
Symbolic Model Checking of Concurrent Programs
Using Partial Orders and On-the-Fly Transactions

Vineet Kahlon1, Aarti Gupta1, and Nishant Sinha2

1 NEC Laboratories America, Princeton, NJ 08540, USA
2 Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract. The state explosion problem is one of the core bottlenecks in the
model checking of concurrent software. We show how to ameliorate the prob-
lem by combining the ability of partial order techniques to reduce the state space
of the concurrent program with the power of symbolic model checking to ex-
plore large state spaces. Our new verification methodology involves translating
the given concurrent program into a circuit-based model which gives us the flex-
ibility to then employ any model checking technique of choice – either SAT or
BDD-based – for verifying a broad range of linear time properties, not just safety.
The reduction in the explored state-space is obtained by statically augmenting the
symbolic encoding of the program by additional constraints. These constraints
restrict the scheduler to choose from a minimal conditional stubborn set of tran-
sitions at each state. Another key contribution of the paper, is a new method for
detecting transactions on-the-fly which takes into account patterns of lock acqui-
sition and yields better reductions than existing methods which rely on a lock-
set based analysis. Moreover unlike existing techniques, identifying on-the-fly
transactions does not require the program to follow a lock discipline in access-
ing shared variables. We have applied our techniques to the Daisy test bench and
shown the existence of several bugs.

1 Introduction

The widespread use of concurrent software in modern day computing systems neces-
sitates the development of effective verification methodologies for multi-threaded pro-
grams. However, subtle interactions between threads makes multi-threaded software
behaviorally complex and hard to analyze necessitating the use of formal methodolo-
gies for their debugging. It is not surprising then that the use of model checking – both
symbolic and explicit state – for the verification of concurrent software has recently
been an active area of research.

Explicit state model checkers, such as Verisoft [God97] rely on exploring an enu-
meration of the states and transitions of the concurrent program at hand. Additional
techniques such as state hashing for compaction of state representations, and partial or-
der methods are typically used to avoid exploring all interleavings of transitions of the
constituent threads. While these techniques are powerful tools for state space reduction,
they still do not fully address the scalability issues that arise due to state explosion when
model checking large-scale concurrent programs.

Symbolic model checkers, on the other hand, avoid an explicit enumeration of the
state space by using symbolic representations of sets of states and transitions. One of

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 286–299, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Symbolic Model Checking of Concurrent Programs 287

the first successful approaches in this regard was the use of BDDs to succinctly rep-
resent large state spaces for the purpose of model checking [McM93]. More recently,
SAT-based techniques [BCCY99] have become popular both for finding bugs using
SAT-based Bounded Model Checking (BMC) and for generating proofs via SAT-based
Unbounded Model Checking (UMC).

One of the contributions of this paper is that we have proposed a new methodology to
leverage the synergy that results from combining the ability of partial order techniques
to reduce the state space of the system to be explored with the power of symbolic
model checking techniques to explore large state spaces that has many advantages over
existing techniques that attempt to achieve the same goals. Indeed, methods different
from ours that combine partial order reductions with the use of BDDs were given in
[ABH+01, LST03]. However, the use of BDDs requires one to first symbolically encode
the entire state space of the given concurrent program thereby running into the state
explosion problem. Our technique gives us the freedom to use any technique of choice,
either SAT or BDD-based. This is crucial as SAT-based BMC techniques tend to be
much more scalable on larger programs than the ones based on the use of BDDs.

We start by translating a given concurrent program into a circuit-based (finite-state)
model. Building upon the F-Soft framework [ISGG05] for translating sequential pro-
grams with bounded data and bounded recursion into circuits, we first obtain a finite
model for each individual thread wherein each variable of the thread is represented in
terms of a vector of binary-valued latches and a boolean next-state function (or rela-
tion) for each latch. Then using a scheduler, we compose the circuits for the individual
threads into one single circuit for the entire concurrent program. Verification is then
carried out on this circuit. Partial order techniques are incorporated into the framework
by statically augmenting the circuit-based boolean encoding of the given concurrent
program with additional constraints. These constraints restrict the transitions explored
from each global state to a minimal conditional stubborn set of that state.

Another contribution of this paper is that we have proposed a new provably better
method for identifying transactions on-the-fly that is based on analyzing patterns of
lock acquisition as opposed to existing techniques [Sto02, FQ03] which rely on a lock-
set based analysis. Lockset based methods for state space reduction essentially exploit
the ability of locks to enforce mutually exclusive access to regions of code encapsu-
lated between the locking and unlocking operations on the same lock. They rely on the
assumption that the given concurrent program follows a lock discipline in accessing
shared variables, i.e., all accesses to a shared variable sh are protected by the same lock
lsh [Sto02, FQ03]. Then we can cut down on the number of interleavings that need to
be explored by essentially allowing context switches only before the acquire and after
the release operations on lsh and prohibiting them before access to sh. Disallowing
context switches increases the granularity of transitions and cuts down on the number
of possible interleavings resulting in a reduced state space to be explored.

On the other hand, by analyzing concurrent programs for patterns of lock acquisi-
tion rather than for locksets, we can identify not only those transactions which lockset
based method do but also some that they don’t. This makes our new technique prov-
ably better. In fact, the lockset based technique for identifying transactions turns out to
be a special case of the one based on lock acquisition patterns that we propose here.

288 V. Kahlon, A. Gupta, and N. Sinha

Moreover, our technique does not rely on the given concurrent program following a
locking discipline in accessing shared variables. An important advantage of the non-
reliance of our method on lock discipline is that one of the main reasons for the exis-
tence of data races in threads is an unprotected/wrongly protected access to a shared
variable. The requirement of lock discipline precludes the application of these power-
ful reductions to programs where such commonly occurring bugs are present. Thus our
method enables the use of lock-based reductions for a broader class of concurrent pro-
grams, viz., that need not follow lock discipline, to catch a frequently occurring class
of bugs.

Another, important feature of the lock-pattern based transactions is that they can be
transparently incorporated into partial order reduction by improved conditional depen-
dency detection via addition of extra constraints that are incorporated into the transition
relation not a priori but dynamically while unrolling the executions of the threads. We
show that the increased granularity of transitions due to transactions can be captured as
a reduction in the sizes of the conditional stubborn sets of states.

We believe that our decision to build circuit-based models for concurrent programs
gives us many unique advantages. Indeed, in this sense, the work most closely resem-
bling ours are the approaches presented in [RG05, CKS05] that involve translating a C
program directly into a SAT formula for model checking using SAT-based BMC. How-
ever [RG05] does not incorporate partial order reductions and neither technique lever-
ages on-the-fly transactions. Circuit based models make it easy to incorporate static
space reduction techniques like partial order reductions, on-the-fly-transactions as well
as lightweight static analysis techniques like range analysis to reduce model sizes. An-
other advantage of our approach lies in the separation of the model building and ver-
ification phases. Once we have built a circuit for the concurrent program at hand, it
affords us the flexibility to tackle the verification problem using any model checking
technique of choice for a broad range of linear time temporal properties, not just safety.
Unlike [RG05, CKS05], we can employ a suite of model checking tools for a rich class
of linear-time temporal properties, which can be used both for finding bugs and gener-
ating proofs. These include SAT-based BMC and UMC as well as BDD based model
checking. We believe this flexibility is important as software generated circuits are not
as well structured as hardware circuits and hence no one strategy can be expected to
be universally effective. Thus we have presented a new approach for model checking
concurrent programs that combines the power of symbolic techniques with partial order
reduction and on-the-fly transactions while at the same time retaining the flexibility to
employ a broad arsenal of model checking techniques – both SAT and BDD-based – for
checking not just reachability but a richer classes of linear-time temporal properties.

In the rest of the paper, Section 2 introduces the system model while on-the-fly
transactions are defined in section 3. The details for modeling concurrent programs
as circuits are provided in section 4 and the Daisy case study in section 5. Finally, we
conclude with some remarks in section 6 along with a comparison with related work.

2 System Model

We consider concurrent systems comprised of a finite number of processes or threads
where each thread is a deterministic sequential program written in a language such as

Symbolic Model Checking of Concurrent Programs 289

C. Threads interact with each other using communication/synchronization objects like
shared variables, locks and semaphores.

Formally, we define a concurrent program CP as a tuple (T , V , R, s0), where T =
{T1, ..., Tn} denotes a finite set of threads, V = {v1, ..., vm} a finite set of shared
variables and synchronization objects with vi taking on values from the set Vi, R the
transition relation and s0 the initial state of CP. Each thread Ti is represented by
the control flow graph of the sequential program it executes, and is denoted by the
pair (Ci, Ri), where Ci denotes the set of control locations of Ti and Ri its transition
relation. A global state s of CP is a tuple (s[1], ..., s[n], v[1], ..., v[m]) ∈ S = C1 × ...×
Cn × V1 × ... × Vm, where s[i] represents the current control location of thread Ti and
v[j] the current value of variable vj . The global state transition digram of CP is defined
to be the standard interleaved composition of the transition diagrams of the individual
threads. Thus each global transition of CP results by firing a local transition of the
form (ai, g, u, bi), where ai and bi are control locations of some thread Ti = (Ci, Ri)
with (ai, bi) ∈ Ri; g is a guard which is a Boolean-valued expression on the values
of local variables of Ti and global variables in V ; and u is function that encodes how
the value of each global variable and each local variable of Ti is updated. A transition
t = (ai, g, u, bi) of thread Ti is enabled in state s iff s[i] = ai and guard g evaluates
to true in s. If s[i] = ai but g need not be true in s, then we simply say that t is

scheduled in s. We write s
t−→ s′ to mean that the execution of t leads from state s to

s′. Given a transition t ∈ T , we use proc(t) to denote the process executing t. Finally,
we note that each concurrent program CP with a global state space S defines the global
transition system AG = (S, Δ, s0), where Δ ⊆ S ×S is the transition relation defined

by (s, s′) ∈ Δ iff ∃t ∈ T : s
t−→ s′; and s0 is the initial state of CP.

3 Lock Synchronization Based Reductions

We start by using some examples to motivate our technique. Consider the concurrent
program CP shown in figure 1. Here x, which is the only variable shared among the
threads, is unprotected at control location 5b and protected by lock lk at all other
locations. Since x is not protected at all locations where it is accessed, it does not satisfy
lock discipline in the sense of [Sto02, FQ03], which will therefore force a context switch
before locations 3a and 3b. Consider, however, a global state s of CP with threads
T1 and T2 at control locations 3a and 1b, respectively. The key observation is that
starting at global state s of CP, 3a does not interfere with 3b and 5b even though
5b is unprotected. This is because for T2 to execute 3b it has to acquire lk currently

1a: a = 0;
2a: lock(lk);
3a: x = 1;
4a: unlock(lk);
5a: a = 4;

1b: z = 5;
2b: lock(lk);
3b: x = 2;
4b: unlock(lk);
5b: x = 6;

(a) (b)

Fig. 1. Threads T1(a) and T2(b) with unprotected access to x

290 V. Kahlon, A. Gupta, and N. Sinha

held by T1. But in order for T1 to release lk, it has to first execute 3a. Thus starting
at s, CP is forced to execute 3a before 3b. As a result no context switch is required
before 3a. However, in the global state s′ with T1 and T2 at control locations 3a and
5b, respectively, the transitions 3a and 5b do interfere with each other thus forcing a
context switch before 3a. The bottom line is that even when shared variables do not
follow locking discipline globally, we can still identify local portions of the state space
where locking discipline is followed. Thus a context driven analysis allows us to define
transactions locally on-the-fly where existing methods [Sto02, FQ03], because of their
reliance on a global analysis, fail to do so.

1a: a = 1;
2a: lock(lk1);
3a: lock(lk2);
4a: y = 1;
5a: unlock(lk2);
6a: x = 0;
7a: unlock(lk1);

1b: b = 0;
2b: lock(lk2);
3b: lock(lk1);
4b: z = 2;
5b: unlock(lk1);
6b: x = 1;
7b: unlock(lk2);

(a) (b)

Fig. 2. Threads T1(a) and T2(b) with unprotected access to x

Taking the above discussion further, we next show that transactions can be identified
even in the absence of lock discipline–local or global. Let CP be the concurrent program
comprised of the two threads T1 and T2 sharing variable x shown in figure 2. Consider a
global state s of CP with threads T1 and T2 in control locations6a and 1b, respectively.
Observe that starting at s, the transitions at control locations 6a and 6b cannot interfere
with each other even though they access the same shared variable x. This is because
in order for thread T2 to reach location 6b from 1b it has to traverse the local path
1b,2b,3b,4b,5b, along which it has to acquire (and release) lock lk1 currently
held by T1. In order for that to happen, T1 must release lk1 for which it must execute
transition 6a. This forces transition 6a to be executed before 6b. Thus no context
switch is required before location 6a. The key observation is that even though disjoint
sets of locks were held at locations 6a and 6b, it was the set of locks that needed to
be acquired by T2 in order to transit from 1b to 6b (even though some of these locks
were released before reaching 6b) that prevented 6a and 6b from interfering with each
other. A traditional lockset based analysis as given in [Sto02, FQ03] would treat 6a
and 6b as conflicting transitions (as x does not follow locking discipline) and force a
context switch before these locations. Thus a conflict analysis based on lock acquisition
patterns is more refined than one based on locksets. Indeed, a lockset based analysis
is a special case of lock-pattern based analysis since the set of locks held at a location
would have to be acquired and thus would be tracked in the lock acquisition pattern.

Transactions Via Persistent Sets. We now show how to integrate lock-pattern based
on-the-fly transactions with partial order reduction in a transparent fashion by capturing
the increased granularity of transitions due to transactions as a reduction in the sizes
of the conditional stubborn sets of states. This is accomplished by ensuring that if in
a global state s, a thread Ti is in the process of executing a transaction, then in the

Symbolic Model Checking of Concurrent Programs 291

persistent set of s, we include only one transition, viz., the transition of Ti that fires
next along the transaction being executed. This ensures that once the first transition of
a transaction is executed, by a thread Ti then no other process can be scheduled unless
all transitions of the transaction finish firing.

State space reduction using partial order techniques is obtained by exploring from
each state only those transitions that belong to a persistent set of that state instead of
all the enabled transitions. Although there are many ways to compute persistent sets,
the method of computing conditional stubborn sets usually generates those with small
cardinality. In this paper, we use standard terminology from the theory of partial order
reductions and the algorithm for computing conditional stubborn sets from [God96],
which we denote by Algo1. We recall the following definition from [God96].

Might-be-first-to-interfere. Let op and op′ be two operations on the same object O
and s be a reachable state. The relation op �s op′ holds if there exists a sequence

s = s1
t1−→ s2

t2−→ ...
tn−→ sn+1 of transitions in AG such that ∀1 ≤ i < n : ∀op′′ on

O used by ti: op and op′′ are independent in state si, tn uses op′, and op and op′ are
dependent in sn.

For each local transition a
g→ b of a thread, we let used(t) denote the set of opera-

tions on variables and synchronization objects executed during the execution of t. A
conditional stubborn set of state s of AG can then be calculated as follows:

1. Initialize Ts = {t}, where t is some enabled transition in s.
2. For each t = a

g→ b ∈ Ts

(a) If t is disabled in s,
i. if Tj = proc(t) and s[j] �= a, then add to Ts all transitions t′ of Tj of the form

c
g′
→ a, or

ii. choose a condition cj in the guard g of t that evaluates to false in s; then, for
all operations op used by t to evaluate cj , add to Ts all transitions t′ such that
∃op′ ∈ used(t′) : op �s op′.

(b) If t is enabled in s add to Ts all transitions t′ such that
i. proc(t) �= proc(t′) and ∃op ∈ used(t),∃op′ ∈ used(t′) : op �s op′.

3. Repeat step 2 until no more transitions can be added in Ts. Then return all transitions in Ts

that are enabled in s.

Fig. 3. Algo1 for Computing Conditional Stubborn sets

In Algo1 dependencies between transitions, arising out of operations on shared com-
munication objects are captured using the �s relation which captures for each operation
op used by a transition in a state s which other operations might be first to interfere with
op from the current state s. In practice, to avoid exploration of the state space of the
program at hand, static analysis is employed in order to compute a relation, �st

s , which
is an over-approximation of �s. Towards that end, we say that two operations op and
op′ are statically dependent if they access a common shared variable such that at least
one of the accesses is a write operation. Then �st

s , is defined as follows.

Definition. Let op and op′ be two operations on a common shared variable and s a
reachable state of AG. The relation op �st

s op′ holds iff there exist distinct threads Ti

292 V. Kahlon, A. Gupta, and N. Sinha

and Tj such that there exists (1) a transition of Ti scheduled (not necessarily enabled)

at s using op, and (2) a local path x : p0
t1−→ ...

tn−→ pn of Tj such that p0 is the local
state of Tj in s, ∀1 ≤ k < n : ∀op′′ used by tk: op and op′′ are not statically dependent,
tn uses op′, and op and op′ are statically dependent.

To incorporate on-the-fly transactions, we modify the above definition of �st
s to get a

new relation �lp
s ⊆ �st

s by adding (in accordance with our discussion above), the extra
constraint that none of the locks held by Ti in s is acquired (and possibly released)
by Tj along x. Note that since �lp

s is more constrained it enforces fewer dependencies
between operations than �st

s thus resulting in smaller conditional stubborn sets. The
effect is to weed out certain interleavings to get the effect of executing transactions.
Indeed, in the example given in fig 2, in global state s, if op and op′ are the operations
x = 0 and x = 1 at locations 6a and 6b, respectively, then op�st

s op′ but ¬(op�lp
s op′).

Thus, using �lp
s instead of �st

s to compute conditional stubborn sets removes transition
1b from the conditional stubborn set of s thus preventing a context switch before 6a.
Formally, �lp

s is defined as follows.

Definition (might-be-the-first-to-interfere-modulo-lock-acquisition). Let op and op′

be two operations on a common shared variable and s a reachable state of AG. The
relation op �lp

s op′ holds iff there exist distinct threads Ti and Tj such that there exists
(1) a transition of Ti scheduled (not necessarily enabled) at s using op, and (2) a local

path x : p0
t1−→ ...

tn−→ pn of Tj such that ∀1 ≤ k < n : ∀op′′ used by tk: op and op′′

are not statically dependent, tn uses op′, and op and op′ are statically dependent and
no lock held by Ti in s is acquired by Tj along x.

Let Algo2 be the result of replacing �s in Algo1 by �st
s and Algo3 the result of replac-

ing �st
s in line 2.(b).i of Algo2 by �lp

s . Then the following two results state that Algo3
does indeed compute a conditional stubborn set and that, in fact, it computes smaller
conditional stubborn sets than Algo2. Note that although we used a specific relation
�st

s for computing dependencies statically, one can, of course, incorporate on-the-fly-
transactions with any other implementation of �s by merely adding the extra condition
regarding lock acquisition patterns, as above.

Theorem 1. All sets Ts that are computed by Algo3 are conditional stubborn sets of s.

Proof Sketch. Let t = a
g→ b executed by thread Ti belong to Ts. Let w = s1

t1−→
s2

t2−→ ...
tn−→ sn+1 be a sequence of transitions of AG such that t is dependent with tn

in sn. We need to show that at least one of t1,...,tn is in Ts. Without loss of generality,
we may assume that for 1 ≤ i < n, t is independent with ti in si and tn is dependent
with t in sn, else we can pick an appropriate prefix of w.

First assume that t is disabled in s. Since t is disabled in s and sn is the first state
along w in which t is dependent (with tn), we have that t is enabled in sn+1. Since t
is disabled in s, either s[i] �= a, or a condition c in guard g evaluates to false in s. In
the first case, since t is enabled in sn+1, there exists a transition tj fired along w, of
the form d → a labeled with some guard g′. But then executing step 2.(a).i of Algo3,
would cause tj to be included in Ts. In the second case, there exists a transition tj , that
changes the value of c from false to true by changing the output of an operation op used
to evaluate c, i.e., by performing an operation op′ dependent with op in sj . Let tj be the

Symbolic Model Checking of Concurrent Programs 293

first such transition occurring along w. Clearly op′ is statically dependent with op. By
definition of �st

s , we have op �st
s op′, and so tj ∈ Ts by step 2.a.(ii).

Consider now the case when t is enabled in s. From the facts that (i) for 1 ≤ j ≤ n−
1, t is independent with tj in sj , and (ii) t is enabled in s, we have that for 1 ≤ j ≤ n−1,
t is enabled in sj . This implies that thread Ti does not execute any transition along w,
for otherwise since Ti is deterministic, we can conclude that t is the first transition that
Ti executes along w. This which would force Ti out of it current local state thereby
disabling t thus contradicting the above observation. Note that here we assumed that
executing a transition takes a process out of its current local state, i.e., there are no
self loops in a program thread, a reasonable assumption for software programs Now,
since t and tn are dependent in sn, it implies that ∃op ∈ used(t), ∃op′ ∈ used(tn): op
and op′ are dependent in sn and hence are also statically dependent. Let tj be the first
transition along w that uses an operation op′′ dependent op. Note also that there does
not exist a lock l held by Ti at s such that l has to be acquired before tj is executed along
w. For otherwise, l must first be released by Ti thus forcing Ti to execute a transition
contradicting our observation above that Ti does not execute any transition along w.
Thus we have op �lp

s op′′. Hence tj ∈ Ts by step 2.b.(i). This completes the proof. 	

Theorem 2. For all transitions t that are enabled in s, for all persistent sets Algo2(t)
that can be returned by Algo2, there exists a run of Algo3 that returns a persistent set
Algo3(t) ⊆ Algo2(t).

Proof Sketch. From the definition of relation �lp
s , it follows that �lp

s is included in
�st

s . Thus the set Ts returned by Algo3 is always a subset of the one returned by Algo2,
provided the same choices are made in case of nondeterminism. 	

Note that since Algo3 computes smaller persistent sets than existing lockset-based tech-
niques, it is guaranteed to improve the performance of explicit state model checkers.
Even for symbolic model checkers, since the reduction in the number of scheduled
transitions results in a pruning of the state space, it leads to a performance boost which,
however, may not be directly proportional to the decrease in the size of the state space
being explored.

4 Software Modeling for Concurrent C Programs

4.1 Translating Individual Threads into Circuits

In this section we briefly describe how, using the F-Soft machinery, we first obtain a
circuit-based model of each thread, under the assumption of bounded data and bounded
control (recursion) (see [ISGG05] for more details).

We begin with full-fledged C and apply a series of source-to-source transformations
to simplify complex C expressions into smaller but equivalent subsets of C . We flatten
all arrays and structs by replacing them with collections of simple scalar variables,
and build an internal memory representation of the program by assigning to each scalar
variable a unique number representing its memory address. Variables that are adjacent
in C program memory are given consecutive memory addresses in our model; this fa-
cilitates modeling of pointer arithmetic. We model the heap as a finite array, adding a

294 V. Kahlon, A. Gupta, and N. Sinha

simple implementation of malloc() that returns pointers into this array. For handling
pointer accesses, we first perform a points-to analysis to determine the set of variables
that a pointer variable can point to. Then, we convert each indirect memory access,
through a pointer or an array reference, to a direct memory access. For example, if
we determine that pointer p can point to variables a,b,...,z at a given program
location, we rewrite a pointer read *(p+i) as a conditional expression of the form
((p+i)==&a ? a : ((p+i)==&b ? b : ...)), where &a,&b,... are the
numeric memory addresses we assigned to the variables a,b,..., respectively. Non-
recursive function calls are handled by inlining exactly once, and replacing the function
return by a set of goto-s conditioned upon the unique call site id stored on function
entry. Bounded recursive functions are modeled by introducing a bounded call stack.
While we aim for accurate modeling of all C, practical modeling requires making ap-
proximations. We truncate large arrays: writes to elements above a certain index are
ignored, and reads from these elements yield non-deterministic values. We currently
approximate floating-point values by modeling their integral parts only.

The simplified program consists of scalar variables of simple types (Boolean, enu-
merated, integer). This is compiled using standard techniques into its control flow graph
(CFG). The CFG representation can be viewed as a finite state machine with state vec-
tor (pc,V), where pc denotes an encoding of the basic blocks, and V is a vector of
integer-valued program variables. We then construct symbolic transition relations for
pc, and for each data variable appearing in the program. For pc, the transition relation
reflects the guarded transitions between basic blocks in the CFG. For a data variable, the
transition relation is built from expressions assigned to the variable in various blocks.
Finally, we construct a symbolic representation of these transition relations resembling
a hardware circuit. For the pc variable, we allocate �log N� latches, where N is the total
number of basic blocks. For each C program variable, we allocate a vector of n latches,
where n is the bit width of the variable. At the end, we obtain a circuit-based model of
each thread of the given concurrent program, where each variable of the thread is rep-
resented in terms of a vector of binary-valued latches and a Boolean next-state function
(or relation) for each latch.

4.2 Building the Circuit for the Concurrent Program

Given the circuit Ci for each individual thread Ti, we now show how to get the circuit
C for the concurrent program CP comprised of these threads. In the case where local
variables with the same name occur in multiple threads, to ensure consistency we prefix
the name of each local variable of thread Ti with thread i. Next, for each thread Ti

we introduce a gate execute i indicating whether Pi has been scheduled to execute
in the next step of CP or not.

For each latch l, let next-statei(l) denote the next state function of l in circuit
Ci. Then in circuit C, the next state value of latch thread i l corresponding to a
local variable of thread Ti, is defined to be next-statei(thread i l) if execute i
is true, and the current value of thread i l, otherwise. If, on the other hand, latch
l corresponds to a shared variable, then next-state(l) is defined to be next-statei(l),
where execute i is true. Note that we need to ensure that execute i is true for
exactly one thread Ti. Towards that end, we implement a scheduler which determines

Symbolic Model Checking of Concurrent Programs 295

in each global state of CP which one of the signals execute i is set to true and thus
determines the semantics of thread composition.

Conditional Stubborn Sets Based Persistent Sets. To incorporate partial order reduc-
tion, we need to ensure that from each global state s, only transitions belonging to a
conditional stubborn set of s are explored. Let R and Ri denote the transitions relations
of CP and Ti, respectively. If CP has n threads, we introduce the n-bit vector cstub
which identifies a conditional stubborn set for each global state s, i.e., in s, cstubi is
true for exactly those threads Ti such that the (unique) transition of Ti enabled at s
belongs to the same minimal conditional stubborn set of s. Then

R(s, s′) =
∨

1≤i≤n

((execute i) ∧ cstubi(s) ∧ Ri(s, s′)).

The cstub vector can be computed in the following way:

1. For each shared variable x and thread Ti, we introduce a latch touch-now(Ti, x)
which is true at control location pci of Ti iff Ti accesses x at control location pci.
This can be done via a static analysis of the CFG of Ti by determining at which
control locations x was accessed and taking a disjunction for those values of pci.

2. For each shared variable x and thread Tj , introduce the latch touch-now-later
(Tj , x), which is true at control location pcj of Tj if Tj accesses x at some location
pc′j reachable from pcj . Thus computing touch-now-later(Tj, x) involves deciding
the reachability of pc′j , and since we cannot compute it exactly without explor-
ing the entire state space AG of CP, we over-approximate it by doing a context-
sensitive analysis of the control-flow graph of Tj . We set touch-now-later-pair
(Tj , x) to true in control pcj if for some control pc′j reachable from pcj in the
control flow graph of Tj , x is accessed at pc′j .

3. For distinct threads Ti and Tj , the relation conflicti(j) is then defined as ∨x∈Vsh

(touch-now(Ti, x)(pci) ∧ touch-now-later(Tj , x)(pcj)), where pci and pcj are the
control locations of Ti and Tj , respectively, in the current global state and Vsh is
the set of shared variables of CP.

4. Using a circuit to compute transitive closures, for each i, starting with Ji = {i} we
compute the closure of Ji under the conflict relation defined above.

5. We build a circuit to compute the index min such that the cardinality of Jmin

is the least among the sets J1, ..., Jn. Finally ∀1 ≤ i ≤ n, set cstubi = 1 iff
i ∈ Jmin. Note that in the implementation we need to pick only one set with the
least cardinality.

Cycle Detection. We first identify sticky transitions [KLM+98] for all potential global
cycles. We then force a conflict for the process containing the sticky locations with all
other processes via the encoding below. Let sticky(pc) be a predicate evaluating to true
iff location pc has been marked sticky. Then, for global state s, we define conflicti(j)
= sticky(pci) ∨ (touch-now(Ti, x)(pci) ∧ touch-now-later(Tj, x)(pcj)), where pcm is
the current control location of Tm in s. In other words, if pci is sticky then thread Ti is
said to conflict with all other threads.This implies that either a thread Tk, with smaller
conflict set Jk, would be chosen for the persistent set computation or a full expansion
forced.

296 V. Kahlon, A. Gupta, and N. Sinha

This reduction is sound, since (as was shown in [KLM+98]) any cycle in the global
state space can be projected on to one or more local cycles in the control flow graph
of the individual threads. By forcing a full expansion inside each (potential) local cycle
with the help of sticky transitions, we ensure that there is no global cycle such that a
thread transition is postponed at each state of the cycle. Therefore this encoding allows
the model checker to explore a conservative over-approximation of the representative
(minimal) set of interleavings of the given threads. Although the reduced model re-
mains sound, the number of interleavings considered may decrease dramatically with
the number of annotated sticky transitions.

So far, we have implemented sticky transitions only for special cases in which cy-
cles can occur locally in threads. In fact, as was noted in [FG05], our experience also
has been that acyclic state spaces are very common in software implementations for
the purpose of model checking and cycle detection becomes more critical when one is
using an abstraction (which introduces cycles) refinement framework. However since
(i) we put a lot of effort in modeling programs concretely, (ii) do not use abstraction
refinement, and (iii) introduce sticky transitions to cover common trivial cases, the im-
pact of the existence of cycles is reduced. Nevertheless, we are currently in the process
of extending the implementation of sticky transitions to the general case.

Encoding Lock Pattern Based Reductions. In order to incorporate transactions
on-the-fly, we augment the predicate touch-now-later, to generate the new predicate
touch-now-later-LS that also includes lock acquisition pattern information. For control
locations pci and pc′i, of thread Ti, let paths(pci, pc′i) denote the set of paths in the
CFG of Ti starting from pci that may reach pc′i. For each π ∈ paths(pci, pc′i) of Ti, let
lockPred(π) be a formula denoting the set of locks acquired (and possibly released)
along π, e.g., lk1 = Ti∧lk2 = Ti. Let touch-now-later-pair(Tj , x)(pcj , pc′j) encode all
possible sets of locks that can potentially be acquired along local paths in Ti from pci to
pc′i accessing x, i.e., touch-now-later-pair(Tj , x)(pcj , pc′j) = touch-now(Tj, x)(pc′j) ∧
APx(pcj , cp

′
j), where APx(pci, pc′i) =

∨
π∈paths(pci,pc′

i)
lockPred(π). Let CLP (Ti,

s) denote a formula encoding the ownership of locks by Ti in global state s. Then the re-
lation touch-now-LS(Ti, x) is obtained from touch-now-later-pair(Ti, x) by quantifying
out pc′i and conjoining with the CLP (Ti, s), i.e., touch-now-LS(Ti, x) (pci) = (∃pc′i
touch-now-later-pair(Ti, x) (pci, pc′i)) ∧ CLP (Ti, s). Thus touch-now-LS(Ti, x) (pci)
is true if there is a location pc′i accessing shared variable x that is reachable from pci

via a local path π in Ti such that no lock held in s is acquired along π. We evaluate
lockPred(π) using a context sensitive static analysis of the CFG of Ti.

5 The Daisy Case Study

We have used our technique to find bugs in the Daisy file system which is a benchmark
for analyzing the efficacy of different methodologies for verifying concurrent programs
[dai]. Daisy is a 1KLOC Java implementation of a toy file system where each file is
allocated a unique inode that stores the file parameters and a unique block which stores
data. An interesting feature of Daisy is that it has fine grained locking in that access
to each file, inode or block is guarded by a dedicated lock. Moreover, the acquire and

Symbolic Model Checking of Concurrent Programs 297

release of each of these locks is guarded by a ‘token’ lock. Thus control locations in
the program might possibly have multiple open locks and furthermore the acquire and
release of a given lock can occur in different procedures.

Currently F-Soft only accepts programs written in C and so we first manually trans-
lated the Daisy code which is written in Java into C. Furthermore, to reduce the model
sizes, we truncated the sizes of the data structures modeling the disk, inodes, blocks,
file names, etc., which were not relevant to the race conditions we checked, resulting
in a sound and complete small-domain reduction. We have shown the existence of the
race conditions described below also noted by other researchers (cf. [dai]). The efficacy
of our techniques can be judged from the fact that our model checking methodology
has been able to detect these race conditions in Daisy in a fully automatic fashion di-
rectly on the source code without any code structuring/abstractions beyond redefining
the constants as discussed above.

1. Daisy maintains an allocation area where for each block in the file system a bit is
assigned 0 or 1 accordingly as the block has been allocated to a file or not. But each disk
operation reads/writes an entire byte. Two threads accessing two different files might
access two different blocks. However since bytes are not guarded by locks in order to
set their allocation bits these two different threads may access the same byte in the
allocation block containing the allocation bit for each of these locks thus setting up a
race condition. Note that the race condition occurs for any pair of blocks with numbers
i and j where floor(i/8) = floor(j/8).

The verification statistics are as follows: We ran our experiments on a machine with
an Intel Pentium4 3.20GHz processor and 2GB RAM. Each run was given a timeout
of 2 days and had a memout of 2GB. Witnesses for the above race condition were
found in two cases, WW1–corresponding to blocks 0 and 1, and WW2–due to blocks 1
and 2. Using purely interleaved scheduling, we failed to find either witness because of a
memout at depth 15. When only partial order reduction was employed WW1 was found
using SAT-based BMC at unroll depth 122 in 36707 sec and 999MB while incorporating
on-the-fly transactions drastically reduced the time and memory usage to 1283sec and
122MB, respectively. The second witness WW2 was found at depth 151. Using partial
order reduction alone took 145176 sec and 1870 MB, while adding transactions reduced
it to 5925 sec and 902 MB.

2. In Daisy reading/writing a particular byte on the disk is broken down into two
operations: a seek operation that mimics the positioning of the head and a read/write
operation that transfers the actual data. Due to this separation between seeking and data
transfer a race condition may occur. For example, reading two disk locations, say n
and m, we must make sure that seek(n) is followed by read(n) without seek(m) or
read(m) scheduled in between. In this case a witness was found at depth 48. Using par-
tial order reduction alone took 2.99 sec and 5.7 MB while adding transactions reduced
it to 2.89 sec and 5.5 MB. For this example also BMC on the completely interleaved
model failed to find a witness because of a memout at depth 20.

The bottom line is that, for deep bugs techniques that leverage the use of on-the-fly
transactions combined with partial order reduction greatly outperform those which use
only partial order reduction – both in terms of time taken and memory used.

298 V. Kahlon, A. Gupta, and N. Sinha

6 Concluding Remarks and Related Work

A comparison of our work with [RG05, CKS05], to which it is most closely related, was
presented in the introduction. Partial order reduction has been used before for symbolic
model checking using BDDs [ABH+01, LST03]. On the other hand, by separating
the modeling and verification phases, our methodology gives us the ability to combine
partial order reductions with any symbolic model checking technique of choice, either
SAT or BDD based. An interesting approach for the verification of concurrent pro-
grams using proof-guided under-approximation-widening methodology was presented
in [GLST05]. Here constraints are added to the BMC model instance so that only a
subset of behaviors of the concurrent system are explored. These constraints are itera-
tively removed during the widening phase as a result of which, in the worst case, one
might end up exploring the entire state space of the concurrent program at hand. In
contrast, we add constraints so that we explore a conditional stubborn set at each global
state thereby yielding considerable state space reduction. Moreover, [GLST05] does not
leverage the use of transactions.

There has also been interesting work ([FQ03, Sto02, SC03, AQR+04, LPQR05]) on
the use of lockset based transactions for verifying software and combining it with partial
order reductions. These techniques first compute the valid set of transactions in each of
the processes and then perform partial order reduction-based state-space exploration. As
noted before, such a two-step combination technique may overlook potential reductions
related to shared variables which do not always follow a locking discipline. The key
reason is that in these approaches a thread-wise global analysis is done to look for
potential dependencies between transitions. In contrast, our approach adds information
to the model while exploring the state space by detecting dependencies on-the-fly via
an analysis of patterns of lock acquisition. Our more refined method generates fewer
dependencies between transitions resulting in a lesser number of context switches. This
gives us better state space reduction than existing lockset based techniques.

To sum up, we have presented a new approach for verifying concurrent programs that
combines the power of symbolic model checking with partial order reduction and on-
the-fly transactions while at the same time retaining the flexibility to employ a variety
of error trace generation/proof techniques – both SAT and BDD-based – for checking
not just safety but a broad class of linear time temporal properties. The use of lock
acquisition patterns rather than locksets to identify transactions on-the-fly is not only a
powerful technique in its own right but can also be used in a synergistic manner with
both explicit state and BDD-based exploration of concurrent programs as also with
dynamic partial order reduction techniques [FG05].

References

[ABH+01] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-
order reduction in symbolic state-space exploration. Form. Methods Syst. Des.,
18(2):97–116, 2001.

[AQR+04] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: Exploiting
program structure for model checking concurrent software. In CONCUR, 2004.

[BCCY99] A. Biere, A. Cimatti, E.M. Clarke, and Y.Zhu. Symbolic model checking without
BDDs. In TACAS, 1999.

Symbolic Model Checking of Concurrent Programs 299

[CKS05] Byron Cook, Daniel Kroening, and Natasha Sharygina. Symbolic model check-
ing for asynchronous boolean programs. In SPIN 2005, pages 75–90, 2005.

[dai] Joint CAV/ISSTA Special Event on Specification, Verification, and Testing of
Concurrent Software. In http://research.microsoft.com/ qadeer/cav-issta.htm.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In POPL ’05, pages 110–121, 2005.

[FQ03] C. Flanagan and S. Qadeer. Transactions for software model checking. In SoftMC
03, 2003.

[GLST05] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided underap-
proximation widening for multi process systems. In POPL ’05, pages 122–131,
2005.

[God96] P. Godefroid. Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem. LNCS 1032. Springer-Verlag, 1996.

[God97] Patrice Godefroid. Model checking for programming languages using verisoft.
In POPL ’97, pages 174–186, 1997.

[ISGG05] F. Ivančić, I. Shlyakhter, A. Gupta, and M. Ganai. Model checking c programs
using F-Soft. In ICCD, 2005.

[KLM+98] Robert P. Kurshan, Vladdimir Levin, Marius Minea, Doron Peled, and Hüsnü
Yenigün. Static partial order reduction. In TACAS ’98, 1998.

[LPQR05] V. Levin, R. Palmer, S. Qadeer, and S. K. Rajamani. Sound transaction-based
reduction without cycle detection. In SPIN ’05, 2005.

[LST03] F. Lerda, N. Sinha, and M. Theobald. Symbolic model checking of software.
Electr. Notes Theor. Comput. Sci., 89(3), 2003.

[McM93] K.L. McMillan. Symbolic model checking: an approach to the state explosion
problem. Kluwer Academic Publishers, 1993.

[RG05] I. Rabinovitz and O. Grumberg. Bounded model checking of concurrent pro-
grams. In CAV ’05, pages 82–97, 2005.

[SC03] Scott D. Stoller and Ernie Cohen. Optimistic synchronization-based state-space
reduction. In TACAS ’03, LNCS, pages 489–504, April 2003.

[Sto02] Scott D. Stoller. Model-checking multi-threaded distributed Java programs. In-
ternational Journal on Software Tools for Technology Transfer, 4(1):71–91, Oc-
tober 2002.

	Introduction
	System Model
	Lock Synchronization Based Reductions
	Software Modeling for Concurrent C Programs
	Translating Individual Threads into Circuits
	Building the Circuit for the Concurrent Program

	The Daisy Case Study
	Concluding Remarks and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

