
A Random Walk Kernel Derived from Graph
Edit Distance

Michel Neuhaus� and Horst Bunke

Institute of Computer Science and Applied Mathematics, University of Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland

{mneuhaus, bunke}@iam.unibe.ch

Abstract. Random walk kernels in conjunction with Support Vector
Machines are powerful methods for error-tolerant graph matching. Be-
cause of their local definition, however, the applicability of random walk
kernels strongly depends on the characteristics of the underlying graph
representation. In this paper, we describe a simple extension to the stan-
dard random walk kernel based on graph edit distance. The idea is to
include global matching information in the local similarity evaluation of
random walks in graphs. The proposed extension allows us to improve
the performance of the random walk kernel significantly. We present an
experimental evaluation of our method on three difficult graph datasets.

1 Introduction

For more than thirty years, a huge variety of methods have been developed ad-
dressing the problem of graph matching [1]. In recent years, a novel class of
algorithms based on kernel machines has gained a significant amount of interest
in the pattern recognition community. The basic idea of kernel machines is to
map the classification problem from the pattern domain to a vector space implic-
itly defined in terms of a kernel function [2]. In the context of graph matching,
kernel machines allow us to apply vector space operations to graphs by embed-
ding the space of graphs in a vector space. Provided that the definition of a kernel
function that is suitable for the pattern matching problem under consideration
is given, a large number of algorithms for pattern analysis and recognition can
readily be applied, including principal component analysis, Fisher discrimination
analysis, and Support Vector Machines [2].

Various kernel functions have been proposed to solve the graph matching
problem as well as the related string matching problem. In a common approach,
the similarity of patterns is defined in terms of similar substructures they con-
tain [3,4]. Another approach employs the definition of a Schur-Hadamard inner
product on graphs [5]. Based on the notion of random walks in graphs, several
kernels have been developed [6,7]. While kernel methods provide a powerful way
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to analyse and classify graphs, they are, in some cases, limited in terms of the
flexibility of their structural matching process.

In this paper we aim at enhancing a standard random walk kernel by in-
formation derived from the well-established error-tolerant graph edit distance
measure [8,9]. In the remainder of this paper, we will briefly introduce graph
edit distance and the random walk kernel, describe the extension we propose,
and demonstrate the usefulness of our method in classification experiments.

2 Graph Edit Distance

Graph edit distance is one of the most universal graph matching methods in the
sense that edit distance is not restricted to special classes of graphs, such as planar
graphs, bounded valence graphs, or graphs labeled with discrete attributes. The
key idea is to measure the structural dissimilarity of two graphs by the minimal
amount of distortion that is needed to transform one graph into the other [8,9].
The only requirement for graph edit distance to be applicable is that an under-
lying distortion model must be given such that the strength of distortions can be
measured. Hence, graph edit distance can be computed for graphs with arbitrary
node and edge relations and any kind of node and edge labels.

More formally, let g = (V, E, μ, ν) denote a graph g consisting of a finite
set of nodes V , a set of directed edges E ⊆ V × V , a node labeling function
μ : V → L assigning an attribute from L to each node, and an edge labeling
function ν : E → L. The label alphabet L is often defined as a finite set of
labels, L = {α, β, γ, . . .}, or a Euclidean vector space, L = �n. We then define a
number of distortion, or edit, operations on graphs. A standard set of graph edit
operations consists of an insertion, a deletion, and a substitution operation of
nodes and edges. An edge deletion is equivalent to the removal of an edge from
a graph, and a node substitution results in the replacement of a node label by
another one. Further required is a cost function assigning each edit operation a
penalty cost value, such that weak edit operations have low costs and strong edit
operations have high costs. For instance, slightly changing a label should, in most
cases, result in lower costs than strongly changing the same label. The key idea
of graph edit distance is that for two structurally similar graphs only a few weak
edit operations are needed to convert one graph into the other. By contrast, for
two quite different graphs, a larger number of edit operations of greater strength
are needed to make the two graphs identical to each other. Consequently, the
edit distance of two graphs g and g′ is defined by the minimum cost sequence of
edit operations transforming g into g′,

d(g, g′) = min
(e1,...,ek)∈E(g,g′)

k∑

i=1

c(ei) . (1)

A sequence of edit operations transforming one graph into the other is also called
an edit path. Note that E(g, g′) denotes the set of edit paths from g to g′, and
c is a function assigning costs to edit operations.
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The edit distance of graphs is usually computed by means of a tree search
procedure [9]. As every node can potentially be substituted by any other node,
it can be shown that the computational complexity of edit distance is exponential
in terms of space and time. In practice, it turns out that the computation of exact
edit distance is limited to graphs with up to 12 nodes, typically. In this paper,
we therefore resort to an approximate edit distance algorithm [10] in those cases
where the exact distance cannot be computed.

The edit distance of graphs is normally used in conjunction with a k-nearest-
neighbor classifier. For an unknown input graph, we compute the edit distance
to a number of prototype graphs and assign the input graph to the most frequent
class among the k closest prototypes.

3 Random Walk Kernels

The objective in this section is to define error-tolerant graph similarity mea-
sures, or kernel functions, that can be used in conjunction with kernel machines
[2]. The main advantage of kernel based classifiers for structured data is that
the classification problem can be formulated in a vector space related to the
original pattern space solely by definition of a kernel function. Given a valid
kernel function, it can be proven that there exists a vector space with its inner
product being equal to the kernel function. This allows us to run a number of
algorithms for classification and pattern analysis in the implicitly existing vector
space without explicitly mapping the graphs to the elements of the vector space.
In our experiments, we apply the kernel functions in conjunction with one of the
most prominent and best performing kernel based classifiers, the Support Vector
Machine (SVM) [2].

We proceed by first describing a well-known random walk kernel for discretely
labeled graphs [6] and its extension to continuously labeled graphs [7]. Then we
suggest modifications to make the random walk kernel more robust.

3.1 Discretely Labeled Graphs

The original random walk kernel is defined by means of the direct product graph
[6]. The direct product of two graphs g = (V, E, μ, ν) and g′ = (V ′, E′, μ′, ν′) is
the graph (g × g′) = (V×, E×, μ×, ν×) given by

V× = {(v, v′) ∈ V × V ′ : μ(v) = μ′(v′)} and (2)
E× =

{
((u, u′), (v, v′)) ∈ V 2

× : (u, v) ∈ E ∧ (u′, v′) ∈ E′ ∧ ν(u, v) = ν′(u′, v′)
}

.

The labeling functions of the product graph are defined by μ×(v, v′) = μ(v) =
μ′(v′) and ν×((u, u′), (v, v′)) = ν(u, v) = ν′(u′, v′). In other words, in the direct
product graph (g × g′), we simply identify pairs of nodes of both graphs with
identical labels and pairs of edges with identical labels, constituting the nodes
and edges of the product graph. The adjacency matrix A× of (g × g′) is then
defined as

[A×](u,u′),(v,v′) =
{

1 if ((u, u′), (v, v′)) ∈ E× ,
0 otherwise .

(3)
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Note that the adjacency matrix is a |V×| · |V×|-matrix containing at position
(i, j) value 1 if node i is connected to node j by an edge in (g × g′), and
value 0 otherwise. From the adjacency matrix A× of the direct product, one can
then derive the graph kernel with weighting parameter λ ≥ 0 according to the
formula [6]

k×(g, g′) =
|V×|∑

i,j=1

[ ∞∑

n=0

λnAn
×

]

ij

. (4)

If λ < 1, it is sufficiently accurate to evaluate infinite sums by their first few
dominant addends only.

The kernel can be interpreted as a measure of the number of matching labeled
random walks in both graphs. That is, if the sequence of node and edge labels
encountered on a random walk in g matches the sequence of node and edge labels
of a random walk in g′, this contributes a certain amount to the overall similarity
k×(g, g′). The graph kernel reflects the intuitive understanding that two graphs
are similar if there are a large number of identical random walks in both graphs.

3.2 Continuously Labeled Graphs

The main limitation of the kernel defined above is that it is only applicable to
graphs with discretely labeled nodes and edges. If a random walk in g differs from
a random walk in g′ only in a single node label, the two walks are considered
completely different and are therefore not taken into account. Unfortunately,
most graphs extracted from real-world data contain a significant amount of noise,
and attributes with continuous values are mostly used to describe non-discrete
data. For these reasons, an extension of the original random walk kernel has been
proposed [7]. The idea is not to evaluate if two walks are identical, but rather if
they are similar. This modified kernel is applicable to graphs with continously
labeled nodes and edges.

To obtain the modified kernel, we leave out the label equality conditions in
Eq. 2, resulting in a modified direct product (g × g′), and define the adjacency
matrix of (g × g′) by

[A×](u,u′),(v,v′) =
{

k((u, u′), (v, v′)) if ((u, u′), (v, v′)) ∈ E× ,
0 otherwise ,

(5)

where the kernel function k measuring the similarity of pairs of nodes (u, u′) and
(v, v′) is given by

k((u, u′), (v, v′)) = knode(u, u′) · kedge((u, v), (u′, v′)) · knode(v, v′) . (6)

This function is defined with respect to underlying kernels knode evaluating the
similarity of two node labels and kedge evaluating the similarity of two edge labels.
In our experiments, we use standard RBF kernels for this purpose. Note that the
adjacency matrix defined in Eq. 5 can be interpreted as a fuzzy adjacency matrix,
where the adjacency value of two nodes of the product graph is high if the corre-
sponding pairs of nodes and pairs of edges have similar labels, and low otherwise.
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Plugging the adjacency matrix from Eq. 5 into the kernel function in Eq. 4, we
obtain the modified kernel that can be applied to continuously labeled graphs [7].

3.3 Edit Distance Enhancement

As will be shown in the next section, the random walk kernel defined above is
very powerful on certain datasets, but may perform poorly on other data com-
pared to a standard edit distance based nearest-neighbor classifier. In the case of
the random walk kernel, the similarity of graphs is defined by accumulating the
similarity of local parts of the graphs. For certain graph representations, how-
ever, there are global matching constraints that need to be taken into account.
In such a case it may be more appropriate to apply other graph matching meth-
ods, such as the one based on edit distance. Experiments confirm that random
walk kernels and edit distance methods address the graph matching problem in
complementary ways, and one approach usually performs significantly worse or
better than the other one.

The main objective in this paper is to bring together the best from both worlds:
The flexibility of graph edit distance and the power of random walk kernels. The
basic idea is to enhance the random walk kernel with an edit distance matching
at the global level. This allows us to integrate global information into the local
random walk matching process. To this end, let us assume that an optimal edit
path from g to g′ has been computed, and let S = {v1 → v′1, v2 → v′2, . . .} denote
the set of node substitutions present in the optimal path. We then proceed by
defining the adjacency matrix of the direct product graph (g × g′) by

[A×](u,u′),(v,v′) =

⎧
⎨

⎩

k((u, u′), (v, v′)) if ((u, u′), (v, v′)) ∈ E× and
u → u′ ∈ S and v → v′ ∈ S ,

0 otherwise .
(7)

In other words, we restrict the random walks to nodes that satisy the optimal
node-to-node correspondences identified by the edit distance computation. This
adjacency matrix is then used with the kernel function given in Eq. 4.

4 Experimental Results

In this section, we offer an evaluation of the proposed enhanced random walk
kernel in comparison to two baseline systems. In the first baseline system, the
edit distance of graphs is computed (see Sec. 2), and test graphs are classified
according to the k most similar graphs from a labeled training set. In the second
baseline system, the similarity of graphs is evaluated by means of the traditional
random walk kernel (see Sec. 3.2), and an SVM is used for classification. The
third system, our proposed method, is based on the enhanced random walk
kernel defined in Sec. 3.3.

The first database consists of line drawings representing capital letters. To
obtain a noisy sample set of letters, we iteratively apply distortions to clean
letter prototypes. The distorted line drawings are then converted into graphs by
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a) b)

Fig. 1. Illustration of a) three clean letters and b) three distorted letters A, E, F
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Fig. 2. Influence of insertion and deletion penalty cost on classification accuracy

representing end points of lines by nodes and lines by edges. Nodes are labeled
with the two-dimensional position of the corresponding end point. Following this
procedure, we construct a training set and validation set of size 150 each, and a
test set of size 750. The database consists of 15 classes of letters (A, E, F, H, I,
K, L, M, N, T, V, W, X, Y, Z ). An illustration is provided in Fig. 1.

In a first experiment, we focus on the influence of edit costs on the classifi-
cation accuracy. For this purpose we only consider the k-nearest-neighbor edit
distance based classifier and the SVM with the edit distance enhanced kernel.
The edit costs of node (or edge) insertions and deletions essentially determine
how likely a node (edge) is to be substituted by another node (edge). If insertion
and deletion costs are low, only a few inexpensive substitutions will occur in an
optimal edit path. Conversely, if insertion and deletion costs are high, the edit
distance algorithm will tend to substitute as many nodes (edges) as possible.
For an edit distance based nearest-neighbor classifier, the resulting cost of an
optimal edit path is crucial for the performance. It is therefore important to
carefully adjust insertion and deletion costs, as well as any other edit cost para-
meter. In the case of the random walk kernel proposed in this paper, on the other
hand, we are interested in promising node-to-node correspondences, rather than
a particular distance value. This means that in the case of the proposed method
there is no need for an extensive optimization of the edit cost parameters. This
issue can very well be observed in Fig. 2, where the classification accuracy of an
edit distance based nearest-neighbor classifier and an SVM based on the pro-
posed kernel function is shown for various insertion and deletion penalty costs. As
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a) b)

Fig. 3. Example images from the Lesaux database, a) city and b) countryside

Fig. 4. Example images from the Diatom database (four different classes)

expected, the accuracy of the traditional edit distance classifier strongly depends
on the actual edit costs, while the proposed method exhibits a roughly constant
behavior for penalty costs above a certain threshold. It should also be noted that
the proposed method clearly outperforms the nearest-neighbor classifier.

We next compare the classification accuracy of the two baseline classifiers
with the proposed method. To this end, we classify graphs from the Letter data-
base described above, from the Lesaux database, and the Diatom database. The
Lesaux database [11] consists of graphs representing images from five classes
(city, countryside, people, snowy, streets). Graphs are extracted from images by
running a region segmentation process and removing those segments that are
deemed irrelevant for classification. The remaining regions are then turned into
a region adjacency graph with labels describing the dominant colors of the re-
gion. We use a training set, validation set, and test set of size 54 each. For two
example images, see Fig. 3. The Diatom database [12] consists of 110 micro-
scopic images of diatoms, evenly split into training set, validation set, and test
set. The recognition task is to classify diatoms from the test set according to 22
classes. The images are represented by attributed region adjacency graphs. Four
example diatom images from different classes are shown in Fig. 4. The various
parameters of the classifiers (such as edit cost parameters and weighting factor
λ) are first optimized on the validation set and then applied to the independent
test set.

The classification accuracy of the three methods under consideration deter-
mined on the independent test set is given in Table 1. There are two entries in
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Table 1. Comparison of classification accuracy

Letter database Lesaux database Diatom database
Edit distance, kNN 69.3 48.2* 63.9*
Random walk, SVM 75.7* 33.3 44.4
Proposed, SVM 74.7* 51.9* 58.3*

* Marked classification rates do not differ significantly. Unmarked clas-
sification rates are significantly lower than marked ones (α = 0.05).

each column of this table marked with an asterisk. These two entries are, in each
column, not significantly different from each other (on a statistical significance
level of α = 0.05). However, the unmarked entry in each column is significantly
smaller than the two marked ones. It can clearly be observed that the two tradi-
tional methods — the edit distance based k-nearest-neighbor classifier and the
standard random walk kernel — perform quite different on all datasets. One of
the two methods is always significantly better than the other one. The proposed
random walk kernel enhanced by edit distance information, on the other hand,
performs as good as the better method throughout our experiments. That is,
while the traditional edit distance method and random walk kernel method em-
phasize a certain aspect of the graph matching problem, the proposed kernel
function combines the information in an advantageous manner. By applying the
method proposed in this paper, we obtain a robust classifier that succeeds well
on all tested datasets without recourse to the characteristics of the underlying
graphs. Our method can be regarded as an extension to the standard random
walk kernel that leads to a statistically significant improvement of the graph
matching performance on the Lesaux database and the Diatom database.

5 Conclusions

In this paper, we propose an extension of a standard random walk kernel for
graphs. It can be observed, on graphs extracted from real-world data, that ran-
dom walk kernels offer an interesting alternative to traditional edit distance
based graph classifiers in the sense that they address the graph matching prob-
lem in a different way. One some datasets, the edit distance measure is the most
suitable method for graph matching; on other datasets, edit distance is outper-
formed by random walk kernels and Support Vector Machines. The method we
propose is based on the idea that it is advantageous to include graph matching
information from the global level in the random walk kernel defined locally based
on the similarity of walks in graphs. By constraining the random walk kernel to
pairs of nodes that satisfy the global node-to-node correspondence, instead of
any pairs of nodes, we obtain a system that combines the flexibility of graph
edit distance with the classification power of the random walk kernel. The pro-
posed kernel offers a classification accuracy that is at least as good as the better
one of the two baseline methods — graph edit distance and standard random
walk kernels — and significantly better than the other one. The performance
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is evaluated on a semi-artificial line drawing dataset and two real-world image
datasets.
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