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Abstract. Tensor-based morphometry (TBM) is widely used in com-
putational anatomy as a means to understand shape variation between
structural brain images. A 3D nonlinear registration technique is typi-
cally used to align all brain images to a common neuroanatomical tem-
plate, and the deformation fields are analyzed statistically to identify
group differences in anatomy. However, the differences are usually com-
puted solely from the determinants of the Jacobian matrices that are
associated with the deformation fields computed by the registration pro-
cedure. Thus, much of the information contained within those matrices
gets thrown out in the process. Only the magnitude of the expansions
or contractions is examined, while the anisotropy and directional com-
ponents of the changes are ignored.

Here we remedy this problem by computing multivariate shape change
statistics using the strain matrices. As the latter do not form a vector
space, means and covariances are computed on the manifold of positive-
definite matrices to which they belong. We study the brain morphology
of 26 HIV/AIDS patients and 14 matched healthy control subjects using
our method.

The images are registered using a high-dimensional 3D fluid reg-
istration algorithm, which optimizes the Jensen-Rényi divergence, an
information-theoretic measure of image correspondence. The anisotropy
of the deformation is then computed. We apply a manifold version of
Hotelling’s T 2 test to the strain matrices. Our results complement those
found from the determinants of the Jacobians alone and provide greater
power in detecting group differences in brain structure.
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1 Introduction

Accurate measurement of differences in brain anatomy is key to understanding
the effects of brain disorders, as well as changes associated with normal growth
or variation within a population. Statistical methods that make full use of the
available data can greatly improve the analysis of temporal changes within a sin-
gle subject, as well as inter-subject variations. Given the subtle and distributed
brain changes that occur with development and disease, improved statistical
analyses are needed that detect group differences or time-dependent changes in
brain structure with optimal power.

In tensor-based morphometry (TBM), a template T is matched to a study
S using non-linear registration, and the displacement vector u(r) is found such
that T (r − u) corresponds with S(r). Here r denotes the voxel location. To
help estimate anatomical correspondences, features such as point, curve, and
surface landmarks present in both datasets can be used, or, more commonly,
intensity-based cost functions are used based on normalized cross-correlation,
mean square intensity difference, or mutual information. The Jacobian matrix
of the deformation field is defined (in 3D) by

J =

⎛
⎝

∂(x − ux)/∂x ∂(y − uy)/∂x ∂(z − uz)/∂x
∂(x − ux)/∂y ∂(y − uy)/∂y ∂(z − uz)/∂y
∂(x − ux)/∂z ∂(y − uy)/∂z ∂(z − uz)/∂z

⎞
⎠

Its determinant, the Jacobian, is most commonly used to analyze the distortion
necessary to deform the images into agreement. A value detJ(r) > 1 implies
that the neighborhood adjacent to r in the study was stretched to match the
template (i.e., local volumetric expansion), while detJ(r) < 1 is associated with
local shrinkage. When many subjects’ images are aligned to the same standard
template or atlas, maps of the Jacobians can be computed in the atlas coordinate
system and group statistics can be computed at each voxel to identify localized
group differences in anatomical shape or size.

However, much of the information about the shape change is lost using this
measure. As a toy example of this problem, let us consider a pixel for which the
eigenvalues of the Jacobian are λ1,2,3 = {1, 2, 0.5}. In such a case, the value of
the Jacobian would be 1. Thus, though the eigenvalues clearly indicate direc-
tional shrinkage and growth, these changes would be left undetected, if only the
Jacobian were analyzed.

In this work, we resolve this issue by making use of the strain matrices for
the analysis, which are defined as (JT J)1/2. In particular, we apply Hotelling’s
T 2 test to obtain statistics for the deformation.

However, the problem is complicated by the fact that for smooth transfor-
mations, the strain matrices are constrained to the space of positive definite
matrices. The latter form a cone in the space of matrices, which is itself a vector
space. Thus, the strain matrices do not form a vector space, and a manifold
version of the statistics is needed.

Several research groups have worked on the statistics of positive definite sym-
metric matrices. The first person to investigate this problem was Fréchet[1], who
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defined the mean S̄ on a manifold as the point that leads to a minimum value
for the sum of squared geodesic distances between S̄ and all the other points.
(̄S) yields the usual value for the mean in Euclidean space, but is not necessar-
ily unique on other manifolds. Thus, the local value of the mean is generally used
instead [2], [3]. To facilitate computations, Pennec et al. [4], [5] and Fletcher and
Joshi [6] independently proposed the use of the affine-invariantmetric on the space
of symmetric, positive-definite tensors. Pennec then proceeded to use the latter
to define normal distributions on these matrices, as well as the Mahalanobis dis-
tance and χ2 law. Fletcher and Joshi [6], [7] used the metric to create the principal
geodesic analysis, which is an extension of principal component analysis to mani-
folds. The application of these techniques to calculate means of Jacobian matrices
was first suggested by Woods [8]. In [9], statistics on strain tensors were used to
determine the a weight factor for the regularizer in non-rigid registration. Fur-
thermore, the Mahalanobis distance of these tensors was used as an elastic energy
for the regularizer in [10]. However, to our knowledge this is the first time the full
matrices are used in the context of tensor-based morphometry.

Once a metric is defined, the manifold-valued elements are projected into the
tangent plane at the origin using the inverse of the exponential map, and the
computations are done in this common space. Recently, Arsigny et al. [11], con-
sidered a new family of metrics, the ’Log-Euclidean metrics’. The latter facilitate
computations, as they are chosen such that the transformed values form a vec-
tor space, and thus statistical parameters can be easily computed using standard
formulae for Euclidean spaces. For two points S1 and S2 on the manifold, these
metrics are of the form

d(S1, S2) = || log S1 − log S2||,

where ||.|| denotes a norm. Following [11], in this work we will use,

d(S1, S2) = (Trace(log S1 − log S2)2)1/2. (1)

In this paper, we use a set of brain MRI scans from HIV/AIDS patients
and matched healthy control subjects to illustrate our method. We use a fluid
registration algorithm [12] to compute displacement fields and thus obtain strain
matrices. All our statistics are computed within the Log-Euclidean framework.
A pixelwise Hotelling T 2 test is used as a measure of variation between patients
and controls. To assess the difference between our results and the ones found
from the determinant of the Jacobian, these results are compared to the one-
dimensional Student’s t test on the determinant of the Jacobian matrices. The
goal of the work was to find out whether multivariate statistics on the strain
tensor afforded additional power in detecting anatomical differences between
patients and controls.

The usual measure of anisotropy for tensor-valued data is the fractional
anisotropy (used widely in diffusion tensor imaging) but this measure is not
valid on positive definite symmetric manifolds, as it relies on a Euclidean mea-
sure for the distance. Thus, in [13], the authors propose a new measure which
depends instead solely on distances computed on the manifold. They define the
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geodesic anisotropy as the shortest geodesic distance between the tensor and the
closest isotropic tensor within the affine-invariant metric framework. Similarly,
in the Log-Euclidean metric, we can define a geodesic anisotropy GA as:

GA(S) = (Trace(log S − (〈log S〉 I)2)1/2, with 〈log S〉 = Trace(log S)/3. (2)

2 Method

Twenty-six HIV/AIDS patients (age: 47.2 ± 9.8 years; 25M/1F; CD4+ T-cell
count: 299.5 ± 175.7 per μl; log10 viral load: 2.57 ± 1.28 RNA copies per ml of
blood plasma) and 14 HIV-seronegative controls (age: 37.6±12.2 years; 8M/6F)
underwent 3D T1-weighted MRI scanning; subjects and scans were the same as
those analyzed in the cortical thickness study by Thompson et al. [14], where
more detailed neuropsychiatric data from the subjects is presented. All patients
met Center for Disease Control criteria for AIDS, stage C and/or 3 (Center for
Disease Control and Prevention, 1992), and none had HIV-associated dementia.
Health care providers in Allegheny County, PA, served as a sentinel network for
recruitment. All AIDS patients were eligible to participate, but those with a his-
tory of recent traumatic brain injury, CNS opportunistic infections, lymphoma,
or stroke were excluded.

All patients underwent a detailed neurobehavioral assessment within the 4
weeks before their MRI scan, involving a neurological examination, psychosocial
interview, and neuropsychological testing, and were designated as having no,
mild, or moderate (coded as 0, 1, and 2 respectively) neuropsychological impair-
ment based on a factor analysis of a broad inventory of motor and cognitive tests
performed by a neuropsychologist [14].

All subjects received 3D spoiled gradient recovery (SPGR) anatomical brain
MRI scans (256x256x124matrix, TR = 25 ms, TE = 5ms; 24-cm field of view; 1.5-
mm slices, zero gap; flip angle = 40o) as part of a comprehensive neurobehavioral
evaluation. The MRI brain scan of each subject was co-registered with scaling (9-
parameter transformation) to the ICBM53 average brain template, after removal
of extracerebral tissues (e.g., scalp, meninges, brainstem and cerebellum).

The imageswere non-linearly registeredusing a fluid registrationalgorithm [12],
based on a convolution filter developed by Bro-Nielsen and Gramkow [15], [16] to
increase the speed of the registration. As a cost function, we chose to maximize a
modified version of the Jensen-Rényi Divergence (JRD). A more detailed descrip-
tion of our registration method can be found in [17]. To save computation time
and memory requirements, the source and the target images were filtered with a
Hann-windowed sinc kernel, and isotropically downsampled by a factor of 2. As in
other TBM studies [18] [19], we preferred registration to a typical control image
rather than a multi-subject average intensity atlas as it had sharper features. The
resulting deformation field was trilinearly interpolated to drive the source image
towards the target at the original resolution to obtain the warped image.

The geodesic anisotropy GA was found at each voxel using eq.2; tanh(GA) is
displayed in Fig.1 a) and b). The hyperbolic tangent of the geodesic anisotropy
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was used rather than GA itself, as it takes values in the interval [0, 1], while those
of GA span the interval [0, ∞) (see [13]). We notice widespread directionality in
the strain matrices, which strengthens the idea that valuable information may
be found from the non-uniform components of the changes.

In order to apply Hotelling’s T 2 test, we need to compute the mean and
covariance matrices of the tensor-valued data. Thus, here we provide a brief
summary of the method to find those quantities.

In Rn, the mean S̄ of a set of n-dimensional vectors Si, i = 1, ..., m is the
point that minimizes the summed squared distance d to all the Si. For data on
a manifold A, d becomes the geodesic distance, so S̄ is given by [1]:

S̄ = argminSεAΣm
i=1d(S, Si)2. (3)

In the log-Euclidean framework, computations are simplified by transforming
the space of symmetric, positive-definitematrices into avector space on the tangent
plane, and then transforming it back to the manifold using the exponential map
once the mean is taken. Thus, the formula for the mean is easily shown to be [11]:

S̄ = exp
(

1
M

Σm
i=1 log Si

)
(4)

Arsigny et al. demonstate that the covariance is

Cov(S) =
∫

Ω

(log(S(w)) − log(S̄(w))) ⊗ (log(S(w)) − log(S̄(w)))dP (w),

where dP is the probability measure, Ω is the space of possible outcomes and
wεΩ. For discrete data, this becomes

C̄ =
1
M

ΣM
i=1

(
log S − log S̄

) (
log S − logS̄

)T (5)

Thus, we obtain the Mahalanobis distance

M =
(
log S − logS̄

)
Σ−1 (

log S − logS̄
)T (6)

So as to not assume a normal distribution, we performed a voxelwise permu-
tation test, for which we randomly reassigned the labels of patients and controls,
and compared the p-values so generated to those of the data. All our statistics
were computed using 5000 permutations.

3 Results

Fig. 1 c) shows the p-values from the Student’s t-test for the log10 J distribu-
tion. The corresponding values for Hotelling’s T 2 test are shown in Fig.1 d).
The p-values are considerably lower in the case of Hotelling’s T 2 test. The latter
is thus more sensitive, and can detect differences which are not detected with
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the conventional method, even when operating on the same deformation fields.
Group differences in brain structure between AIDS patients and healthy sub-
jects are visible throughout the brain, with the greatest effect sizes in the corpus
callosum and basal ganglia. That result is confirmed by prior TBM studies of
HIV/AIDS [17]. The white matter also exhibits widespread atrophy, which for-
mer neuropathology studies on HIV/AIDS have shown. The cortical region is
noisier, perhaps because the registration method is intensity-based and does not
perform as well in that area.

Fig. 1. From left to right: a) Voxelwise geodesic anisotropy calculated from eq.2. b) Its
hyperbolic tangent c) Voxelwise p-values given by the Student’s t-test for the log10(J).
d) Voxelwise p-values computed from the Hotelling T 2 test on the strain matrices.
P-values are shown on a log10 scale; -3 denotes a voxel level p-value of 0.001. A sagittal
section of the brain is shown, with the brain facing to the left. As expected from the
literature on the neuropathology of HIV/AIDS, greatest atrophic effects are found in
the subcortical regions, which border on ventricular regions enriched in the virus. The
Lie group methods show comparable patterns of atrophy to the standard method, but
with much greater sensitivity (i.e., better signal to noise).

4 Conclusions

Here we used a combination of tensor-based morphometry, Lie group methods,
and multivariate statistics to detect systematic differences in anatomy between
HIV/AIDS patients and controls. The anatomical profile of group differences is
in line with studies using traditional volumetric methods, as the HIV virus is
known to cause widespread neuronal loss and corresponding atrophy of the gray
and white matter, especially in subcortical regions. What is more surprising is
this multivariate method shows that finding with a much greater power than
conventional TBM. In TBM, the Jacobian of the deformation is commonly ex-
amined, and multiple regression is applied to the scalar data from all subjects at
each voxel, to identify regions of volumetric excess or deficit in one group versus
another. This is clinically relevant especially given the large efforts, for example
in drug trials of neurodegenerative disease, to detect subtle effects of disease on
the brain using minimal numbers of subjects (or the shortest possible follow-up
intervals, in a longitudinal imaging study). As such it is important to optimize
not only the nonlinear registration methods that gauge alterations in brain struc-
ture, but also the statistical methods for analyzing the resulting tensor-valued
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data. The current work can be expanded in several ways. First, in a multivari-
ate setting, deformation fields could be analyzed using differential operators or
tensors other than the strain tensor or deformation gradient; Rey and Cachier
[20], Ashburner [21], Leow [22] and others have proposed examining the Hencky
strain tensors, the logarithm of the scalar Jacobian. The optimal tensor to use
for detecting group differences in TBM may depend on the directional properties
of the underlying disease or developmental process being analyzed, as well as the
differential operator used to regularize the deformation. Analytic formulae for
the null distribution of the volume of the excursion sets of T 2-distributed ran-
dom fields were recently computed by Cao and Worsley [23] [24], and these may
also be applied in a Lie group setting to optimize signal detection. Studies are
also underway to incorporate the log-Euclidean framework in the cost functions
(or statistical priors) that regularize the nonlinear registrations themselves. This
suggests that Lie group methods may be advantageous for both the registration
and statistical analysis of tensor-valued data.
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