical spaces. Common
operating system functions are supported, such as events, signals, file system, secu-
rity, processes, process groups, etc. Gaia extends typical operating system concepts to
include context, location awareness and mobile computing devices.

PSI described a novel support for attaching context-aware services to physical lo-
cations or objects which enables context-aware interaction by utilizing context infor-
mation from the user, network, and sensors; as well as automated use of available
wireless and mobile infrastructure relative to what the application tries to accomplish
so as to minimize exposing such decisions to the user.

VTT project proposed a new software framework that simplifies the development
of context-aware mobile applications by managing raw context information gained
from multiple sources and enabling higher-level context abstractions.

While these projects have successfully built systems that effectively interact with
users and the environments’ context, they do not incorporate the usage of inductive
inference to generate new contextual information from the acquired ones (implicit
context) and to automate the process of context provisioning by its inference to se-
mantic policies (implicit usage of context). In addition exchanging inferred context
policies and enforcing them using agent technology is a novel technique.

6 Conclusion and Future Work

In this paper, we presented a novel approach for supporting the context-awareness of
applications and services in mobile computing. Our implicit context-sensitive tech-
nique for inferring new contextual information, a set of semantic policies, and distrib-
uting these policies among a number of agents provides various applications and
services to be context-aware. As the context changes, new contextual information is
generated and semantic context policies are dynamically created to reflect the changes
in the state of the environment. The creation of semantic policies provides spontane-
ous adaptability to applications and services for handling vagueness in context infor-
mation. Automated context provisioning through policies also helps developers to
rapidly build more reliable context-aware applications and services.

200 H. Harroud and A. Karmouch

In addition, the separation of system behaviour, in the form of policies, from the
system implementation is also a key factor in our MAS system that enables interop-
erability and system reusability (i.e. encapsulating context in policies eliminates the
need for rewriting context management code across applications).

We plan to develop more applications to validate different aspects of the MAS sys-
tem. This includes inter-domain context provisioning, dynamic tuning to the inductive
process of policy generation and context negotiation among multiple domains.

Acknowledgment

This work was partly supported by a Research Grant from the University of Pierre et
Marie Curie, ParisVI (France), and the Natural Sciences and Engineering Research
Council of Canada.

References

[1] N. Davies, H. Gellersen, “Beyond Prototypes: Challenges in Deploying Ubiquitous Sys-
tems” IEEE Pervasive Computing, pp. 26-35, Vol.1, No.1, January-March 2002.

[2] M. Khedr, A. Karmouch, " A Semantic Approach for Negotiating Context Information in
Context Aware Systems” IEEE Intelligent Systems Magazine, 2005.

[3] McGuinness,D.L.; “Question answering on the semantic web” Intelligent Systems, IEEE
Volume 19, Issue 1, Jan.-Feb. 2004.

[4] M. Khedr, A. Karmouch, “An Infrastructure for Managing Context Information in Perva-
sive Computing Environments,” PhD Thesis, University of Ottawa, SITE, 2004.

[5] S.R Safavian, et. al, “A survey of decision tree classifier methodology”, IEEE Trasn.
Systems Man Cybernet Volume21, Issue 3, May-June 1991.

[6] “OWL Web Language Ontology Reference,” http://www.w3.org/TR/owl-ref.
[7] A.K. Bandara, E. C. Lupu, A. Russo, “Using Event Calculus to Formalise Policy Speci-

fication and Analysis”, 4th IEEE Workshop on Policies for Distributed Systems and
Networks (Policy 2003), Lake Como, Italy, June 2003.

[8] http://www.buddyspace.org
[9] D. Salber, A. Dey, G. Abowd, “The Context Toolkit: Aiding the Development of Con-

text-enabled Applications”, CHI (1999) 434–441.
[10] T. Kindberg, J. Barton, “A Web-based Nomadic Computing System”, Computer Net-

works 35(4) (2001) 443–456.
[11] H. Chen, T. Finin, J. Anupam, “Semantic Web in a Pervasive Context-Aware Architec-

ture”, Proceedings of Artificial Intelligence in Mobile System 2003.
[12] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt

“Gaia: A Middleware Infrastructure to Enable Active Spaces.”, IEEE Pervasive Comput-
ing, Volume 1, Issue 4, pp. 74-83, Oct-Dec 2002

[13] T. Kanter, "Attaching Context-Aware Services to Moving Locations", IEEE Internet
Computing, Volume 7, Issue 2, March-April 2003, pp.43 - 51.

[14] Panu Korpipää, el al, “Managing Context Information in Mobile Devices”, IEEE
Pervasive, pp. 42-51, Vol.2, No.3, July-September 2003.

	Introduction
	Multi-agent System for Context Provisioning
	The Context Management Agent
	The Reasoner Agent (RA)

	The Automation Process of Context Provisioning
	Defining Linguistic Terms and Generating Membership Functions
	Building the Fuzzy Inductive Decision Tree
	Policy Inference Process
	Policy Specification and Enforcement
	Semantic Context Modeling

	Implementation
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

