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Abstract. We propose here a framework to build a statistical atlas of
diffusion tensors of canine hearts. The anatomical images of seven hearts
are first non-rigidly registered in the same reference frame and their
associated diffusion tensors are then transformed with a method that pre-
serves the cardiac laminar sheets. In this referential frame, the mean ten-
sor and its covariance matrix are computed based on the Log-Euclidean
framework. With this method, we can produce a smooth mean tensor
field that is suited for fiber tracking algorithms or the electromechanical
modeling of the heart. In addition, by examining the covariance matrix
at each voxel it is possible to assess the variability of the cardiac fiber
directions and of the orientations of laminar sheets. The results show a
strong coherence of the diffusion tensors and the fiber orientations among
a population of seven normal canine hearts.

1 Introduction

While the main geometrical arrangement of myofibers has been known for
decades, its variability between subjects and species still remains largely un-
known. Understanding this variability is not only important for a better de-
scription of physiological principles but also for the planning of patient-specific
cardiac therapies [7]. Furthermore, the knowledge of the relation between the
myocardium shape and its myofiber architecture is an important and required
stage towards the construction of computational models of the heart [14] [1]
since the fiber orientation plays a key role when simulating the electrical and
mechanical function of the heart. High resolution measurements of fiber orien-
tation has been recently eased with the use of Diffusion Tensor Imaging (DTI)
since there is a correlation between the myocardium fiber structure and diffusion
tensors [15]. DTI also has the advantage to provide directly this information in
3D with high resolution but unfortunately it is still not available in vivo due to
the cardiac motion. There has been several studies [12] [13] in the past decade
that have measured the variability of fiber orientation from DTI (similar studies
has been done for the brain [4]). These studies estimated the fiber direction as
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the primary eigenvector of each tensor and for instance compared its transmural
variation with that observed from dissection experiments.

We propose here to extend these studies by building a statistical model of
the whole diffusion tensor and not only its first eigenvector. This tensor analysis
allows us to study the variability of laminar sheets which are associated with the
tertiary eigenvector. Performing this analysis based on vector analysis (instead
of tensor analysis) would have been difficult because the secondary and tertiary
eigenvalues have often very similar values and may lead to interpretation errors.
To the best of our knowledge, this is the first attempt to perform a first and
second order statistical analysis of DT images of canine hearts.

Our statistical analysis proceeds as follows. We first register the canine heart
images in a common reference frame using anatomicalMRIs. For eachheart, we get
a deformation field we use to register and transform properly the diffusion tensors
considering properties of the cardiac fiber microstructure. Finally we use coherent
statistical tools on tensors to study the variability of individual hearts from this
averagemodel and to evaluate the relevance of such a model. An application of this
framework is carried out using a dataset of seven normal canine hearts.

2 Material and Method

2.1 Data Acquisition

We used a dataset of seven ex vivo fixed normal canine hearts acquired [8]
and provided by the Center of Cardiovascular Bioinformatics and Modeling
(CCBM)1 at the Johns Hopkins University. Each heart was placed in an acrylic
container filled with Fomblin, a perfluoropolyether (Ausimon, Thorofare, NJ).
Fomblin has a low dielectric effect and minimal MR signal thereby increasing
contrast and eliminating unwanted susceptibility artifacts near the boundaries of
the heart. The long axis of the hearts was aligned with the z-axis of the scanner.
Images were acquired with a 4-element knee phased array coil on a 1.5 T GE
CV/i MRI Scanner (GE, Medical System, Wausheka, WI) using a gradient sys-
tem with 40 mT/m maximum gradient amplitude and a 150 T/m/s slew rate.
Different resolutions have been used around 0.3 × 0.3 × 0.9 mm3 and from 14
to 28 gradient directions. The images have been subsampled into 128× 128× 64
images with a resolution around 0.6 × 0.6 × 1.8 mm3. The temperature during
acquisition varied between 18 − 25 ◦C from one heart to another.

2.2 Myocardium Registration

In order to analyze the statistical variability of the tensors without introduc-
ing a bias, we choose to register the images based on independent information:
the anatomical MRIs. Before the registration stage, we pre-process semi-
automatically the anatomical MRIs by extracting the image background, and
by cropping each image above the valve plane. We register each heart on a

1 http://www.ccbm.jhu.edu/research/DTMRIDS.php
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template given by a Procrustes iterative mean estimation. The registration is
initialized with an affine global transformation of the hearts defined from three
significant landmarks: the apex point and the two corner points of the right ven-
tricle on the valve plane. The apex point is used to define a scaling along the axis
of the heart. The matching of the corner points defines a 3D translation, a 2D
rotation on the valve plane, and a 2D scaling along a line defined by the 2 corner
points. The second registration step is based on a hybrid non-rigid intensity- and
landmark-based registration algorithm [2]. This algorithm gives us the ability to
interactively refine the registration of a local region. The output of this process
is a dense deformation field for each anatomically registered cardiac image.

2.3 Transformation of Cardiac Diffusion Tensors

The next stage is to transform the DT image based on the estimated deformation
field. For each voxel, the global deformation field is approximated at the first
order by an affine transformation [16]. This underlying affine transformation A is
computed from the identity matrix Id and the Jacobian ∇F of the deformation
field F : A = Id + ∇F .

Now we have the well known problem of applying an affine transformation to
a DT image. Since it was shown that there is a correlation between the cardiac
tissue microstructure and the eigensystem of the diffusion tensors [8] [13] [15],
we can transform the underlying tissue microstructure with the affine transfor-
mation. Then we reconstitute the diffusion tensor from this transformed mi-
crostructure knowing the relationship between the two of them. The solution we
propose here to handle this problem proved to be similar to the Preservation of
the Principal Direction (PPD) reorientation strategy proposed in [3]:

V ′
1 = AV1

||AV1|| V ′
3 = (A−1)T V3

||(A−1)T V3||
V ′

2 = V3 ⊗ V1

where V1, V2, V3 are the primary, secondary and tertiary eigenvectors of the
original diffusion tensor and where V ′

1 , V ′
2 , V ′

3 are the ones of the transformed
diffusion tensor.

The PPD has been already justified and validated in the case of brain DTI [3]
but only partially in the case of cardiac DTI. We propose here a more complete
justification of the PPD strategy for cardiac DTI transformation.

As described in Figure 1, the myocardium microstructure is made of laminar
sheets of muscle fibers [5]. The space between the laminar sheets is composed
of extracellular water and collagen network linking these sheets together. This
extracellular space has a mostly unrestricted diffusion in the direction of the two
first eigenvectors of the diffusion tensor. The interface plane between the laminar
sheets and the extracellular space is an important barrier for water molecules
and its normal defines the third eigenvector. The extracellular water between
fibers in the laminar planes can explain the difference between the primary
eigenvector in the fiber direction and the secondary eigenvector orthogonal to
the fiber direction. But the cardiomyocyte geometry is also proposed to explain
the privileged diffusion direction in the fiber orientation. A cardiomyocyte is
much longer (50-120 μm) than wider (5-25 μm) and much longer than the mean
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free path (roughly 10 μm considering the diffusion time of the acquisitions). It
means that the cell membrane does not have as much influence on the water
diffusion in the fiber direction as in the other directions where the width of the
cells is close to the mean free path.

Let us now analyze the effect of the basic transformations (translations, rota-
tions, shears and scaling) describing an affine transformation. The way to trans-
form the fiber structure and thus the diffusion tensors through translation and
rotation is obvious. The scaling only changes the density of fibers microstructure
inside a voxel considering the acquired voxel resolution and finally not the dif-
fusion rate. The shearing induced by the affine transformation is not so simple
to apply to the diffusion tensors. We illustrate in Figure 1 the shearing applied
to the basic microstructure of cardiac fibers. The direct transformation of the
original eigenvectors Vi leads to the vector AVi and the transformation deduced
from the fiber structure deformation leads to the vector V ′

i . As we determine the
fiber structure deformation through the fiber direction deformation, the trans-
formed primary eigenvector V ′

1 is the same as the direct transformation of the
original primary eigenvector V1: V ′

1 = AV1
||AV1|| .

Fig. 1. [Left] Cardiac Fiber Structure (from LeGrice et al. [5]). - [Middle Left] Original
basic fiber microstructure with eigenvectors Vi. [Middle Right and Right] Shearing
applied to the basic fiber microstructure : continuous arrows AVi are the transformed
eigenvectors through the shearing and dashed arrows V ′

i are the eigenvectors related
to the correlation between the fiber microstructure and the diffusion tensor.

The tertiary eigenvector is defined by n, the vector normal to the laminar
sheets which are considered locally plane. The image of a plane through an
affine transformation is a plane. It means that these laminar sheets are stable.
We just have to determine n′ the unit vector normal to the plane defined by the

image V ′
1 of V1 and the image AV2 of V2 [17]: n′ = (A−1)T n

||(A−1)T n|| .
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The transformed secondary eigenvector obtained from the correlation between
the structure of the fibers happens to be the one that builds an orthonormal basis
with the two others. It means that constructing first the secondary (as done for
the PPD) or the tertiary (as we do) and then determine the other one to obtain
an orthonormal basis leads to the same results. This is the key point that justifies
the use of the PPD in our specific case of cardiac DTI.

2.4 Tensor Statistics

The Log-Euclidean framework [10] provides a consistent and rigorous framework
to study the statistical variability of DTI for each voxel of the heart. In this
framework the space of diffusion tensors is a vectorial space which means it
inherits from all the statistical properties and tools we can get from a vectorial
space. We thus compute the mean of all the registered DTI and the corresponding
covariance [11] at each voxel:

Dlog = exp( 1
N

N∑

i=1

log(Di))

Cov = 1
N − 1

N∑

i=1

vect(ΔDi) · vect(ΔDi)T

where vect(ΔDi) is the vectorial representation [11] of ΔDi = log(Di)− log(Dlog).
The difficulty to visualize the 6×6 covariance matrix of diffusion tensors leads

us to study first its norm
√

Trace(Cov), which allows us to identify the variable
and stable regions of the heart. To help us in translating the DTI variability into
the fiber structure variability, we can analyze this covariance matrix extracting 6
specific variance parameters at each voxel in the coordinate system of the mean
tensor: 3 for each eigenvalue variability and the 3 for each pair of orthonormal
eigenvectors orientation variability around the third one [6].

3 Results

We applied the proposed framework to the dataset of seven canine hearts pre-
sented previously. We obtain a smooth cardiac DTI atlas catching the shared
transmural variation of the fibers directions (see Figure 2) that is similar to the
one generally observed [15]. The norm of the covariance matrix in Figure 3 shows
a global stability of the compact myocardium and several variable regions espe-
cially at the RV and LV endocardial apices where the fiber structure is probably
less organized. Some other variabilities at the surface of the heart might also be
due to acquisition or registration artifacts.

In order to have a better interpretation of this covariance matrix and to un-
derstand the origin of the variabilities, we decompose it into specific modes as
described previously. We can see in Figures 3 that the eigenvalues variabilities
are homogeneous in the compact myocardium. The mean standard deviations
normalized by their mean value σi

λi
are 0.16, 0.24 and 0.22 for the 1st, 2nd and

3rd eigenvalues. Note that these variabilities and their difference are artificially
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Fig. 2. [Left and Upper Right] Average canine cardiac DTI. [Lower Right] Fiber track-
ing in the left ventricle wall with high stiffness parameters for a better visualization of
the transmural variation of fibers directions. The RGB colors represent the components
of the primary eigenvector Red = |Vx|, Green = |Vy |, Blue = |Vz| with x, y in the axial
plane and z orthogonal to the axial plane as described with the colored sphere.

Fig. 3. [upper] Norm of the covariance matrix in 3 orthogonal views. [from middle
left to middle right] Decomposition of the covariance in 6 eigenmodes describing the
variability of the 1st, 2nd, 3rd eigenvalues. [from lower left to lower right] Rotation
variability of the plane orthogonal to the 1st, 2nd and 3rd eigenvectors.
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increased by the difference of the temperature during the different image acqui-
sitions (temperature ranging from 18 to 25 ◦C). Anyway mostly the order of the
eigenvalues is really meaningful in terms of fiber architecture and thus in terms
of electrical conductivity that are introduced in electromechanical modeling (it
does not seem to be any direct correlation between the diffusion and electri-
cal conductivity rates). At least these statistical results give us an idea of the
average diffusion rates that could help in detecting locally defined pathologies.

The separation of the eigenvalues variability and the eigenvectors orientation
variability is important to evaluate the variability of the myocardial fibers ar-
chitecture. As seen in Figures 3, the orientation of the fibers is stable among a
population (mean standard deviation of 8.8 and 9.4 degrees around the secondary
and the tertiary eigenvectors) for the two rotations in the planes containing the
primary eigenvector. It means that the fiber orientation of the average cardiac
DTI is shared by the dataset. The orientation of the laminar sheets described
by the rotation of the plane Span(V2, V3) around V1 shows a much higher mean
standard deviation of 23 degrees. First of all this variability is underevaluated
considering that the statistical study we proposed is a simplification at the first
order [6]. Secondly this variability is due to the difficulty to differentiate the
secondary and tertiary eigenvectors when they have similar eigenvalues. When
we study the fiber organization (i.e. the 3 rotation eigenmodes) we are not any-
more in the diffusion tensor space and an isotropic plane of diffusion leads to a
low accuracy in translating it into structural information. Another explanation
might also be the existence of two populations of symmetric laminar sheets or-
ganization in canine hearts [8] corresponding to the optimal configurations to
maximize the systolic shear [9]. Mixing these two populations leads to the com-
putation of an average cardiac fiber architecture model that does not represent
a real case of laminar sheets organization. A computation of the normal of the
laminar sheets and a further study of their orientation variability is essential to
determine its origin and of course to translate an atlas of cardiac DTI into an
atlas of the cardiac fiber architecture.

4 Discussion

We proposed a theoretically grounded, simple and powerful framework work-
ing directly on diffusion tensors to build an average model and to study their
variability over a population of cardiac DTIs. The use of these average models
instead of analytical models is an important stage to refine the electromechanical
modeling with more accurate and reliable data and also with additional informa-
tions concerning the anisotropy in the plane orthogonal to the fiber directions.

This framework is a first step towards a statistical atlas of the cardiac fiber
architecture that will probably lead to a better understanding of the cardiac fiber
architecture shared by a population of healthy or failing hearts, or to compare
and to differentiate populations of hearts (canine-human or normal-failing).

In the next step of our research, a larger dataset of hearts would be helpful to
get a statistically more reliable atlas. Also, we would like to apply this framework
to human hearts in the context of specific clinical applications.
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