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4 MeVis – Center for Medical Diagnostic Systems and Visualization,
Bremen, Germany

Abstract. We present a model for the optimal placement of mono- and
bipolar probes in radio-frequency (RF) ablation. The model is based on a
numerical computation of the probe’s electric potential and of the steady
state of the heat distribution during RF ablation. The optimization is
performed by minimizing a temperature based objective functional under
these constraining equations. The paper discusses the discretization and
implementation of the approach. Finally, applications of the optimization
to artificial data and a comparison to a real RF ablation are presented.

1 Introduction and Related Work

During the last decade, local and minimally invasive techniques have become a
promising treatment of tumor diseases. Especially in situations where a surgical
resection or a chemotherapy is not possible due to the extent of the tumor or the
general state of the patient, these techniques offer an alternative and less inva-
sive possibility of treatment. Several authors [1, 2, 3, 4, 5, 6] have worked on the
simulation of various thermo-therapy approaches (intervention methods where
the malignant tissue is destroyed by high or low temperatures). The complexity
of the models varies from simple steady state models with constant material pa-
rameters [2] to models taking vaporization of water and the nonlinear behavior of
tissue properties into account [6]. The models are discretized by finite differences
or finite element methods on Cartesian or tetrahedral grids.

In this work we consider the radio-frequency (RF) ablation of liver tumors
with mono- or bipolar systems: A probe, connected to an electric generator, is
placed inside the malignant tissue, such that an electric current flows through
the body and heats the tissue near the probe up to temperatures of more than
60 ◦C. At such temperatures the proteins of the heated tissue coagulate and its
cells die. The treatment is successful, if the volume of destroyed tissue completely
includes the malignant lesion, comparable to R0 resections in liver surgery.

Because of local cooling due to blood perfusion a thorough planning of the
probe’s position as well as a determination of optimal generator power are advis-
able to assert a successful treatment. In this paper we take a first step towards
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an optimization of the RF ablation planning. For a steady state partial differ-
ential equation (PDE) model we formulate an appropriate objective functional
measuring the quality of an ablation. Therewith, we aim at an optimization of
the RF probe’s positioning under the constraining PDE system. In a future work
the optimal control of the electric energy induced into the malignant tissue will
be investigated.

To our knowledge, the optimization of mono- and bipolar RF ablation in
three space dimensions has not been incorporated in the existing finite element
models. However, for interstitial ultrasound thermo-therapy, a two-dimensional
optimization model has been presented by Bustany et al. [7]. Also, a parameter
identification for the hyperthermia therapy is investigated by Gänzler et al. [8].
Moreover, Villard et al [9] presented a three-dimensional optimization based on
a simple estimation of the lesion zone as an ellipsoid. Our problem falls in the
field of nonlinear optimization subject to infinite dimensional constraints given
by a system of PDEs. For an overview of the methodology see e. g. [10, 11].

The approach presented in the current paper is the result of a joint effort of
CeVis, MeVis and ZETEM at the University of Bremen and a variety of clinical
partners working together in publicly funded research projects1. These projects
focus on the development and clinical evaluation of computer aided systems for
planning, monitoring, and assessing of tumor ablation. At CeVis, a group, headed
by the third author, works on the advanced numerical models and algorithms.

2 A Model for the Simulation of RF Ablation

We consider the computational domain to be a cuboid Ω ⊂ R
3 with boundary

Γout = ∂Ω in which a tumor Ωtu ⊂ Ω lies. Further, we assume that a mono- or
bipolar RF probe is applied in Ω, whose position x̄ ∈ Ω (of the active zone’s
center) and direction ā ∈ S2 = {x ∈ R

3 : |x| = 1} are the unknown optimization
variables. The subset of Ω that is covered by the probe is denoted by Ωpr, the
subsets covered by the electrodes are denoted by Ω+ and/or Ω−, and Ω± =
Ω+ ∪ Ω− (cf. Fig. 1). We emphasize that all these sets depend on x̄ and ā.

In order to find the optimal values for x̄ and ā, we must be able to solve the
forward problem, i. e. to compute the temperature distribution resulting from
the ablation for a given constellation (x̄, ā). Hence, we are interested in the
temperature T and the electric potential ϕ both of which are functions Ω → R.
These functions are solutions of the following PDEs in Ω:

−∇ ·
(
σ∇ϕ

)
= 0 , (1a)

−∇ · (λ∇T ) = Q , Q = Qrf + Qperf . (1b)

Equation (1a) is the electrostatic potential equation derived from Maxwell’s
equations (cf. Stein [1]). Equation (1b) is the steady state of the heat equation,

1 LITT/ RFITT funded by the German Research Foundation (Pe 199/11-1 and
Pe 199/15-2) and the national research networks VICORA and FUSION funded by
the Federal Ministry of Education and Research (01EZ0401 and 01IBE03C).
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Fig. 1. Schematic setting of the
considered configuration. Note
that Ω+ ∪ Ω− = Ω± ⊂ Ωpr, where
all these sets depend on x̄ and ā.

where the right hand side Q consists of the source Qrf due to the electric current
and the heat sink Qperf due to the blood perfusion. The electric and thermal
conductivities σ, λ ∈ R are assumed to be constant. Thus, we have a system of
PDEs, coupled by the right hand side of the heat equation.

Both equations are considered in Ω \ Ω± and Ω, respectively, together with
the boundary conditions

ϕ = ±1 on Ω+ and Ω− (fixed potential on electrodes), (2a)

n · ∇ϕ =
n · (x̄ − x)
|x̄ − x|2 ϕ on Γout (Robin boundary conditions), (2b)

T = Tbody on Γout (no effect apart from the probe), (2c)

where n denotes the outer normal. Condition (2b) is based on the idea that
on the (outer) boundary (i. e. far away from the probe), the potential behaves
approximately as induced by a point load at the barycenter x̄ of the probe.

The source term Qrf is, up to a scalar multiple, equal to the electric power
P = σ|∇ϕ|2, i. e.

Qrf =
Peff

Ptotal
P with Ptotal =

∫

Ω

P dx , Peff =
4PsetupRRI

(R + RI)2
, R =

U2

Ptotal
.

RI is a property of the generator (inner resistance), U is the difference of the
potential ϕ on the two electrodes (U = 2 V for bipolar probes and U = 1 V for
monopolar probes), and Psetup is the value set up at the generator’s control unit.

Finally, the term modeling the cooling effects of the blood perfusion Qperf is
based on the approach of Pennes [12]:

Qperf = −ν · (T − Tbody) where ν =

{
ν∗
B · ρm,B · cm,B , inside vessels ,

0 , else .

ν depends on the relative blood circulation rate ν∗
B [s−1], the blood density

ρm,B [kg/m] and the heat capacity cm,B [J/kg K]. Actually, Qperf is split up into
νTbody (right hand side) and νT (shifted to the left hand side), thus changing
the differential operator in (1b).

3 Objective Function

The aim of the therapy is the destruction of the tumor with minimum amount of
affected native tissue. In this work, we focus on a temperature based objective
functional, i. e. for an optimal ablation the temperature shall be high in the
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region of the tumor Ωtu and near body temperature in the native tissue Ω \Ωtu.
Therefore the objective functional f ∈ C1(H1(Ω), R) is chosen as

f(T ) =
w1

2
‖T − Tbody‖2

L2(Ω\Ωtu) +
w2

2
‖T − Tcrit‖2

L2(Ωtu) (3)

with w1 and w2 being suitable weights, so that the above requirements are met.
Alternative approaches with objective functionals (cf. also [7]) not penalizing
temperatures larger than Tcrit inside the tumor are currently investigated. Also,
coagulation based objective functionals measuring the distance between the tu-
mor Ωtu and the volume of coagulated tissue, are under consideration.

4 Optimization Algorithm

Formally, the objective function f can be considered as a function of the tem-
perature distribution T , where T is a function of the heat source Qrf , and Qrf
is a function of the optimization parameter (x̄, ā) =: u ∈ U = Ω × S2. Hence,

Qrf = Q(u) , Q ∈ C1(U, L2(Ω)) , T = T (Qrf) , T ∈ C1(L2(Ω), H1(Ω)) .

Thus, we are looking for u ∈ U such that F : U → R, u �→ F (u) := f ◦ T ◦ Q(u)
becomes minimal. Obviously, in certain situations the uniqueness of a minimiz-
ing configuration is not guaranteed, e. g. for spherical tumors. This situation
may also occur in practice for liver tumors which in general have a spherical-like
shape. However, such a symmetry is broken by the consideration of surround-
ing blood vessels and their cooling effects. Moreover, for practical reasons the
uniqueness of a solution is not needed and even local minima give important
information about good probe and generator configurations. In a future model
we will incorporate constraints for the optimization parameters which break any
existing symmetry even further. Such constraints are given by anatomical struc-
tures (bones, colon, diaphragm) that must not be punctured during the ablation.

For the optimization, i. e. the minimization of F , we use a gradient descent
method. More sophisticated approaches, in particular Lagrange-Newton (SQP)
methods providing superlinear convergence, are considered in an ongoing work.
The current choice is due to the fact that in our case the involved Hessian turns
out to be very ill-conditioned.

Thus, we construct a series (un)n∈N ⊂ U where u0 ∈ U is chosen arbitrarily
and un+1 = un + snvn. Here, vn ∈ R

6 is the descent direction which is chosen to
be an approximation of −∇uF (un), and sn > 0 is the step size. We determine
the step size by first trying sn = 1 and then bisecting it repeatedly until the
resulting un+1 fulfills un+1 ∈ U and F (un+1) < F (un). The iteration continues
until ‖vn‖L2(Ω) falls below a given threshold.

The remaining part of this section deals with our approximation of the six
components ∂uj F (u) of the gradient ∇uF (u). Using the chain rule yields

∂uj F (u) = f ′
(
T ◦ Q(u)

) [
T ′(Q(u)

)[
∂uj Q(u)

]]

= T ′
(
Q(u)

)∗ [
f ′(T ◦ Q(u)

)] [
∂uj Q(u)

]
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where ′ denotes the Fréchet derivative, ∗ denotes the adjoint operator, and brack-
ets [·] denote application of linear operators. For the calculation of ∂uj Q(u) we
use a numerical approximation by central differences, whereas we determine f ′

analytically as

f ′(T )[T̃ ] = w1〈T − Tbody, T̃ 〉L2(Ω\Ωtu) + w2〈T − Tcrit, T̃ 〉L2(Ωtu) = 〈αT , T̃ 〉L2(Ω)

with αT ∈ L2(Ω) given by αT (x) =

{
w1(T (x) − Tbody) for x ∈ Ω \ Ωtu ,

w2(T (x) − Tcrit) else .

For T ′(·)∗ a straightforward computation leads to the representation

T ′(Qrf)∗ [f ′(T )] [Q̃rf] = 〈pT , Q̃rf〉Ω

where pT ∈ H1(Ω) is the solution to the adjoint problem (1b), (2c):

−λΔpT + νpT = αT in Ω, pT = 0 on Γout, (4)

remember the term νpT is due to the splitting of Qperf introduced in Sect. 2.

5 Discretization with Finite Elements

The solutions of the elliptic boundary value problems (1) and (4) are numerically
computed with a finite element method on a three dimensional uniform Cartesian
grid. The electric power P = σ|∇ϕ|2, which is needed to calculate the right hand
side Q for (1b), is determined with central differences after the solution of (1a).

For reasons of analogy we restrict the following description to the elliptic prob-
lem (1b) which we assume to be adjusted to homogeneous boundary conditions
in the usual way (see Braess [13]). We obtain the weak form, by multiplying the
corresponding PDE with a test function v ∈ H1

0 (Ω). Integrating by parts over
Ω leads to

λ 〈∇ T, ∇ v〉L2(Ω) +ν 〈T, v〉L2(Ω) = 〈Qrf +νTbody, v〉L2(Ω) ∀ v ∈ H1
0 (Ω) . (5)

In a second step we discretize this variational problem by covering the computa-
tional domain Ω with a uniform Cartesian grid. For that purpose we restrict (5)
on a finite dimensional subspace V h ⊂ H1

0 (Ω) consisting of piecewise trilinear,
globally continuous functions. Then every function w ∈ V h is determined by
its nodal values γi at the vertices xi for i = 1, ..., n of the grid. This leads to a
system of linear equations, which we solve with a conjugate gradient method,
implemented in a matrix free way.

6 Numerical Results

In this section we present the application of our optimization to artificial settings
as well as to geometries obtained from real CT scans. Let us first verify the
performance of the algorithm in a case where the correct solution is qualitatively
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Fig. 2. Optimization of the probe’s placement for an artificial example with an
ellipsoid-shaped tumor (dark gray) and a linear vessel (black). The pictures show from
left to right steps 0 (start), 4, 6, and 9 of the optimization and display the probe
(white-gray) and a corresponding isosurface of the temperature (transparent) as well.

Fig. 3. Optimization for an example based on patient data with segmented tumor
and surrounding vessels. The pictures show from left to right steps 0, 5, 10 and 15 of
the optimization process and display the tumor together with the vascular system, the
probe position and an isosurface of the temperature (cf. Fig. 2).

obvious. We let Ω be a domain of extent 60 × 60 × 60 [mm3] with an overlaid
grid consisting of 121 grid points in each direction. As a tumor we consider an
ellipsoid, which lies in the center of Ω, together with a straight vessel in the
vicinity of the tumor (cf. Fig. 2). A monopolar probe with a radius of 1.2mm
and an electrode length of 25mm is used. The generator has an inner resistance
of 80 Ω and is set up to a power of 80W. The initial probe position for the
optimization is located at 10mm distance in each direction from the center of
Ω and its orientation is ā = (5, 2, 3) normalized to length 1. The results of this
experiment are shown in Fig. 2. It is clearly visible that the probe placement
adapts to the ellipsoidal shape of the tumor and thus corresponds to the expected
positioning along the long principal axis of the ellipsoid.

The second example is performed with a real segmented tumor and a set of
surrounding vessels. The computational domain Ω has a dimension of 121.4 ×
80.7×80.7 [mm3] and the overlaid grid consists of 155×103×103 grid points. The
probe data is the same as in the first example, whereas the generator settings
are RI = 80 Ω and Psetup = 30 W. Moreover, the initial position of the probe
is (30.7, 10.3, 10.3)mm3 distant from the center of Ω and the probe’s initial
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Fig. 4. Comparison of the computed
optimal probe placement (left) with the
probe placement chosen by the respon-
sible physician (right)

direction is ā = (5, 2, 3) normalized to 1. As the pictures in Fig. 3 show, the
optimal probe’s position lies in the center of the tumor, and its optimal direction
adapts to the shape of the tumor as well as to the influence of the vessels. The
cooling effect of the blood perfusion can be seen explicitly on the steady state
of the temperature (i. e. a lower temperature near the vessels).

Finally we compare the result of our second optimization to the positioning
chosen by the responsible physician. Instead of one probe of radius 1.2mm, the
physician had taken a fixed cluster of three parallel probes of radius 0.75mm.
For the time-being we assume that these act like a single probe of larger radius.
Although this is only a rough approximation, the result depicted in Fig. 4 shows
that the probe placement suggested by our algorithm and the one chosen by
the physician nearly coincide in their position (i. e. in the barycenter of the
probes’ active zones), whereas the orientation differs by an angle of about 37 ◦.
One reason for this could be the spherical-like shape of the tumor – an intrinsic
property of the problem (cf. Sect. 4). Also, anatomical structures (e. g. bones or
internal organs), which are not respected in our model yet, could have excluded
the orientation found by our algorithm from the physician’s choice.

7 Discussion and Future Work

We have discussed a model for the optimization of the placement of mono- and
bipolar probes in RF ablation. The algorithm has been evaluated on an artifi-
cial example for which the optimal probe’s positioning is known. Furthermore,
results of the optimization with a CT-segmented tumor surrounded by a vas-
cular system have been presented and compared to the probe’s placement the
responsible physician had chosen for his ablation. Although the computed opti-
mal probe’s direction differs due to e. g. anatomical structures (cf. Sect. 6), the
probe’s position is similar to the physician’s choice.

We regard the results presented in this work as useful for the planning of RF
ablations as well as for educational purposes, since they help understanding how
experienced physicians choose their RF ablation parameters.

To provide practically feasible optimal positioning (respecting structures that
must not be punctured), we are planning to incorporate state constraints for the
optimization parameters in a future model. We regard the optimization of probe
placement as a helpful tool for tumor ablation, in particular with respect to
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the complete destruction of the tumor lesion. A correct placement of the probe
increases the chance of a total tumor destruction and therefore reduces the risk
of a recurrence. In ongoing and future investigations, we intend to incorporate
sophisticated Lagrange-Newton and active set strategies for the optimization.
Moreover, we will consider the corresponding time-dependent PDE models and
work towards an optimal control of the overall energy deposit during ablation. In
practice it will be hard for the interventionist to achieve the computed optimal
positions exactly. Inevitably there will be deviations from the optimal configura-
tion, for which a parametric sensitivity analysis is going to provide an estimation
of the risk of failure of the therapy. Finally more comprehensive evaluation with
artificial and real data sets (different tumor shapes and vessel configurations)
will also be performed.

The authors thank the VICORA team and in particular T. Stein and A. Rog-
gan from Celon AG for valuable hints and fruitful discussions on the topic. Also,
we would like to thank the team from MeVis, especially S. Zentis and C. Hilck
for preprocessing the CT scans.
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