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Abstract. We provide algorithms to solve the free riders problem in
broadcast encryption. In this problem, the broadcast server is allowed
to choose some small subset F of the revoked set R of users to allow to
decrypt the broadcast, despite having been revoked. This may allow the
server to significantly reduce network traffic while only allowing a small
set of non-privileged users to decrypt the broadcast.

Although there are worst-case instances of broadcast encryption
schemes where the free riders problem is difficult to solve (or even approx-
imate), we show that for many specific broadcast encryption schemes,
there are efficient algorithms. In particular, for the complete subtree
method [25] and some other schemes in the subset-cover framework, we
show how to find the optimal assignment of free riders in O(|R||F |) time,
which is independent of the total number of users. We also define an ap-
proximate version of this problem, and study specific distributions of R
for which this relaxation yields even faster algorithms.

Along the way we develop the first approximation algorithms for the
following problem: given two integer sequences a1 ≥ a2 ≥ · · · ≥ an and
b1 ≥ b2 ≥ · · · ≥ bn, output for all i, an integer j′ for which aj′ + bi−j′ ≤
(1 + ε) minj(aj + bi−j). We show that if the differences ai − ai+1, bi −
bi+1 are bounded, then there is an O(n4/3/ε2/3)-time algorithm for this
problem, improving upon the O(n2) time of the naive algorithm.

Keywords: free riders, broadcast encryption, applications.

1 Introduction

Broadcast Encryption: Broadcast encryption schemes allow a single center to
transmit encrypted data over a broadcast channel to a large number of users U
such that only a select subset P ⊆ U of privileged users can decrypt it. Such
schemes aim to provide one-to-many secure communication services to a large
user base without incurring scalability costs. One important application of broad-
cast encryption is to provide the users in a group with a common cryptographic
key that they can then use to communicate amongst each other.
� Part of this research was done while both authors were at DoCoMo Labs.
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Other traditional applications of broadcast encryption include secure multi-
cast of privileged content such as premium video, audio, and text content as
well as protection on external storage devices such as the hard disk of a mobile
phone, USB storage devices, Flash cards, CD and DVD ROMs, etc.

Broadcast encryption schemes typically involve a series of pre-broadcast trans-
missions at the end of which the users in P can compute a broadcast session
key bk. The remainder of the broadcast is then encrypted using bk. There are a
number of variations on this general problem:
– Privileged Sets: Privileged sets may be determined arbitrarily, have fixed size,

or contain some type of hierarchical structure. They can be static across all
broadcasts or dynamic. In other words, a user may be revoked permanently
or only have his privileges temporarily revoked for a particular broadcast.

– Key Management: User keys may be fixed at the onset, be updated each time
period, or be a function of previous transmissions.

– Coalition Resistance: The scheme may be secure against any revoked user
coalition, or there may be some bound on the size of the tolerable coalition.

The most widely applicable scenario (and the one we consider in this paper)
is where the revocation set is dynamic, the users are only given a collection of
set-up keys at the onset (these keys are used for the lifetime of the system), and
the system can tolerate an arbitrary number of colluders.

The following performance parameters are of interest: the number of pre-
broadcast transmissions t made by the center, the amount of keying material
k the receivers must persistently store, and the amount of time τd the receiver
must spend to derive the broadcast session key bk from the pre-broadcast trans-
missions. Let R = U \P be the set of revoked users, let r = |R|, and let n = |U |.
Related Work: Berkovits introduced the concept of broadcast encryption [6].
In his scheme t = O(n), although k = 1; the scheme is also insecure if used
repeatedly. Later, Fiat and Naor [14] formalized the basic problem. The topic has
since been studied extensively (e.g., see [4, 7, 10, 15, 20, 21, 22, 23, 25, 17]). We
limit our discussion to the work most relevant to us. Naor et al. [25] proposed the
Complete Subtree (CS) scheme, which is stateless and requires a pre-broadcast
transmission of t = O(r log n

r ) ciphertexts and storage of k = O(log n) keys
per user. The scheme is simple and provides information-theoretic security. In
[25], the Subset Difference (SD) scheme is also proposed. Here, t is reduced
to O(r), and is therefore independent of the total number of users n. On the
other hand, the scheme only provides computational security and a user must
store k = O(log2 n) keys. Furthermore, the receiver must perform τd = O(log n)
computation to compute the broadcast key bk. Halevy and Shamir [17] improved
upon this construction with their Layered Subset Difference (LSD) scheme. For
any ε > 0, they achieve k = O(log1+ε n) without substantially increasing t.

The CS, SD, LSD, are all examples of schemes in the subset-cover framework.
Here various subsets of the users are formed and a cryptographic key is assigned
to each subset. Each user is provided with all the keys for subsets he is a member
of. To encrypt to a privileged set, the center finds a collection of subsets whose
union is exactly the privileged set, and encrypts content using just those keys.
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Free Riders in Broadcast Encryption: Most of the prior work on broadcast en-
cryption assumes a stringent security requirement. In particular, any member of
the privileged set P can decrypt a broadcast, but no one outside of this set can.
For many applications this might be excessive. In particular, the system might
be able to tolerate some number of non-privileged users being able to decrypt a
broadcast. Such a user is termed a free rider.

Here the center chooses some (preferably small) subset F of R who can decrypt
the broadcast, despite having been revoked. Let f = |F |. In general, this concept
is useful in commercial applications of cryptography (e.g., by network operators)
since the negative fiscal impact of allowing some small number of free riders may
be dwarfed by the savings incurred by reducing other operational systems costs,
such as the cost of transmitting traffic on the network, etc. We will demonstrate
the benefits of choosing free riders in Section 3.2.

Abdalla, Shavit, and Wool (ASW) [1] introduced the notion of free riders.
They demonstrate that allowing free riders can reduce the amount of data com-
municated in many situations. Next, they consider the problem of determining
the free rider assignment that minimizes traffic for a given number of free rid-
ers. Via simple reductions from SetCover, they observe that this problem is NP
complete in the worst case, and is unlikely to have a polynomial-time approx-
imation scheme (PTAS). Further, they suggest some heuristic algorithms that
apply to broadcast encryption schemes in the subset-cover framework. Finally,
they experimentally analyze their heuristics on the CS scheme.

Our Contributions: In this paper we first show that for the CS scheme, one can
provably obtain the optimal solution (with respect to reducing the overall traffic)
to the free riders problem in worst-case time O(rf + r log log n). Our techniques
are also applicable to other schemes in the subset-cover framework.

In contrast, ASW [1] only give heuristics with no performance guarantees.1

Thus, our work provably demonstrates the positive aspects of free riders in broad-
cast encryption. Moreover, our running time is almost independent of n, and as
r, f << n in practice, is likely to be extremely efficient. Note that neither us nor
ASW consider the role of free riders on improving other aspects of performance,
like the amount of storage required on end-user devices. In fact, our storage re-
quirements are the same as that of the underlying broadcast encryption scheme,
but the overall traffic is reduced.

Second, we relax the free riders problem to allow an algorithm to output a free
rider assignment with cost at most (1+ ε) times that of the optimal assignment.
We show how this relaxation is likely to be useful for specific distributions of
revoked users R. In particular, we show that when R is uniformly chosen from
sets of size r, it results in a running time of O(rf1/3polylog n) for constant ε.

1 Even though our algorithms have provable performance guarantees, our work does
not contradict the ASW NP-hardness or inapproximability results. In particular,
their results only apply to worst-case instances. In our case, we give optimal solutions
for specific set-covering schemes. Interestingly, our algorithms apply to the very
same broadcast encryption scheme (the complete subtree method) that ASW used
in experimentally analyzing their heuristics.
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Third, consider the following MinSum problem: given two arrays of integers
a1 ≥ a2 ≥ · · · ≥ am1 ≥ 0 and b1 ≥ b2 ≥ · · · bm2 ≥ 0 such that for all i,
ai − ai+1 and bi − bi+1 are bounded by L, output an array c such that for all
2 ≤ i ≤ m1 + m2, ac[i] + bi−c[i] ≤ (1 + ε)mini−1

j=1(aj + bi−j). Note that c[i] is
an integer between 1 and i − 1, inclusive. There is a trivial algorithm for this
which runs in time O(m1m2). We show a direct connection between this problem
and the running time of our algorithm for specific distributions on R. Using
tools from computational geometry, the running time of MinSum was recently
improved [8, 13] to O(m1 + m2 + m1m2/ log(m1 + m2)), which we can apply to
our problem (for ε = 0) to obtain faster solutions to the free riders problem.

More importantly, as far as we are aware, we provide the first approxima-
tion (e.g., ε > 0) algorithms for MinSum which asymptotically beat the trivial
O(m1m2) running time. Namely, we achieve O(m1/3

1 m2L
2/3/ε2/3) time, which

for constant ε and small L (as is the case for the CS, SD, and LSD schemes), is
about m

1/3
1 m2. This algorithm may be of independent interest since the MinSum

problem occurs naturally in computational geometry, see, e.g., [13], where the
problem is compared with computing all-pairs-shortest-paths.

Our algorithms extend to other broadcast encryption schemes that use set
covering mechanisms with a hierarchical tree-like structure, such as the natural
extension of the CS scheme to k-ary trees. We suspect they also extend to the
SD [25] and LSD [17] schemes, and the natural extensions of these schemes to k-
ary trees. Further, our techniques apply to multi-certificate revocation/validation
and group key management, which we discuss below.

Other Applications of Free Riders: The idea of designing systems that permit
some number of non-privileged users to receive the same services as privileged
users to lower system costs is widely applicable. We mention other settings where
the techniques in this paper apply (that do not seem to have been considered
previously). One such application is multi-certificate revocation/validation [2].
Here a certificate authority (CA) in a public-key infrastructure might wish to
revoke a number of user certificates, but could be willing to permit a subset of
these users to get away with using revoked credentials. Multi-certificate revo-
cation/validation schemes allow the CA to issue a single proof that validates
the non-revoked certificates for a specified time period. Permitting free riders
decreases the proof size, which reduces communication complexity.

Another application is dynamic group key management [3, 27, 19, 24, 30, 29],
which is closely related to broadcast encryption. Here a user group communicates
among each other using a common cryptographic key. As users join or leave the
group at different times the key is updated by sending out a new (encrypted)
group session key. If one were willing to allow a small number of former group
members to be free riders and decrypt this key-update message, then the overall
communication costs could be lowered. Popular schemes for multi-certificate
revocation and group key management use the same set-covering mechanisms
encountered in broadcast encryption, and thus our techniques apply.
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Organization: Section 2 discusses preliminaries and gives an overview of our
algorithm, while section 3 gives more detail. Section 4 discusses our algorithmic
improvements to the MinSum problem. Due to space constraints, we defer many
proofs to the full version of this paper [28].

2 Preliminaries and Overview of Our Algorithm

Preliminaries: Let U denote the users, with n = |U |. Let R denote the revoked
set at a given time, with r = |R|. Let F denote the set of free riders with f = |F |.

We now define the complete subtree (CS) scheme [25], which falls into the
subset-cover framework mentioned in Section 1. W.l.o.g., assume n is a power of
2. Users are associated with the n leaves of a complete binary tree. The server
creates a key for each node v of the binary tree, and distributes it to all users in
the subtree rooted at v. One can find O(r log n/r) keys (nodes) such that every
user in U \R has one such key, but each user in R lacks all such keys [25].

Benefits of Free Riders: We give an example to demonstrate the benefits of
choosing the optimal set of free riders for the CS scheme. Suppose r =

√
n and

f = cr = c
√

n for some constant 0 < c < 1. For simplicity suppose that r, r − f
are powers of 2. Consider the level L of the complete binary tree, as used in
the CS scheme, with exactly

√
n nodes. Put r − f revoked users in a complete

subtree of one node in level L, and for each other node L, put at most 1 revoked
user (so exactly f nodes in L have at least one revoked user in their subtree).
Then the optimal F contains the f isolated users. The revoked users not in F
constitute all the leaves of a complete subtree, and we only need O(log n) traffic
to transmit to the set U \ (R \ F ). This is accomplished by including a key at
each sibling along the path from the root of the complete subtree to the root of
the complete binary tree.

If, however, we choose the free riders randomly, then with overwhelming prob-
ability Ω(f) isolated revoked users (i.e., those not included in the complete sub-
tree) remain. For each such user u, we must include a key at each sibling along
the path from u to L (not including the node in level L). Since this path length
is log n− log

√
n = Ω(log n), and since the subtrees rooted in level L are disjoint,

the total network traffic is Ω(f(log n − log
√

n)) = Ω(
√

n log n). Therefore, by
choosing F sensibly (as opposed to randomly) we save a

√
n factor in network

traffic.
The reader is referred to ASW [1] for a more extensive analysis of the benefits

of free riders on the network traffic. Here we concentrate on the efficiency of
algorithms for finding F .

Notation: For a vertex v in a tree, let T (v) be the subtree rooted at v, and
let L(v) and R(v) denote the subtrees rooted at the left and right child of v,
respectively. We use a standard identification of nodes of a complete binary tree.
Namely, we define the root to be 1. Then, for a node identified with integer i,
its left child is 2i and its right child is 2i + 1. We define the height of a node v
to be �log2 v�, so the root has height 0. For nodes u, v, we define a(u, v) to be
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the common ancestor of u and v of largest height. We say that node u is to the
left of node v if u ∈ L(a(u, v)) while v ∈ R(a(u, v)). Let log() denote the base-2
logarithm. We work in the RAM model where arithmetic operations on O(log n)
size words take O(1) time.

Cost Function: Let F ⊆ R be subject to |F | ≤ f . Let V be a subset of vertices
of the complete binary tree for which

(R \ F ) ∩ ∪v∈V T (v) = ∅ and (U \R) ⊆ ∪v∈V T (v).

Then the cost of F is the size of a minimal such V , and the optimal asignment
F is that with the smallest cost. This cost function captures the network traffic
in any scheme within the subset-cover framework, since in these schemes the
number of ciphertexts the server transmits equals |V |.

We first show how to quickly compute an optimal assignment of free riders
for the CS scheme. We focus on this scheme for its simplicity and to contrast
our results with the original free riders paper [1]. For these schemes we prove
the following about our main algorithm Freerider-Approx.

Theorem 1. Algorithm Freerider-Approx(R, f) outputs an optimal assignment
of f free riders in O(rf + r log log n) time.

Remark 1. Although we use the terminology Freerider-Approx, the algorithm we
describe is also capable of producing an optimal answer (i.e., no approximation).

To appreciate the techniques of Freerider-Approx, we first sketch a simple dynamic-
programming algorithm achieving O(nf) time. This already shows that many
natural broadcast encryption schemes admit theoretically-efficient (poly(n) time)
algorithms for the free riders problem, despite the fact that the problem is NP-
hard in general.

Recall that in the CS scheme, users are associated with leaves of a complete
binary tree, and the revoked set R determines some set of r leaves. For each
node v in the tree, we can use dynamic programming to compute the optimal
traffic opt(i, T (v)) attained by assigning at most i free riders to its subtree T (v),
for each 0 ≤ i ≤ f . Note that if i ≥ |T (v) ∩ R| then either every leaf of T (v)
is in R, in which case opt(i, T (v)) = 0, else opt(i, T (v)) = 1 since we can just
let everyone in T (v) receive the broadcast using a single message. Now, suppose
for each 0 ≤ i ≤ f we have opt(i, L(v)) and opt(i, R(v)), together with indicator
bits stating whether L(v) ∩ R and R(v) ∩ R are empty. Then the optimal cost
of assigning at most i free riders to T (v) is 1 if both indicator bits are set.
This is because, in this case, and only in this case, we can use a single key
at v. In this case we set the indicator bit at v to be 1. Otherwise the cost is
minj (opt(j, L(v)) + opt(i − j, R(v))). We can find this collection of minima in
O(f2) time, for 0 ≤ i ≤ f . Finally, by tracking which indices realize the minima,
we can backtrack to find the optimal free-rider assignment itself. This running
time is O(nf2), which we can reduce to O(nf) by observing that finding the
minima for each v only requires O(|L(v) ∩ R| · |R(v) ∩R|) time. Unfortunately,
this running time depends linearly on n, which may be huge in practice.
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On the other hand, r is likely to be small, which we can exploit by observing
that it suffices to perform the dynamic programming step for only a very small set
of internal nodes called the meeting points. These are defined as follows. Recall
that a Steiner tree of a subset U of vertices of an unweighted tree is a minimal-
sized tree containing each vertex of U . Suppose we compute the Steiner tree T of
the subset R of the complete binary tree, where the ith revoked user is identified
with the ith leaf. Then the meeting points of T are the leaves of T together with
the internal nodes v of the binary tree for which both L(v) and R(v) are non-
empty (i.e., they contain a revoked user). We refer to the latter nodes as internal
meeting points. A simple induction shows there are 2r− 1 meeting points, r− 1
of which are internal. We give a very efficient O(r log log n)-time algorithm to
output the list of meeting points.

Now, if a node v is not a meeting point, then there is no reason to perform the
dynamic programming step on v, as its optimal assignments can be immediately
inferred from those of its only child. The next question is how to perform the
dynamic programming step, which computes ci = minj(aj +bi−j) for all i, where
ak, bk, ck are the smallest costs of assigning at most k free riders to the trees
L(v), R(v), and T (v), respectively. This is an instance of the MinSum problem.
Suppose v is the meeting point joining meeting points x and y, and let rx =
|L(v) ∩ R| and ry = |R(v) ∩ R|. Then there is an O(min(f, rx)min(f, ry)) time
algorithm for the MinSum problem, which works by computing sums aj + bi−j

for all i, j, and then taking the appropriate minima.
In fact, MinSum can be solved in time

O

(
min(rx, f) + min(ry , f) +

min(rx, f)min(ry , f)
log(min(f, rx) + min(f, ry))

)

using ideas from computational geometry [8, 13]. It turns out that there are two
properties of our problem which allow us to significantly reduce this running
time. The first is that for the schemes we consider, ai − ai+1 and bi − bi+1 are
very small (i.e., log n for for the CS scheme and O(1) for the SD scheme). The
second is that for many applications, it suffices to output an approximate solution
to the free riders problem, that is, an assignment of at most f free riders with
resulting cost at most (1 + ε) times that of the optimal. To this end, we relax
MinSum to just require that we output an array d with di ≤ (1 + ε)ci for all i.

We show in section 3.1 that if ai − ai+1, bi − bi+1 are bounded by L, we
can output d in O((rx)1/3ryL2/3/ε2/3) time. For the small values of L that we
consider, this shows that a constant-factor approximation can be computed in
about (rx)1/3ry time, significantly improving the time of the naive algorithm.

Unfortunately, it turns out that for a worst-case choice of R, our improvements
for MinSum do not asymptotically improve the running time of Freerider-Approx,
though they do so for specific distributions of R that may occur in practice. In
particular, for f = Ω(log n) we show that when R is uniformly chosen from
sets of size r, then with probability at least 1− 1/n Freerider-Approx outputs a
constant-factor approximation in O(rf1/3polylog n) time, whereas if Freerider-
Approx were to use the naive MinSum algorithm, its running time would be
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Ω(rf). The more general version of our theorem, for arbitrary f and arbitrary
approximation ratios, can be found in Section 3.

For a worst-case analysis, we analyze Freerider-Approx in terms of the naive
algorithm for MinSum and show by a careful choice of parameters that the
algorithm outputs a (1 + ε)-approximation. Showing that it only takes O(rf)
time requires an analysis over Steiner trees, which although elementary, is
non-trivial.

3 Details of the Algorithm

3.1 Finding the Meeting Points

We assume 0 < f < r < n, as otherwise the problem is trivial. Thus, we can
root T at an internal meeting point. We root T at the meeting point of smallest
height in the complete binary tree. This node is unique, since if there were two
such nodes their common ancestor would be a meeting point of smaller height.

We assume that we are given R as a list of integers in the range {n, n +
1, . . . , 2n − 1}. We first sort R. The best known integer sorting algorithms run
in expected time O(r

√
log log r) [18] and worst-case O(r log log r) [16], though

more practical ones running in time O(r log r) or O(r log log n) can be based on
textbook algorithms [9] or van Emde Boas trees [11, 12].

One way to visualize our algorithm for computing the meeting points is to
think of a line containing r points. The ith point is ui, the ith revoked user in the
given sorted list. The edge (ui, ui+1) is labeled as follows: we find a = a(ui, ui+1),
and we label (ui, ui+1) with both a and height(a), referring to the latter as the
edge weight. Note that a and its height can be found using O(log log n) arithmetic
operations via a binary search on the binary representations of ui and ui+1 (recall
that we are assuming the unit-cost RAM model). Then a is an internal meeting
point with ui ∈ L(a) and ui+1 ∈ R(a).

We maintain a sorted list E of edge weights and an output list MP of meeting
points. We initialize MP to R. We then find the largest-weight edge e = {u, v}
(i.e., a(u, v) is of largest height), breaking ties arbitrarily, add a(u, v) to the end
of MP , and delete e from E. This corresponds to collapsing the edge {u, v} on
the line and replacing it with the vertex a(u, v). We then update the weight
and ancestor label of the other edges in E containing u or v (e.g., the neigh-
bors of the collapsed edge on the line). We show that the “line structure” of
the remaining edges E is preserved across iterations, so any vertex u on the
line can belong to at most 2 edges, and thus this update step is efficient. After
r − 1 deletions, the entire line is collapsed into a single vertex, the root of the
Steiner tree, and we are done. The running time is O(r log log n) plus the time to
sort E.

A list of meeting points is ordered if for each meeting point v, its unique
closest meeting points (under the shortest path distance) pl and pr, in L(v) and
R(v) respectively, precede v in the list. In the full version of this paper [28],
we prove:
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Theorem 2. Meeting-Points outputs an ordered list of meeting points in time
O(r log log n).

3.2 The Free Rider Approximation Algorithm

Our free rider approximation algorithm Freerider-Approx makes use of the sub-
routine MeetingPoints and also the subroutine Min-Sum. We defer the description
of Min-Sum to Section 4, but we summarize its relevant properties as follows.

Theorem 3. Let ε ≥ 0, and let a1 ≥ a2 ≥ · · · ≥ am1 ≥ 0 and b1 ≥ b2 ≥ · · · ≥
bm2 ≥ 0 be integer sequences such that for all i, ai − ai+1 and bi − bi+1 are
bounded by L. Then Min-Sum((ai), (bi), ε) outputs an array c such that for all
2 ≤ i ≤ m1 + m2, we have ac[i] + bi−c[i] ≤ (1 + ε)minj (aj + bi−j).

1. If ε > 0, the time complexity is O

(
m

1/3
1 m2L2/3

ε2/3

)
.

2. If ε = 0, the time complexity is O
(

m1m2
log(m1+m2)

+ m1 + m2

)
.

The basic idea behind our algorithm Freerider-Approx for computing an assign-
ment of free riders is to use dynamic programming on the ordered list of meeting
points provided by MeetingPoints, invoking Min-Sum for each dynamic program-
ming step. Note that MeetingPoints returns a list of ordered meeting points (see
Section 3.1), so we can do dynamic programming by walking through the list
in order. This effectively replaces the factor of n in the time complexity of the
naive dynamic programming algorithm with a factor of r.

Now consider the approximation error. Suppose we want a free-rider assign-
ment whose resulting traffic cost is at most (1 + ε) times that of the optimal
assignment. Suppose for each dynamic programming step we invoke Min-Sum
with parameter ε′ = ε/(2 min(r, log n)). When we combine two such approxi-
mations, we obtain a (1 + ε′)2 approximation. Since any path in the Steiner
tree contains at most min(r, log n) meeting points, the total error is at most
(1 + ε).

For each internal meeting point v, we assume the two meeting points x, y for
which v = a(x, y) can be determined in constant time. This is easily achieved by
keeping track of pointers in the implementation of MeetingPoints. Let MPleft(v)
be the operation returning x, and MPright(v) the operation returning y.

In our algorithm each meeting point u has data fields ru and Au. Here ru

denotes the number of revoked users in the tree T (u). Au is an array, indexed
from 0 ≤ i ≤ min(f, ru), which records the cost found by our algorithm of
assigning at most i free riders to T (u) ∩ R. Finally, for internal meeting points
u, there is a field Bu which is a companion array to Au, indexed from 0 ≤ i ≤
min(f, ru), such that Au[i] = AMPleft(u)[Bu[i]] + AMPright(u)[i − Bu[i]]. Thus, Bu

records the assignments of free riders realizing the costs found by Au.
By a simple inductive argument (given in the full version), one can show that

|MP | = 2r − 1. Our main algorithm is described below.
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Freerider-Approx (R, f, ε):

1. MP ← MeetingPoints(R), ε′ = ε/(2 min(r, log n)).
2. For each revoked user u, set ru = 1 and Au ← (0, 0).
3. For i = r + 1 to 2r − 1,

(a) v ←MP [i], x← MPleft(v), y ← MPright(v).
(b) Add height(x)− height(v)− 1 to each entry of Ax.

If rx ≤ f and Ax[rx] 
= 0, set Ax[rx] = 1.
(c) Add height(y)− height(v)− 1 to each entry of Ay.

If ry ≤ f and Ay[ry] 
= 0, set Ay[ry] = 1.
(d) Bv ← MinSum(Ax, Ay, ε′).
(e) rv = rx + ry.
(f) For each 0 ≤ i ≤ min(f, rv), set Av[i] = Ax[Bv[i]] + Ay[i−Bv[i]].

If rv ≤ f and Av[rv] 
= 0, set Av[rv] = 1.
4. Output AMP [2r−1][f ] + height(MP [2r − 1]) as the cost.
5. Use the Bv’s to do a Depth-First-Search on MP to find/output the assign-

ment.

Due to space constraints, we defer the formal proof of the following theorem
to the full version of the paper [28], though we give some intuition and bound
its time complexity here.

Theorem 4. Freerider-Approx outputs an assignment of free riders with cost at
most (1 + ε) times that of the optimum.

The algorithm can be explained as follows. For each revoked user u, if we assign
no free riders to T (u) = u, then T (u)’s cost is 0 since T (u) contains no privileged
users. Thus the cost of assigning at most one free rider to T (u) is also 0, so in
step (2) we set Au ← (0, 0), consistent with the definition of Au.

In step (3b) or (3c), it may be the case that x or y is not a child of v. Suppose
this is true of x. Now consider the optimal assignment of at most i free riders
to L(v) for some i. Then, unless rx ≤ f , there must be a revoked user in T (x)
that cannot be made a free rider. Let P be the shortest-path from x to v, not
including v. It is then easy to see that the optimal assignment of at most i free
riders to L(v) is the optimal assignment of at most i free riders to T (x) together
with one extra key for each sibling of a node on P . Thus, we should add the
length of P to each entry of Ax, and |P | = height(x)− height(v)− 1. This logic
also explains step (4). Indeed, in this case we consider the path from MP[2r− 1]
to the root of the complete binary tree, which has length height(MP [2r − 1]).

There are two exceptions though. The first is if rx ≤ f , in which case we
should reset Ax[rx] to 1 since we can turn the rx revoked users into free riders
and use a single key at the root of L(v) to cover all of v. There is, however, one
more case for which this may not be optimal. This occurs if Ax[rx] = 0 (after
adding height(x) − height(v) − 1 to each entry of Ax) in which case every leaf
of T (x) is a revoked user, and thus there is 0 cost if we do not assign any free
riders. This can only occur if x is in fact a child of v. In this case, we should
leave Ax[rx] = 0. This logic also explains the if statement in step (3f).
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We now elaborate on step (5). If, for instance, v is the root of the Steiner tree
with x = MPleft(v) and y = MPright(v) with Bv[f ] = i, then one assigns at most
i free riders to T (x) and at most f − i to T (y). If Ax[i] = 0, it means that the
leaves of T (x) are all revoked users, and we should not assign any of them to
be free riders. Otherwise, if i ≥ rx, we make every revoked user in T (x) a free
rider. Otherwise, we recurse on MPleft(x) and MPright(x). The analysis for y is
similar, and it is easy to see the overall time complexity of this step is O(r).

Let us now look at the time complexity of Freerider-Approx. We first note that
as we have stated the algorithm, we cannot hope to do better than O(rf).

Lemma 1. For any ε, the worst-case time complexity of Freerider-Approx in the
unit-cost RAM model is Ω(rf).

Proof. Suppose the revoked set has the form

u1 = 2n− 1, u2 = 2n− 2, u3 = 2n− 4, u4 = 2n− 8, . . . , ui = 2n− 2i−1, . . .

In this case the Steiner tree consists of vertices u1, . . . , ur, v1, . . . , vr−1, where the
vi are the internal meeting points satisfying, L(vi) ∩R = ui+1 and R(vi) ∩R =
{u1, u2, . . . , ui}. Note that the time complexity of Min-Sum is at least |Ay| for any
ε. Then in this example, for i ≥ f , there are at least f revoked users in R(vi), and
thus the time complexity of MinSum at meeting point vi is at least f . It follows
that the time complexity of Freerider-Approx is at least Ω((r − f)f) = Ω(rf).

It turns out that the above lemma is indeed a worst-case.

Theorem 5. The time complexity of Freerider-Approx is O(rf + r log log n).

Proof. By Theorem 2, steps (1-2) can be done in O(r log log n) time. The time
complexity of MinSum(Ax, Ay, ε′) is at least |Ax|+ |Ay|, so the time complexity
of step (3) is dominated by step (3d). Note also that step (4) can be done
in O(1) time and step (5) in O(r) time, so the total time of the algorithm is
O(r log log n) plus the total time spent in step (3d). If C(|Ax|, |Ay|) denotes the
time complexity of MinSum(Ax, Ay, ε′), then the total time spent in step (3d) is

2r−1∑
i=r+1

C(|AMPleft (MP [i])|, |AMPright (MP [i])|). (1)

To bound this sum, observe that for any v, |Av| = 1 + min(f, rv). To solve
MinSum, we will consider the naive O(m1m2)-time algorithm, as it turns out
in the worst-case our faster algorithms of Section 4 do not yield an asymptotic
improvement. Then, up to a constant factor, sum (1) is

∑
v

min(f, rMPleft(v))min(f, rMPright(v)), (2)

where the sum is over all internal meeting points v.
It will be convenient to define the collapsed Steiner tree on the revoked set R.

This tree is formed by taking the rooted Steiner tree on R, and then repeatedly
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collapsing edges for which either endpoint is not a meeting point (if one endpoint
is a meeting point, the collapsed edge is labeled by that endpoint). We are left
with a binary tree on 2r− 1 nodes (the meeting points) containing r leaves (the
revoked users). Denote this tree by T .

We first consider the contribution S to (2) from v with rMPleft(v), rMPright(v) < f ,
i.e.,

S =
∑

v | rMPleft(v),rMPright(v) < f

min(f, rMPleft(v))min(f, rMPright(v))

=
∑

v | rMPleft(v),rMPright(v) < f

rMPleft(v)rMPright(v).

Create a formal variable Xu for each u ∈ R. Then by writing |L(v) ∩ R| as∑
u∈L(v)∩R Xu and |R(v)∩R| as

∑
u∈R(v)∩R Xu, we may express S as a degree-

2 multilinear polynomial S({Xu}u∈R), where the actual value S corresponds to
setting Xu = 1 for all u. We claim that in S({Xu}u∈R), for each u there can be
at most f − 1 different v for which Xu ·Xv appears, and further, the coefficient
of each of these monomials is 1.

To see this, let a ∈ T be the ancestor of u of maximal height for which rMPleft(a),
rMPright(a) < f . Consider the path u = u0, u1, . . . , uk = a from u to a in T . Let
v0, v1, . . . , vk−1 be the siblings of u0, u1, . . . , uk−1. Then the subtrees T (vi) and
T (vj) are disjoint for all i 
= j. Thus, Xu ·Xv can appear at most once in S for
a given v ∈ T (a), and the number of such v is bounded by ra < 2f .

As there are r different u, setting each Xu to 1 shows that S = O(rf).
Next, consider the subgraph T ′ of T on nodes v for which either rMPleft(v) ≥ f

or rMPright(v) ≥ f (or both). Observe that T ′ is a tree.
Consider any vertex v for which exactly one of rMPleft(v), rMPright(v) is at least

f . In this case we say that v is lop-sided. Suppose c(v) is v’s child for which
rc(v) < f . Then the contribution from v to (2) is f · |T (c(v)) ∩ R|. We claim
that T (c(v)) ∩ T (c(v′)) = ∅ for all lop-sided v 
= v′. Indeed, as T ′ is a tree,
there is a path P from v to v′ in T ′. Moreover, as both T (c(v)) and T (c(v′))
are trees, if T (c(v)) ∩ T (c(v′)) 
= ∅, then there is a path P ′ from c(v′) to c(v) in
T (c(v))∪T (c(v′)). As T ′ and T (c(v))∪T (c(v′)) are disjoint, the path Pc(v′)P ′v
is a cycle in T , contradicting that T is a tree. Therefore,∑

lop−sided v

min(f, rMPleft(v))min(f, rMPright(v))

= f
∑

lop−sided v

|T (c(v)) ∩R| ≤ f · r.

Thus, to bound (2), it remains to account for those vertices v for which both
rMPleft(v) ≥ f and rMPright(v) ≥ f . Observe that each such v contributes O(f2) to
(2). So, if we can show that there are at most O(r/f) such v, it will follow that
(2) is bounded by O(rf).

To this end, let T ′′ be the subgraph of T consisting of all vertices v for which
rMPleft(v) ≥ f and rMPright(v) ≥ f . Next, create a binary tree T ′′′ by first adding
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T ′′ to T ′′′, then adding MPleft(v) and MPright(v) to T ′′′ for each v ∈ T ′′. Now,
for any two leaves v1 
= v2 in T ′′′, we have T (v1) ∩ T (v2) = ∅, as otherwise T
would contain a cycle. Moreover, by definition of the vertices in T ′′, we have
|T (v1)| ≥ |T (v1) ∩R| ≥ f and |T (v2)| ≥ |T (v2) ∩R| ≥ f . Thus, there can be at
most r/f leaves in T ′′′. As T ′′′ is a binary tree, it follows that it can contain at
most 2r/f = O(r/f) nodes, and thus T ′′ also contains at most this many nodes.
This completes the proof.

Thus, we have proven Theorem 1. We now consider the case when the revoked
set R is chosen uniformly at random from sets of size r. This might often be the
case in practice, if say, the revoked users are uncorrelated with each other. This
example exploits our algorithmic improvements in Section 4. In the full version
of the paper [28], we prove the following theorem.

Theorem 6. If the revoked set R is uniformly chosen from sets of size r, then
with probability at least 1 − 1/n, if Freerider-Approx uses our MinSum (1 + ε)-
approximation algorithm, then it runs in time

O

(
1

ε2/3

(
r log8/3 n + rf1/3 log5/3 n

))
,

which is O(rf1/3polylog n) for ε > 1
polylogn . On the other hand, if r ≥ 4

3 log n,
then with probability at least 1−1/n, if Freerider-Approx uses the naive algorithm
for MinSum, then it takes time

Ω

(
r min

(
f,

f2

log n

))
,

which is Ω(rf) for f = Ω(log n).

The intuition behind the proof is as follows. For a randomly chosen R of size r,
one can use a Chernoff-type bound for negatively-correlated random variables
[26] to show that with probability at least 1−1/n, for all nodes v in the complete
binary tree, |T (v) ∩R| ≤ 2t(v) r

n + 2 log n, where t(v) is the number of leaves in
T (v). Note that, E[|T (v) ∩R|] = t(v) r

n , so this variable is tightly concentrated.
To get the lower bound of Ω(rf) for the naive MinSum algorithm, we first

consider nodes with height � r
2f �, assuming first that f ≤ r/4. Using the above

bound on |T (v)∩R|, one can show that Ω( r
f ) of them must have |T (v)∩R| ≥ f ,

as otherwise there is some v with height � r
2f � for which |T (v)∩R| is too large. It

follows that there are Ω( r
f ) nodes with height less than � r

2f � each contributing
Ω(f2) to sum (2), giving total cost Ω(rf). If f > r

4 , one can show the root of
the Steiner tree itself contributes Ω(rf) to sum (2).

Finally, to get the upper bound of O(rf1/3polylog n), one modifies sum (2)
to, ∑

v

min(f, rMPleft(v))1/3 min(f, rMPright(v))
(

L logn

ε

)2/3

,
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where L = maxi,v opt(i, T (v)) − opt(i + 1, T (v)). One can use the bound on
|T (v) ∩ R| above for each v to bound this sum. Using the definition of the CS
scheme, it is easy to show that opt(i, T (v))− opt(i+1, T (v)) ≤ log n for any i, v.

Finally, we note that it is straightforward to extend Freerider-Approx to broad-
cast encryption schemes based on complete k-ary trees for general k. The idea is
to binarize the tree by replacing a degree-k node with a binary tree on k nodes,
and then run Freerider-Approx on the virtual tree.

We suspect that one can extend Freerider-Approx to the SD scheme of [25]
with the same time complexity, though we have not worked out the details. The
only change is the dynamic programming step, steps (3-4), for which one must
be careful if a key involving the joining node is part of an optimal assignment
of at most i free riders at a given subtree. One can run MinSum as before, but
needs to compare the output to a few extra cases involving the key at the joining
node (which MinSum does not account for).

4 Min-sum Problem

In this section we give our MinSum algorithms and analyses. Recall that we are
given ε ≥ 0, and integer sequences a1 ≥ a2 ≥ · · · ≥ am1 ≥ 0 and b1 ≥ b2 ≥ · · · ≥
bm2 ≥ 0 with ai − ai+1, bi − bi+1 ≤ L for all i. The goal is to output an array c
such that for all 2 ≤ i ≤ m1 +m2, we have ac[i] +bi−c[i] ≤ (1+ε)minj(aj +bi−j).
W.l.o.g., we will assume that m1 ≤ m2. Thus, m1 + m2 = O(m2). The naive
algorithm for this problem which, for all i, computes all pairs of sums aj + bi−j ,
runs in O(m1(m1+m2)) = O(m1m2) time. We now show how to do much better.

4.1 Algorithm Overview

The essence of our algorithm is the following balancing technique. The first idea
is that, since the lists aj and bj are sorted, we can quickly find (via binary search)
the largest “level” i∗ for which minj(aj + bi∗−j) ≥ s for some parameter s to be
optimized. Our algorithm then has two parts: its solution to levels i ≤ i∗ and its
solution to levels i > i∗.

To solve levels i ≤ i∗, we have two ideas. For these levels, we crucially exploit
the fact that the differences aj−aj+1 and bj−bj+1 are bounded by L and that ε >
0. The first idea is that to solve some such level i, instead of computing all sums
aj + bi−j we can get by with only computing a small fraction of sums. Indeed,
since the differences are bounded, we have aj−1+bi−(j−1) is approximately equal
to aj + bi−j for all j. Since we only need an approximate answer, we can just
take the minimum found over the small fraction of sums that we compute. This
fraction depends on ε, L, and s. Note, the dependence on s arises since we want
a multiplicative approximation, and thus, the smaller s is, the larger the fraction
of sums we will need to compute.

The next idea is that we do not even need to solve all the levels i ≤ i∗. Indeed,
since the differences are bounded and we are content with an approximation, if
we solve some level i′ then we can use this solution for levels “close” to i′, i.e.,
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those levels in a range [i′ − d, i′ + d] for some parameter d that depends on ε, L,
and s. In other words, if aj + bi′−j is our solution for level i′, then for a level
i ∈ [i′ − d, i′ + d] we can bound its cost by aj + bi′−j .

To solve levels i > i∗ we have one main idea, which allows us to compute
the exact solutions for these levels. Suppose (j∗, i∗− j∗) realizes the optimum in
level i∗. Then aj∗ + bi∗−j∗ ≥ s. It follows that aj∗ and bi∗−j∗ must both be less
than s + L. Indeed, since the aj and bj are non-negative and the differences are
bounded by L, then if say, aj∗ ≥ s + L, then aj∗+1 ≥ s and thus the minimum
in level i∗ + 1 is at least s, contradicting the maximality of i∗. Thus, in the
sequences aj∗ ≥ aj∗+1 ≥ · · · ≥ am1 and bi∗−j∗ ≥ bi∗−j∗+1 ≥ · · · ≥ bm2 there are
a lot of identical elements, i.e., we cannot have a� > a�+1 too often since on the
one hand aj∗ ≤ s + L, and on the other hand am1 ≥ 0 (similarly for the bj).

Then the key observation is that for any level i > i∗, the minimum value
aj + bi−j satisfies the following property:

Either j = j∗, or aj−1 > aj , or bi−j−1 > bi−j .

Indeed, suppose not, i.e., aj−1 = aj and bi−j−1 = bi−j for some j 
= j∗. Then,
since i > i∗, either j > j∗ or i − j > i − j∗. W.l.o.g., suppose that j > j∗.
Then, since the bj values are non-increasing, we have that aj−1 +bi−j+1 is also a
minimum for level j. Repeating this “pushing” argument, we can push aj until
j either equals j∗ or satisfies aj−1 > aj. This is a contradiction.

Now as observed before, there cannot be too many different j > j∗ for which
aj−1 > aj . In fact, there can be at most s + L of them. So we can just compute
all valid pairs of sums in this case, and take the appropriate minima.

Finally, we choose s so as to balance the time complexities of these two parts.

4.2 Algorithm Details

First consider ε > 0. Our main algorithm MinSum will call upon a subroutine
MinSumLevel((a), (b), i) which outputs minj(aj + bi−j) and an index j realizing
this minimum. MinSumLevel can be implemented in O(m1) time by computing
all the sums in the ith level and taking a minimum.

We need the notion of a hop. We say that (ai, ai+1) is a hop if ai > ai+1. In
this case we say that ai+1 is a hop-stop. We similarly define hops and hop-stops
for the sequence (b). For any integer z, if ai ≤ z, then since am1 ≥ 0, there can
be at most z hops in the sequence ai ≥ ai+1 ≥ ai+2 ≥ · · · ≥ am1 .

Let s be an integer parameter to be determined. MinSum first performs a
binary search on level i to find the largest i for which minj(aj +bi−j) ≥ s (which
works since the sequence Mi = minj(aj + bi−j) is non-increasing). This can be
done in O(m1 log(m1 + m2)) = O(m1 log m2) time by using MinSumLevel at
each level of a binary search on i. Let i∗ be the largest such level, and let j∗

be the index MinSumLevel((a), (b), i∗) returns realizing this minimum. By the
maximality of i∗, it follows that aj∗ , bi∗−j∗ ≤ s + L, so there can be at most
s + L hops to the right of aj∗ (including aj∗), and at most s + L hops to the
right of bi∗−j∗ (including bi∗−j∗). Suppose p1 < p2 < · · · < pα are the indices of
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the hop-stops to the right of aj∗ , and let q1 < q2 < · · · < qβ be the indices of
the hop-stops to the right of bi∗−j∗ . Note that α, β ≤ s + L.

For levels i > i∗, MinSum computes all sums ax + by with x ∈ {j∗} ∪
{p1, . . . , pα} and y ∈ [m2], together with all sums ax + by with x ∈ [m1] and
y ∈ {i∗ − j∗} ∪ {q1, . . . , qβ}. The number of sums computed is O((s + L)(m1 +
m2)) = O((s + L)m2). Each sum is labeled by the level it falls in, and for each
level, the minimum value is computed. Note that this can be done in O((s+L)m2)
time simply by walking through the pairs and keeping track of the minimum for
each level. Thus, in O((s + L)m2) time we have solved all levels greater than i∗.

Now let ε′ be Θ(εs/(Lm1)), and fix any level i ≤ i∗. Then to solve level i
exactly, there are at most m1 pairs of indices we must take a minimum over:

(z, i− z), (z + 1, i− z − 1), (z + 2, i− z − 2), . . . ,

where z = 1 if i ≤ m2 + 1, and otherwise z = i−m2.
Instead of computing all these sums, we only compute those within the list:

(z, i− z), (z + �ε′m1�, i− z − �ε′m1�), (z + �2ε′m1�, i− z − �2ε′m1�),
(z + �3ε′m1�, i− z − �3ε′m1�), . . .

We then take a minimum only over the sums with indices in this list. Note that
for all i, �(i + 1)ε′m1� − �iε′m1� ≤ ε′m1 + 1. Since aj − aj+1, bj − bj+1 ≤ L, it
follows that one of the sums from this list will be at most ε′m1L ≤ εs/2 (for an
appropriate choice of ε′) more than the value of the true minimum for level i.
Moreover, the number of sums computed is only O(1/ε′), so the total time for
level i is O(Lm1/(εs)).

Finally, we observe that we don’t have to solve every level i ≤ i∗, but rather
we can use the output for level i as the output for levels “close” to i. Let ε′′ be
Θ(εs/(Lm2)). We want to solve levels 1, 2, . . . , i∗. Suppose we obtain an additive
εs/2 approximation for each level in the following list:

1, �ε′′i∗�, �2ε′′i∗�, �3ε′′i∗�, . . . , i∗.

To output the minimum for some level i not appearing in the list, we find the
nearest level i′ ≥ i in the list. Then, suppose aj + bi′−j is our solution for level
i′. Then in constant time, we can find integers d1 ≤ j and d2 ≤ i′ − j such that
d1 + d2 = i. We can then output the pair (d1, d2) as our solution for level i (or
more precisely, we just output d1 since d2 can be inferred). Since the sequences
(a) and (b) are non-increasing, ad1 + bd2 ≤ aj + bi′−j .

Note that i′ is at most O(ε′′i∗) levels away from i, so its minimum can be at
most an additive

O(ε′′Li∗) = O(ε′′L(m1 + m2)) ≤ εs/2

more than that of i (for an appropriate choice of ε′′). Thus, as the error in level
i′ is at most εs/2, and the minimum in level i′ is at most εs/2 larger than that
of level i, our output has additive error at most εs. Since the minimum in all
levels i ≤ i∗ is at least s, our output is a (1 + ε)-approximation.
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Note that we need only solve O(1/ε′′) = O(Lm2/(εs)) levels, each taking
O(Lm1/(εs)) time, so the time over all levels i ≤ i∗ is O(L2m1m2/(ε2s2)).
Thus, the total time is O(L2m1m2/(ε2s2) + (s + L)m2 + m1 log m2). Setting
s = Θ(m1/3

1 L2/3/ε2/3) gives total time complexity

O

(
m

1/3
1 m2L

2/3

ε2/3
+ Lm2

)
.

The first term dominates this expression whenever L ≤ m1. On the other hand,
if L > m1, then m

1/3
1 m2L

2/3ε−2/3 = Ω(m1m2), and we can switch to the trivial
O(m1m2)-time algorihm which works just by computing aj + bi−j for all i, j,

and taking the appropriate minima. Thus, the total time is O

(
m

1/3
1 m2L2/3

ε2/3

)
.

For the binary-tree scheme, L = O(log n), and for the NNL scheme L = O(1).
Thus, for constant ε, the running time is close to m

1/3
1 m2, greatly improving the

O(m1m2) time of the naive algorithm. We conclude that,

Theorem 7. For any ε > 0, MinSum can be solved in O

(
m

1/3
1 m2L2/3

ε2/3

)
deter-

ministic time.

There is an alternative algorithm when ε = 0 described in [13] (which is es-
sentially a direct application of a technique given in [8]) that uses ideas from
computational geometry. We defer the description to the full version of this paper
[28], but state the main theorem:

Theorem 8. [13] If ε = 0, MinSum can be solved in deterministic time

O

(
m1m2

log m2
+ m1 + m2

)
.

Acknowledgment. The second author would like to thank Andrew Yao and Ts-
inghua University for their support while conducting part of this research.

References

[1] M. Abdalla, Y. Shavitt, and A. Wool. Key Management for Restricted Multicast
Using Broadcast Encryption. In ACM Trans. on Networking, vol. 8, no. 4. 2000.

[2] W. Aiello, S. Lodha, and R. Ostrovsky. Fast digital identity revocation. In Proc.
of Crypto 1998.

[3] J. Anzai, N. Matsuzaki and T. Matsumoto. A Quick Group Key Distribution
Scheme with Entity Revocation. In Proc. of Asiacrypt 1999, LNCS 1716.

[4] T. Asano. A Revocation Scheme with Minimal Storage at Receivers. In Proc. Of
Asiacrypt 2002, LNCS 2501, pages 433–450. Springer-Verlag, 2002.

[5] K. Azuma. Weighted Sums of Certain Dependent Random Variables. Tôhoku
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