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Abstract. Reinforcement learning in real-world domains suffers from
three curses of dimensionality: explosions in state and action spaces, and
high stochasticity. We present approaches that mitigate each of these
curses. To handle the state-space explosion, we introduce “tabular linear
functions” that generalize tile-coding and linear value functions. Action
space complexity is reduced by replacing complete joint action space
search with a form of hill climbing. To deal with high stochasticity, we
introduce a new algorithm called ASH-learning, which is an afterstate
version of H-Learning. Our extensions make it practical to apply rein-
forcement learning to a domain of product delivery - an optimization
problem that combines inventory control and vehicle routing.

1 Introduction

Reinforcement Learning (RL) provides a nice framework to model a variety of
stochastic optimization problems [1]. However, table-based approaches to large
RL problems suffer from three “curses of dimensionality”: explosions in state
and action spaces, and a large number of possible next states of an action due to
stochasticity [2]. We propose ways to mitigate these curses in a moderately-sized
domain of real-time delivery of products using multiple vehicles with stochastic
demands. While RL has been applied separately to inventory control [3] and
vehicle routing [4,5,2,6] in the past, we are not aware of any applications of RL
to the integrated problem of real-time delivery of products that includes both.

We introduce methods that effectively address each of the curses of dimen-
sionality in the product delivery domain. To mitigate the exploding state-space
problem, we introduce “tabular linear functions,” (TLFs) which can be viewed
as linear functions over some features, whose weights are functions of other fea-
tures. TLFs generalize tables, linear functions, and tile coding, and allow for a
fairly flexible mechanism for specifying the space of potential value functions.
We show particular uses of these functions in the product delivery domain that
achieve a compact representation of the value function and faster learning.

Second, to reduce the computational cost of searching the action space, which
is exponential in the number of agents, we introduce a hill climbing algorithm
that scales to a larger number of agents without sacrificing solution quality.
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Third, since our base algorithm is model-based, we must calculate the ex-
pected value of the next state each step. Many domains have a large stochastic
branching factor, i.e., large number of possible next states for a given state-
action pair. To mitigate this problem, we introduce ASH-Learning, which is
an “afterstate” version of H-learning, and learns by distinguishing between the
action-dependent and action-independent effects of the action [1].

In Section 2, we give background on Average-reward Reinforcement Learning
(ARL) and H-learning. In Section 3 we illustrate the three curses of dimension-
ality in the product delivery domain which motivates our research. In Section 4,
we describe our solutions to the three curses of dimensionality. In Section 5, we
present experimental results and in Section 6 we discuss our results.

2 Average-Reward Reinforcement Learning

We assume that the learner’s environment is modeled by a Markov Decision
Process (MDP), defined by a 5-tuple 〈S, A, U, p, r〉, where S is a discrete set of
N states, and A is a discrete set of actions. U(s) is the set of actions applicable in
state s. By the Markovian assumption, an action u in a given state s ∈ S results
in state s′ with some fixed probability p(s′|s, u) and a finite immediate reward
r(s, u). A policy μ is a mapping from states to actions, such that μ(s) ∈ U(s). In
Average-reward Reinforcement Learning (ARL), we seek to optimize the average
expected reward per time-step, which is called the gain [7]. For a given starting
state s0 and policy μ, the gain is given by Equation 1 where rμ(s0, t) is the total
reward in t steps when policy μ is used starting at state s0, and E(rμ(s0, t)) is
its expected value:

ρμ(s0) = lim
t→∞

1
t
E(rμ(s0, t)) (1)

The goal of ARL is to learn a policy that achieves near-optimal gain by executing
actions, receiving rewards and learning from them. For any fixed policy, the limit
of the difference between the total reward accumulated in time t from a state
s and the total reward expected in time t on the average as t tends to infinity
is called the bias of s and is denoted by h(s). For an optimal policy, the gain ρ
and the bias h(.) satisfy the following Bellman equation [7]:

h(s) = max
u∈U(s)

{
r(s, u) +

N∑
s′=1

p(s′|s, u)h(s′)

}
− ρ (2)

The optimal policy chooses actions maximizing the right hand side of this equa-
tion. We use an ARL method called “H-Learning” which is model-based in that
it learns and uses explicitly represented action models p(s′|s, u) and r(s, u) [8].

At every step, the H-learning algorithm updates the parameters of the value
function in the direction of reducing the temporal difference error (TDE), i.e.,
the difference between the r.h.s. and the l.h.s. of the Bellman Equation 2.

TDE(s) = max
u∈U(s)

{
r(s, u) +

N∑
s′=1

p(s′|s, u)h(s′)

}
− ρ − h(s) (3)
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We use ε-greedy exploration in all our experiments. From Equation 2, it can be
seen that r(s, u) + h(s′) − h(s) gives an unbiased estimate of ρ, when action u
is greedy in state s and s′ is the next state. Hence, H-Learning updates ρ as
follows in every greedy step:

ρ ← (1 − α)ρ + α(r(s, a) − h(s) + h(s′)) (4)

3 The Product Delivery Domain

To conduct our experiments, we used a ver-

Fig. 1. The Product Delivery Do-
main: The square in the center is
the depot and the circles are the
shops

sion of the product delivery domain (shown
in Figure 1) that combines aspects of the
vehicle routing problem [9] and inventory con-
trol problems. A single product is to be de-
livered to shops from a depot using several
trucks. Shop inventories and truck loads are
discretized into 5 levels 0-4. We used 4 trucks,
5 shops, and 10 locations, giving a state-space
size of (55)(54)(104) = 19, 531, 250, 000,which
illustrates the first curse of dimensionality.
Each truck has 9 actions available at each
time step: unload up to 4 units, move in up
to 4 directions, or wait. With 4 trucks, we
must consider 94 = 6561 joint actions each
step, thus illustrating the second curse of di-
mensionality. Trucks are loaded automatically
upon reaching the depot. A small negative re-
ward of −0.1 is given for every “move” action to reflect fuel costs. We give
a reward of −5 if a customer enters a store and finds the shelves empty. We
model customer consumption at shops by decreasing the inventory level by 1
unit with some probability, which independently varies from shop to shop. Thus
the number of possible next states for a state and an action, called the “sto-
chastic branching factor,” is exponential in the number of shops, illustrating the
third curse of dimensionality.

4 Taming the Three Curses of Dimensionality

This section describes our methods for taming the three curses of dimensionality.

4.1 Tabular Linear Functions

We introduce “tabular linear functions,” (TLFs) which generalize linear func-
tions, tables, and tile coding. A TLF is a linear function of a set of “linear”
features of the state, where the weights of the linear function are arbitrary func-
tions of other discretized or “nominal” features. Hence the weights can be stored
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in a table indexed by the nominal features, and when multiplied with the linear
features of the state and summed, produce the final value function.

More formally, a tabular linear function TLF is represented by Equation 5,
which is a sum of n terms. Each term is a product of a linear feature φi and a
weight θi. The linear features φi need not be distinct, although they usually are.
Each weight θi is a function of mi nominal features fi,1, . . . , fi,mi .

h(s) =
n∑

i=1

θi(fi,1(s), . . . , fi,mi(s))φi(s) (5)

A TLF reduces to a linear function when there are no nominal features, i.e.,
θ1, . . . , θn are scalar values. One can also view any TLF as a purely linear function
where there is a term for every possible set of values of the nominal features:

h(s) =
n∑

i=1

∑
k∈K

θi,kφi(s)I(fi(s) = k) (6)

Here I(fi(s) = k) is 1 if fi(s) = k and 0 otherwise. fi(s) is an abbreviation of the
mi-component function in Equation 5, K is the set of all of its possible values.
TLFs reduce to a table when there is a single term and no linear features, i.e.,
n = 1 and φ1 = 1 for all states. They reduce to tile coding or coarse coding
when there are no linear features, but there are multiple terms, i.e., φi = 1 for
all i and n ≥ 1. The nominal features of each term can be viewed as defining a
tiling or partition of the state space into non-overlapping regions and the terms
are simply added up to yield the final value of the state [1].

Consider, for example, one particular application of TLFs to our product
delivery domain. We can represent the value function h(s) by Equation 7:

h(s) =
k∑

t=1

n∑
x=1

θt,x(pt, lt, ix) (7)

where there are k trucks, n shops, and no linear features. The value function
has kn terms, each term corresponding to a truck-shop pair (t, x). The nominal
features are truck position pt, truck load lt, and shop inventory ix. This is the
form of TLF we use in our experiments.

In general, the value function h(.) in ARL is represented as a parameter-
ized functional form of Equation 5 with weights θ1, . . . , θn and linear features
φ1, . . . , φn. Each weight θi is a function of mi nominal features fi,1, . . . , fi,mi .

Then each θi is updated using the following equation:

θi(fi,1(s), . . . , fi,mi(s)) ← θi(fi,1(s), . . . , fi,mi(s)) + β(TDE(s))∇θih(s) (8)

where ∇θih(s) = φi(s) and β is the learning rate.
The above update suggests that the value of h(s) would be adjusted to reduce

the temporal difference error in state s. The update is exactly the same as that
of linear value functions except that only those parameters that belong to the
entry that corresponds to the current state’s nominal features get the update in
proportion to the value of the linear feature.
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4.2 Hill Climbing for Action Space Search

To mitigate the exponential growth of the joint action space and the time re-
quired to search this action space, we implemented a simple form of hill climbing
which greatly sped up the process without a loss in the quality of the resulting
policy. We used hill climbing only during training, and used complete action-
space search during the evaluation.

Note that every joint action a is a vector of sub-actions, each by a single
truck, i.e., a = (a1, . . . , ak). This vector is initialized with all “wait” actions.
Starting at a1, we consider a neighborhood of 8 actions (one for each possible
action a1 may take, other than the action it is currently set to), and a is set to
the best action. This process is repeated for each truck a2, . . . , ak. The process
then starts over at a1, repeating until a has converged to a local optimum (all
agent actions stay the same on one pass over the actions).

4.3 ASH-Learning

One of the drawbacks of model-based RL methods is that they require stepping
through all possible next states of a given action to compute the expected value of
the next state. Optimizing this step improves the speed of the algorithm consid-
erably. Consider the fact that we need to compute the term

∑
N
s′=1p(s′|s, u)h(s′)

in Equation 3 to compute the Bellman error and update the parameters. Since
there are usually an exponential number of possible next states in parameters
such as the number of shops, doing this calculation by brute-force is expensive.

A method for optimizing the calculation of the expectation is an algorithm
we call ASH-Learning, or Afterstate H-Learning. This is based on the notion
of afterstates [1] also called “post-decision states” [2]. We create afterstates by
conceptually splitting the effects of an agent’s action into “action-dependent”
and “action-independent” (or environmental) effects. The afterstate is the state
that results by taking into account only the action-dependent effects. We can

view the progression of states/afterstates as s
a→ sa → s′ a′

→ s′a′ → s′′. The
“a” suffix used here indicates that sa is the afterstate of state s and action a.
The action-independent effects of the environment have created state s′ from
afterstate sa. The agent chooses action a′ leading to afterstate s′a′ and receiving
reward r(s′, a′). The environment again stochastically selects a state, and so on.
The h-values may now be redefined in these terms:

h(sa) = E(h(s′)) (9)

h(s′) = max
u∈U(s′)

⎧⎨
⎩r(s′, u) +

N∑
s′

u=1

p(s′u|s′, u)h(s′u)

⎫⎬
⎭ − ρ (10)

If we substitute Equation 10 into Equation 9, we obtain this Bellman equation:

h(sa) = E

⎡
⎣ max

u∈U(s′)

⎧⎨
⎩r(s′, u) +

N∑
s′

u=1

p(s′u|s′, u)h(s′u)

⎫⎬
⎭ − ρ

⎤
⎦ (11)
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1. Find an action u ∈ U(s′) that maximizes
�

r(s′, u) +
�N

s′
u=1p(s′

u|s′, u)h(s′
u)
�

2. Take an exploratory action or a greedy action in the state s′. Let a′ be the action
taken, s′

a′ be the afterstate, and s′′ be the resulting state.
3. Update the model parameters p(s′

a′ |s′, a′) and r(s′, a′) using the immediate re-
ward received.

4. If a greedy action was taken, then
(a) ρ ← (1 − α)ρ + α(r(s′, a′) − h(sa) + h(s′

a′))
(b) α ← α

α+1

5. h(sa) ← (1 − β)h(sa) + β

�
max

u∈U(s′)

�
r(s′, u) +

�
N
s′

u=1p(s′
u|s′, u)h(s′

u)
�

− ρ

�

6. s′ ← s′′

7. sa ← s′
a′

Fig. 2. The ASH-learning algorithm. The agent executes steps 1-7 when in state s′.

The s′u notation indicates the afterstate obtained by taking action u in state s′.
We estimate the expectation of equation 11 via sampling in step 5 of Figure 2.
Since this avoids looping through all possible next states, the algorithm is faster.
In our domain, the afterstate is deterministic given the agent’s actions, but the
stochastic effects of customer actions are unknown. Hence we do not need to
learn p(s′u|s′,u), providing a significant savings in computation time.

The temporal difference error for the ASH-learning algorithm is given by:

TDE(sa) = max
u∈U(s′)

⎧⎨
⎩r(s′, u) +

N∑
s′

u=1

p(s′u|s′, u)h(s′u)

⎫⎬
⎭ − ρ − h(sa) (12)

which we use in Equation 8 when using TLFs for function approximation.

5 Experimental Results

We conducted several experiments testing the methods discussed in Section 4.
Tests are averaged over 30 runs of 106 time steps for all results. Runs are divided
into 20 phases of 48,000 training steps and 2,000 evaluation steps each. During
evaluation steps, exploration is turned off and complete search is used to select
actions. 4 trucks and 5 shops were used in all the tests. In Figure 3 we compare
the results of H-learning and ASH-learning, and complete search of the joint
action space vs. hill climbing search. We also compare these results to a fairly
sophisticated handcoded non-learning greedy algorithm. This algorithm works
by first prioritizing the shops by the expected time until each shop is empty
due to customer actions, and then assigning trucks to the highest-priority shops.
Once an assignment is made it is straightforward to assign each truck an op-
timal action. Our results show that ASH-learning outperforms the hand-coded
algorithm and H-learning, converging faster to a better average reward.

From Table 1, we see that ASH-learning is very successful at ameliorating
the explosion in stochastic branching factor. The largest gains in execution time
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Fig. 3. Comparison of Handcoded al-
gorithm, complete search, Hill climb-
ing, and H- and ASH-learning

Table 1. Comparison of execution
times for one run

Search Algorithm Seconds

Complete H-learning 148
Complete ASH-learning 92
Hill climbing H-learning 26
Hill climbing ASH-learning 15

were seen using hill climbing. Combined with ASH-learning, this led to speedups
of an order of magnitude. This is because the average number of joint actions
considered using hill climbing was about 44, whereas the number of legal truck
actions considered by complete search was about 385. Despite this, there was no
significant difference in the rate of convergence or the value of the final learned
policy. As the number of agents increases beyond 4, we would expect to see even
greater improvements in execution times of hill climbing search.

We obtained similar good results using Tabular Linear Functions and ASH-
learning in other domains we tested including a taxi domain which is popular in
hierarchical RL [10] and a competitive team game domain (which requires strong
coordination between agents). We have also developed a multi-agent version of
ASH-learning which allowed us to scale up to 10 agents in the team game domain
without significant slow down.

6 Discussion and Future Work

We illustrated the three curses of dimensionality of reinforcement learning and
showed effective techniques to address them in certain domains. TLFs offer an
attractive alternative to other nonlinear forms of function approximation such
as neural nets. They converge faster and allow meaningful prior knowledge to be
provided. Hill climbing is a cheap but effective technique to mitigate the action-
space explosion due to multiple agents. Another promising avenue to explore is
the coordination graph approach, where the value function is decomposed in a
way that makes the coordination opportunities among agents explicit [11].

We introduced ASH-learning, which is an afterstate version of model-based
real-time dynamic programming. It is similar to R-learning in that action- in-
dependent effects are not learned or used [12]. However, the value function is
state-based, so is more compact than R-learning, much more so for multiple
agents. Thus it combines the nice features of both model-based and model-free
methods and has proved itself quite well in our domain. Any afterstate-based
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method is expected to be quite effective in domains where action-dependent
effects can be conceptually separated from environmental effects.

In summary, our methods and results add to the accumulating evidence of
the effectiveness of average-reward RL, and suggest that the explosions in state
space, action space, and high stochasticity may all be ameliorated.
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